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It is well-documented that mathematics achievement is an important predictor of many

positive life outcomes like college graduation, career opportunities, salary, and even

citizenship. As such, it is important for researchers and educators to help students

succeed in mathematics. Although there are undoubtedly many factors that contribute to

students’ success in mathematics, much of the research and intervention development

has focused on variations in instructional techniques. Indeed, even a cursory glance at

many educational journals and granting agencies reveals that there is a large amount

of time, energy, and resources being spent on determining the best way to convey

information through direct, declarative instruction. The proposed project is motivated

by recent calls to expand the focus of research in mathematics education beyond direct,

declarative instruction. The overarching goal of the presented experiment is to evaluate

the efficacy of a novel mathematics intervention designed using principles taken from

the literature on non-declarative learning. The intervention combines errorless learning

and structured cue fading to help second grade students improve their understanding

of symbolic magnitude. Results indicate that students who learned about symbolic

magnitude using the novel intervention did better than students who were provided

with extensive declarative support. These findings offer preliminary evidence in favor

of using learning combination of errorless learning and cue fading techniques in the

mathematics classroom.

Keywords: math education, number line, implicit memory, declarative memory, vanishing cues, errorless learning

INTRODUCTION

It is well-documented that mathematics achievement is an important predictor of many positive life
outcomes like college graduation (Adelman, 2006; National Mathematics Advisory Panel, 2008),
career opportunities (Moses and Cobb, 2001; Howell and Walkington, 2019), salary (Rose and
Betts, 2004), and even citizenship (Education Commission of the States and United States., Dept.
of Education, 1998). As such, it is important for researchers and educators to help students succeed
in mathematics. Unfortunately, the results from the 2017 National Assessment of Educational
Progress (the largest continuing assessment of United States student achievement) suggests that
only 40% of 4th grade students met or exceeded proficiency level in mathematics achievement.
Even more startling, 20% percent of 4th grade students failed to meet the standards for even basic
level of mathematics understanding (National Center for Education Statistics, 2017). Statistics such
as these have driven the national agenda to discover and empirically assess the effectiveness of
techniques to improve students’ mathematics achievement and have fueled increasing research
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into mathematics interventions. Although there are undoubtedly
many factors that contribute to these statistics, much of
the research and intervention development has focused on
instructional techniques. Indeed, even a cursory glance at many
educational journals and granting agencies reveals that there
is a large amount of time, energy, and resources being spent
on determining the best way to convey information through
direct instruction or declarative support. The proposed project
is motivated by recent calls to expand the focus of research
in mathematics education beyond these standard techniques
(Vinter et al., 2010; Indahl, 2015). The overarching goal of the
presented study is to evaluate the efficacy of a novel mathematics
intervention which combines the principles of errorless learning
and structured cue fading to help second grade students improve
their understanding of symbolic magnitude.

Although an exhaustive overview of the literature
regarding the theory and measurement of symbolic magnitude
representations is beyond the scope of this article (see Siegler,
2016 or Kim and Opfer, 2017 for review), it is important
to provide some background information in order to better
contextualize this study. To start, symbolic magnitude
representation refers to one’s ability to create and utilize a
cognitive structure that maps symbolic numbers (typically
Arabic numerals) onto the abstract spatial-numerical quantities
that the symbolic number is supposed to represent. Although
a broad variety of cognitive structures are possible, most
researchers describe the ideal cognitive structure as one that is
both evenly-spaced and generally linear in nature; this is called
the “mental number-line” (Siegler, 2016). A well-calibrated
mental number-line is thought to help individuals more
accurately reason about the relationships between numbers
and magnitude more broadly (Siegler, 2016; Kim and Opfer,
2017). Unfortunately, the vast majority of both children and
adults have deficiencies in their representations of symbolic
numbers, and this can lead to errors in numerical reasoning
and mathematics performance. Instead of a purely linear
representation, young children (and even adults in unfamiliar
contexts) tend to spatially overestimate the magnitude of
smaller or more familiar quantities and condense larger or more
unfamiliar quantities; this is often modeled as a logarithmic
representation (Siegler and Opfer, 2003; Friso-van den Bos
et al., 2015; Hamdan and Gunderson, 2017). It is hypothesized
that learners shift from a logarithmic representation to a more
linear representation as they mature and gain familiarity with
symbolic numbers, and that this shift from logarithmic to linear
representational structure results in a better understanding of
the relationships between numbers and symbolic magnitude
more broadly (Booth and Siegler, 2008; Holloway and Ansari,
2009; Friso-van den Bos et al., 2015; Hamdan and Gunderson,
2017).

The most common way for researchers to measure
representations of symbolic magnitude is through number-
line estimation tasks (Siegler and Opfer, 2003). In the most
common instantiation of these tasks, learners are presented
with a blank, bounded number-line (e.g., a number-line where
only the zero point and the end point are marked and given
symbolic labels) and asked to mark the location of a given

symbolic number. The degree to which individuals are able to
accurately complete this task is considered a metric of the quality
of their symbolic magnitude representations or the accuracy
of their mental number-lines. In addition to their academic
utility in helping researchers study how people cognitively
represent numbers, number-line estimation tasks also have a
more practical utility. First, there is a large literature suggesting
that accurate performance on number-line estimation tasks is
highly predictive of later achievement in mathematics (Booth
and Siegler, 2008; Fazio et al., 2014; Watts et al., 2014; DeWolf
et al., 2015; Friso-van den Bos et al., 2015; Schneider et al., 2017).
This has led researchers like Booth and Siegler (2006) to assert
that the development of a linear mental number-line is critical
for student success (however, see Cohen and Sarnecka, 2014 or
Muldoon et al., 2013 for disagreement regarding this point).
Second, a growing body of research also suggests that number-
line estimation (and by extension, the quality of symbolic
magnitude representations) is a malleable skill that is responsive
to interventions (Ramani and Siegler, 2008; Whyte and Bull,
2008; Opfer et al., 2016; Wall et al., 2016). In perhaps the most
famous demonstration of this fact, Ramani and Siegler (2008)
used a specially developed, spatial-numerical board game to help
improve the number-line estimation skills of students enrolled in
a Head-Start program. Results indicated that children who spent
time playing the board game, particularly with adult feedback,
were better at a subsequent number-line estimation task and had
higher performance in other key numerical competencies like
numeral identification, magnitude comparison, and counting.
The benefits of the intervention were also durable, with students
seeing benefits from the interventions over 9 weeks later in
number-line estimation, numeral identification, magnitude
comparison, and counting. Taken together, these findings
suggest that accurate symbolic magnitude representations are
both critical to students’ math achievement and responsive to
interventions; this makes the domain ideal for further study
and intervention.

It should be noted that many of the interventions developed
to help students improve their symbolic magnitude estimation
skills are reliant on declarative memory processes and direct
instruction. For example, additional research on the board
game intervention developed by Ramani and Siegler (2008)
suggests that many of the benefits arise from directly instructing
students to engage in a declarative counting on strategy,
where students verbalize relevant symbolic numbers in order
as they progress through the game. While interventions based
on declarative learning techniques are doubtlessly beneficial,
they are not without limitations. From a practical standpoint,
interventions which require instructor guidance in order to
produce benefits are not well-suited for large classrooms where
such individualized attention may not always be feasible.
From a theoretical standpoint, interventions which rely on
declarative memory place large demands on students’ working
memory resources (Anderson et al., 1996; Ashcraft and Krause,
2007; Oberauer, 2009), which can be especially problematic
for domains like mathematics which already place a heavy
burden on students’ working memory resources. Indeed, there is
growing evidence that acquiring and using symbolic magnitude
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representations recruits working memory resources, especially
for young children (Wang et al., 2015).

This combination of working memory demands from both
the learning domain and the structure of the intervention
likely diminishes the efficacy of the intervention for many
at-risk students. For example, research suggests that children
and adolescents from lower-SES households underperform
their peers on working memory assessments (Herrmann and
Guadagno, 1997; Farah et al., 2006; Noble et al., 2007; Evans
and Schamberg, 2009; Sarsour et al., 2011; Hackman et al., 2015;
Leonard et al., 2015) and that girls suffering from stereotype
threat experience a situational decrement in working memory
function in math tasks (Bonnot and Croizet, 2007). Moreover,
many individuals with learning disabilities have comorbid
deficits in working memory processing (Siegel and Linder, 1984;
Siegel and Ryan, 1989; Hitch andMcAuley, 1991; Swanson, 1993;
McLean and Hitch, 1999; Keeler and Swanson, 2001; Wilson and
Swanson, 2001; Geary et al., 2007; Andersson, 2008; Swanson
et al., 2008; Jitendra et al., 2016) and, in line with more general
research on anxiety and working memory (e.g., Eysenck, 1992;
Eysenck and Calvo, 1992), many researchers characterize math
anxiety as a situational decrement in workingmemory processing
(Ashcraft and Kirk, 2001; Ashcraft and Ridley, 2005; Ashcraft and
Krause, 2007). As such, these students might be better served by
employing interventions which place fewer demands on working
memory resources. We hypothesize that one way to reduce
the working memory demands of a mathematics intervention
is to reduce its reliance on declarative memory processes. For
the purposes of this study, we will attempt to reduce reliance
on declarative memory processes through the use of two non-
declarative learning techniques: errorless learning and cue fading.

Before moving on to the specific non-declarative learning
techniques employed by this study, a point of clarification
is required. In much of the cognitive psychology literature,
the terms procedural learning and procedural knowledge are
used to describe the acquisition and representation of cognitive
operations which can be used to facilitate skilled behavior
in the absence of declarative activation. However, the terms
procedural knowledge and procedural learning mean something
different in the mathematics education literature. Procedural
knowledge in mathematics education typically refers to the
knowledge of the skills, sequences, or steps necessary to solve
a mathematics problem (Hiebert, 1986; Rittle-Johnson and
Siegler, 1998; Canobi, 2009; although see Star, 2005, 2007).
In contrast, conceptual knowledge is described as abstract
knowledge about underlying principles and relational structures
(Hiebert, 1986; Canobi, 2009; Prather and Alibali, 2009; Crooks
and Alibali, 2014). There is considerable debate about how
these two constructs develop, with some arguing that procedures
must be acquired first (Baroody and Gannon, 1984; Baroody
and Ginsburg, 1986; Sun et al., 2001), some arguing that
concepts must be acquired first (Donlan et al., 2007), and
others arguing that the two constructs influence each other
and develop in an iterative fashion (Gelman and Gallistel,
1978; Rittle-Johnson and Siegler, 1998; Rittle-Johnson and
Alibali, 1999; Rittle-Johnson et al., 2001, 2015; Rittle-Johnson
and Koedinger, 2009; Rittle-Johnson, 2017). Most relevant

for our purposes, the conceptual vs. procedural debate in
mathematics does not map cleanly onto the declarative vs.
procedural distinction in cognition (Kalra, 2015). For example,
conceptual knowledge includes both information which can
be easily verbalized or accessed explicitly and information
which cannot be easily verbalized or accessed implicitly
(Rittle-Johnson et al., 2001; Rittle-Johnson, 2017); in contrast,
declarative knowledge can only be accessed explicitly and is
often easily verbalized (Anderson, 1993). Moreover, procedural
knowledge in mathematics can be represented verbally and is
often evaluated using explicit recall of problem solving steps
(Rittle-Johnson et al., 2001; Kalra, 2015; Rittle-Johnson, 2017);
procedural knowledge in the ACT-R framework is represented
as automatic, if-then cognitive operations which place few
demands on working memory resources (Anderson, 1993).
Thus, it is possible to both have conceptual knowledge which
is represented in procedural memory and have procedural
knowledge which is represented in declarative knowledge. This
confusion over terminology is the primary reason for our use of
the terms “declarative learning” and “non-declarative learning”
in this paper.

Perhaps one of themore robust findings in the non-declarative
learning literature is the benefit of errorless learning (Baddeley
and Wilson, 1994; Hunkin et al., 1998; Tailby and Haslam,
2003; Anderson and Craik, 2006; Page et al., 2006; Warmington
et al., 2013; however see Evans et al., 2000). Errorless learning,
as the name suggests, is a technique which minimizes or
eliminates the number of errors experienced by the learner
during initial learning in hopes that it will improve subsequent
knowledge quality and duration. Specifically, it is argued that
correcting errors during learning requires learners to deliberately
access episodic representations of prior experiences with relevant
material, update their knowledge representations to include
correct information, and inhibit the re-activation of erroneous
material or irrelevant information; each of these processes
require substantial working memory involvement (Baddeley,
1992; Baddeley and Wilson, 1994). As such, the reduction of
participant errors (especially early on in the learning process)
can reduce working memory demands incurred during learning
(Baddeley and Wilson, 1994). The present intervention will seek
to reduce errors during initial learning in an effort to reduce
working memory demands.

Cue fading represents a broad class of learning techniques
which seeks to obtain the learning benefits associated with
generation (namely long-term retention and transfer to novel
context) while reducing the potential for misconceptions or
errorful intrusions. There are many ways to instantiate cue
fading (Glisky, 1992, Wolery et al., 1992; Riley and Heaton,
2000; Gardner et al., 2011; Fyfe et al., 2014; Hesser and Gregory,
2015; Suh et al., 2020), but the general procedure involves
the presentation of some-sort of partial cue or memoranda to
which the participant must produce the remainder of the cue or
the correct associated response. Although cue fading is not an
exclusively non-declarative technique (see Fyfe, McNeil, Son, and
Goldstone for a discussion of concreteness fading with explicit
declarative support) it can be used to direct a learner’s attention
to important stimulus features without relying on declarative
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instruction. One example of non-declarative cue fading is the
vanishing cue technique. In this technique, participants begin
the task with all possible cues which are then gradually faded
(either through physical cue removal or functionally through
a decrease in cue utility) until the participant can generate
the desired response without support (Glisky, 1992; Riley and
Heaton, 2000; Atkinson et al., 2003). Empirical support for the
vanishing cue technique is mixed, with some researchers finding
evidence for successful interventions in standard word string
learning tasks (Tailby and Haslam, 2003), computer vocabulary
learning (Glisky et al., 1986; Glisky, 1992), and fading worked
examples (Moreno et al., 2006; Salden et al., 2009). However,
a meta-analysis by Kessels and De Haan (2003) found no
significant effect of vanishing cue interventions. One reason
for the lack of empirical support for vanishing cues concerns
the way in which it is typically implemented: many cue fading
studies involve participants generating erroneous responses early
in the learning process (Riley et al., 2004; Haslam et al., 2010).
As discussed previously, these produced errors require working
memory resources in order to correct. This has led researchers
to argue for the combination of errorless learning and vanishing
cues in interventions (Riley et al., 2004; Haslam et al., 2010;
Indahl, 2015), however little work has been done on the additive
benefit of these two techniques in mathematics education. The
present study seeks to address this literature gap by testing a novel
intervention which combines the principles of error reduction
and vanishing cues.

Although we have been unable to identify empirical studies
which have directly attempted to employ error reduction and
vanishing cue techniques to number-line estimation tasks, there
is some existing work on the suitability of landmarks that
might indirectly address the relative efficacy of declarative
support in number-line estimation training. In the context of
the number-line literature, landmarks are considered spatial or
symbolic cues meant to help individuals segment the number-
line into equal, meaningful pieces (Lew, 2011). Although logic
would suggest that providing students with landmarks during
learning should help them acquire information and reason about
number-lines, there is a growing body of research suggesting
that landmarks can actually be harmful to learning in some
contexts. For example, a review by Lew (2011) found that there
was substantial variability in the outcomes of studies when
students were provided with spatial landmarks across a variety
of domains. Work by Siegler and Thompson (2014) helped to
shed light on why this might be the case. Siegler and Thompson
(2014) provided participants with a variety of landmarks (half-
way point, quartiles, deciles, etc.) during learning to help them
reason about the symbolic magnitude of fractions. The results
suggested that increasing the number of available landmarks
can be detrimental to learners’ estimation abilities when those
landmarks interfere with students’ ability to strategically encode
helpful information about magnitude. These findings are aligned
with theory proposed by Siegler andOpfer (2003), which suggests
that subjective segmentation (i.e., segmentation originated or
valued by the learner) is likely more helpful than overly-specific
segmentation. The findings of Siegler and Thompson (2014) are
also bolstered by empirical work fromAshcraft andMoore (2012)

and Schneider et al. (2008) which indicate that individuals both
engage in spontaneous line segmentation and are more accurate
estimating quantities near their subjective segmentations. While
these studies do not address the suitability of error reduction
or vanishing cue techniques in the acquisition of number-line
estimation skills, they showcase the existence of limitations
in the efficacy of purely explicit or declarative instruction
for this domain. These studies show that explicitly presenting
information is not always helpful when students are learning
about number-lines; this opens up the possibility that non-
explicit or non-declarative techniques might be more effective at
helping students improve their number-line estimation abilities.

The present study seeks to compare the relative efficacy of
an intervention based on error reduction and vanishing cues
and more traditional declarative instruction when it comes to
helping students gain an understanding of symbolic magnitude.
Specifically, we seek to answer a broad empirical question:
does a number-line estimation intervention based on techniques
like errorless-learning or cue-fading better help second-grade
students improve their understanding of symbolic magnitude
than an equivalent number-line intervention based on declarative
instruction of landmarks? On the basis of prior research, we
anticipate that our novel number-line intervention will result in
better learning.

PARTICIPANTS

Based on an a priori power estimation using an expected effect
size of d = 0.80, α = 0.05, and 1–β = 0.80 we set a minimum
sample size of 52 participants (twenty six per group). The
expected effect size was based on the prior research discussed
in the introduction. A total of 68 second graders from five
elementary classrooms in Northeast Ohio participated in the
study. Our sample size was slightly larger than the minimum
sample size recommended by the a-priori power analysis due to
the sizes of the recruited 2nd grade classes. The data of three
participants were excluded from all analyses because either pre-
test or post-test data were missing. Due to circumstances beyond
the researchers’ control (see description of procedures below) the
study included 29 participants in the declarative group and 35 in
the non-declarative group.

The classes were recruited from public schools in the
university’s geographic region to attend an experimental
classroom in the university’s center for educational technology.
The participating classes typically attended the experimental
classroom for one half of each school day (teacher plus
class) for a period of 3-weeks. During this time, the teachers
learned to use multiple classroom technologies to enhance their
teaching and students were given the opportunity to explore a
variety of subjects. The director of the university’s experimental
classroom made initial contact with participating teachers. The
participating teachers then obtained written consent from the
parents of participating students. All participants then provided
oral assent to participate in each session of the study. The
university’s Institutional Review Board approved the study and
all ethical standards of the American Psychological Association
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were followed in treatment of the participants and collection of
the data.

DESIGN AND PROCEDURE

The original plan for the procedure was for all participants to
complete a pre-test measure of symbolic magnitude on the first
day (Week 1, Day 1) of their time in the experimental classroom.
Following the pre-test, participants would then be randomly
assigned to learn about number-lines using the non-declarative
or declarative intervention. They would then complete four
sessions of number line training in their assigned condition. Each
session of training would take ∼10min to complete and one
session would be completed each day (Week 1, Days 2–5). On
the following Monday (Week 2), participants would complete
a post-test measure of symbolic magnitude and on Tuesday
(also Week 2) complete a measure of working memory capacity.
Finally, duringWeek 3 participants would complete four sessions
of training in the condition that they did not complete during
Week 1. This was to ensure that participants were trained in
both conditions and not miss the benefits of both trainings. No
post-test was planned following the training in Week 3.

Due to circumstances beyond the control of the experimenters
and the experimental classroom (e.g., snow days, classrooms
unable to attend on a Monday or Friday, illness, etc.) the timing
of the pre-test, training, and post-test s was not uniform across
classrooms. Table 1 presents the training schedule for each of the
five 2nd grade classrooms.

The experimental classroom, in which participants completed
each session, is equipped so that each participant completed
all tasks on their own IBM compatible laptop computer. All
measures were programed with E-Prime 2.0 R© and presented to
students on the individual IBM compatible laptop computers.
Instructions were presented visually on the computers and
read audibly by a research assistant at the beginning of
each session. Instructions were standardized across both

TABLE 1 | Training schedules.

Class Week Monday Tuesday Wednesday Thursday Friday

Ideal 1 Pre-test Training 1 Training 2 Training 3 Training 4

2 Post-test Post-test – – –

1 1 – Pre-test Training 1 Training 2 –

2 Training 3 Post-test – – –

2 1 Pre-test Training 1 Training 2 Training 3

and

Post-test

–

2 – – – – –

3 1 – – Pre-test Training 1 –

2 Training 2 Training 3 Training 4 Post-test –

4 1 – Pre-test and

Training 1

Training 2 Training 3 Training 4 and

Post-test

2 – – – – –

5 1 – – Pre-test Training 1 –

2 – Training 2 Training 3 Training 4 Post-test

conditions and classrooms. At least one researcher or research
assistant, two employees from the university’s center for
educational technology, and the relevant teacher were present
during all sessions in order to maintain experimental fidelity
and consistency in implementation. All researchers, research
assistants, employees from the university’s center for educational
technology, and teachers were told to only to offer assistance to
students who did not understand the presented instructions and
not to assist students in completing the tasks. At the beginning of
each session, one of the researchers obtained assent to participate
from the students.

MEASURES

In the non-declarative learning condition, participants are
presented with 20 unique trials (per session) of a dichotomous,
number-to-point estimation task meant to combine the
principles of errorless learning and cue fading. For each trial
in this condition, participants were presented with an Arabic
numeral between 1 and 100 then asked to choose the location
corresponding to that numeral from one of two provided
points (red or green) on an unsegmented 0 to 100 number-line.
Participants then indicated their response by pressing the
corresponding key on the laptop keyboard (C for Green and
M for Red). After indicating their response, participants were
shown either a smiling face (indicating a correct response) or
a frowning face (indicating an incorrect response). Although
providing students with corrective feedback is a decidedly
declarative learning technique, we elected to provide minimal
corrective based on work in the discovery learning literature
(another prominent non-declarative learning technique) which
suggests that the absence of minimal corrective feedback can
actually increase the demand placed on working memory
resources (Sweller, 1988; Kirschner et al., 2006) and lead to
harmful misconceptions (Klahr and Nigam, 2004; Kirschner
et al., 2006). Given that our stated goal is to employ non-
declarative learning techniques as a means of reducing working
memory demands for young students, we elected to provide
minimal corrective feedback.

To reduce errors made during initial learning, the red and
green points (representing response options) were spatially
distant from one another during early trials (e.g., target is 15
and points represent 15 and 75); this large spatial distance was
meant to facilitate easy discrimination between response options
and it was expected that students would make minimal errors
on these trials. This assumption was supported by pilot data,
which indicated that fewer than one in five students made any
errors during the errorless trials. As the intervention progressed,
the red and green response options become closer together
in space (e.g., target is 15 and points represent 10 and 15);
this was meant to instantiate the vanishing cue technique, as
the cue of spatial distance loses its discriminatory power and
becomes less helpful as the task progresses. As such, participants
must generate their own subjective landmarks or strategies to
correctly complete the task. Each training session took ∼10min
and used unique Arabic numerals which were randomly drawn
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from across the 0–100 range. No values were presented more
than once either within or across training sessions. We excluded
numerals ending in 0 or 5 to avoid having response options
fall directly on provided landmarks in the declarative condition.
Examples of the non-declarative learning stimuli can be found
in Figure 1.

In the declarative learning condition, participants were also
presented with 20 trials (per session) of a dichotomous, number-
to-point estimation task. As in the non-declarative learning
condition, participants in this condition were presented with an
Arabic numeral and instructed to choose the correct location
from two provided points (red or green) on a 0 to 100 number-
line. Responses were indicated in the same manner as in the
non-declarative condition and the same minimal corrective
feedback was provided. Just like the non-declarative learning
condition, the initial trials of each session featured red and green
response points which were far apart in space and then got closer
together as the session progressed. Unlike those in the non-
declarative learning condition, participants in the declarative
learning condition were given two forms of declarative support to
help them cope with the incremental loss of the spatial cue. First,
in addition to the labeled end values of 0 and 100, participants
in the declarative learning condition were also provided with
landmarks on the number-line to support identification of the

correct response (e.g., labeled marks at halfway point, quartiles
or deciles). These landmarks were adaptive to task demands; as
the red and green points became closer together, the provided
landmarks increased in specificity. Second, participants were
also provided with declarative support (in the form of onscreen
text) about the presented numeral’s relationship to two of the
presented landmarks on the number line (e.g., 15 is bigger than
10 but smaller than 20 with decile landmarks presented). Thus,
as the proximity between the red and green points increases
throughout the task, participants will receive increasingly specific
landmarks and specific declarative support regarding the use of
those landmarks. The first five trials in this condition provided
landmarks and declarative support based on the midpoint, the
next five trials used quartiles, the next five trials used deciles, and
the final five trials used landmarks in increments of five. Each
training session took ∼10min and used unique Arabic numerals
which were randomly drawn from across the 0–100 range. No
values were presented more than once either within or across
training sessions.We excluded numerals ending in 0 or 5 to avoid
having response options fall directly on provided landmarks in
the declarative condition. Items in both training conditions were
presented in the same pseudorandomized order, distance, and
duration. Examples of the declarative learning stimuli can be
found in Figure 2.

FIGURE 1 | Stimuli for the non-declarative learning condition. The task begins with the red and green lines separated by extensive spatial distance. As the task

progresses, the lines become closer together and more difficult to discriminate.

FIGURE 2 | Stimuli for the declarative learning condition. The task follows the same spatial fading as the non-declarative condition but this fading is offset by an

increase in available declarative cues.
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The outcome measure for this study was a number-line
estimation task. Specifically, participants completed a point-
to-number number line estimation task, which is thought to
indicate knowledge of symbolic magnitude. For each trial of the
number-line estimation task, participants were presented with
an unsegmented 0 to 100 number-line with a single black mark
somewhere on the number-line. Participants were asked to type
the Arabic numeral that they believed the mark represented.
This task was administered as both a pre-test and a post-test,
although a different set of stimuli were used for each test. The
pre-test and post-test each consisted of 40 unique trials and lasted
∼15min. No corrective feedback was provided during this task.
While the pre-test and post-test used different numbers from
each other (i.e., 40 unique correct numeral responses for the
pre-test and 4 unique correct numeral responses for the post-
test), all values used in the outcomemeasure were presented once
during training. Stimuli were selected for the outcome measures
to ensure an even sampling across all four training sessions in an
attempt to reduce a possible recency bias in the post-test.

This outcome measure was specifically chosen to be
methodologically distinct from both training tasks in order
improvement based solely on practice effects. The training
tasks each use variant of the bounded, number-to-position
estimation task. This is the most common instantiation of the
number line estimation task in the published literature and
requires participants to select a location on a number-line which
corresponds to a presented numeral. The outcome measure
is a bounded position-to-number task where participants are
presented with a location on a number-line and must produce
the corresponding numeral. These tasks variants require different
responses from participants (selecting a spatial location vs.
producing a symbolic numeral) and vary in the number of
possible responses (two possible locations during training vs.
100 possible symbolic numbers on the outcome). The current
consensus of the number line literature seems to be that these
task variations likely measure the same underlying construct
(symbolic magnitude representations) but should not be treated

FIGURE 3 | Stimuli for the pre-test and post-test tasks. Participants are given

a single point on a number-line and must type the symbolic number which

matches the position of the point.

as isomorphic or interchangeable due to potential variations
in difficulty or strategic behavior (Siegler and Opfer, 2003;
Schneider et al., 2008). Examples of the number-line estimation
task stimuli can be found in Figure 3.

RESULTS

The dependent measure of interest was the percent absolute error
(PAE) on the post-test. PAE is calculated as (|correct response—
participant response|)/100. Table 2 presents the means, standard
deviations and t-test results of pre-test and post-test PAE by class
and treatment condition for all participants. Figure 4 presents
group PAE means by test. Descriptive statistics revealed the
presence of one prominent outlier in the declarative learning
condition. As a result, analyses were computed both with the
full data set and with the outlier removed. Removal of the
outlying individual did not change the pattern nor significance
of the reported effects. As such, all analyses reported below were
calculated with the full data set.

Due to the uneven training schedule, we conducted a
continuously cumulating meta-analysis (CCMA; Braver et al.,

TABLE 2 | Effect size estimates for CCMA.

Declarative Non-declarative Comparison

Class Mean

PAE

SD n Mean

PAE

SD n spooled T SE p

1 17.86 8.90 6 9.30 4.24 9 6.45 2.52 3.40 0.03

2 7.53 2.53 10 7.51 5.34 6 3.78 0.01 1.95 0.99

3 4.99 0.49 2 9.18 5.56 5 4.98 −1.1 4.16 0.36

4 12.58 7.15 6 9.48 4.31 9 5.58 1.06 2.94 0.31

5 19.15 12.88 5 8.83 3.88 7 8.68 2.03 5.08 0.07

FIGURE 4 | Mean PAE for pre-test and post-test performance by

experimental condition.
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2014) on the data treating each class as its own separate study.
The CCMA is typically used to determine the pooled effect size
of a given intervention or grouping variable across multiple
studies; it can be thought of as a way to assess the strength
of an effect across variations in methodology, materials, or
sample characteristics. Although the CCMA is typically used
to determine the pooled effect size from different studies,
we used it to assess the pooled effect of our experimental
intervention across the variations in treatment administration,
testing, and class characteristics. In this way, each of the
classrooms that participated in our experiment was treated as its
own unique study. To compute the CCMA, we first conducted
an independent-samples t-test to compare group means on both
pre-test PAE and post-test PAE for each classroom (see Table 2
for results). We then pooled the effect size estimates produced
by each of these analyses into a single meta-analytic index for
pre-test and another for post-test. The CCMA results for pre-
test PAE (based on the pooled Cohen’s d and fixed effects)
indicate that there were no group differences at pre-test, pooled
d = 0.18, SEpooled = 0.25, p = 0.47, 95% CI [−0.31, 0.68].
This suggests that the groups could be considered functionally
equivalent, in terms of symbolic magnitude estimation skill,
before the intervention. The CCMA results for post-test PAE
(based on the pooled Cohen’s d and fixed effects) indicate that
there were significant differences between the groups at post-
test. Specifically, the declarative learning group had larger PAE’s
(M = 14.25, SD = 15.15) than the non-declarative learning
group (M = 9.39, SD = 4.59) producing a pooled d = 0.52,
SE−pooled–= 0.26, p = 0.046, 95% CI [0.01, 1.03]. Pooled
Cohen’s d can be interpreted as the standardized mean difference
between groups computed across multiple studies. Our pooled
Cohen’s d of d = 0.52 can be considered a medium effect
size (Cohen, 1988).

As the CCMA indicated a significant effect at post-test despite
variations in training implementation, we aggregated pre-test
and post-test data then conducted a 2 (pre-test vs. post-test)
within subjects × 2 (group: declarative vs. non-declarative)
between subjects ANOVA onmean PAE. The results indicate that
the main effect of time (pre-test to post-test) was not significant,
F < 1, yet there was a main effect of group, F(1, 64) = 4.80, p
= 0.032. The key finding was a significant interaction, F(1, 64)
= 5.10, p = 0.027. These results suggest that, although the two
groups were nearly identical in PAE at pre-test, students in the
non-declarative learning group performed significantly better at
post-test than those in the declarative learning group.

Lastly, in order to better understand the relationship between
training condition and position of the presented stimuli on
the number line we divided the line into four equal segments
and conducted a linear regression. The regression analysis was
designed to predict post-test PAE using group and number-line
segment as predictors and including an interaction term between
segment and condition. The results of the regression analysis
[R2 = 0.07, F(3, 95) = 2.68 p = 0.05] indicate that there was
no significant effect of segment (β = 0.42, t = 1.40, p = 0.16),
nor of the interaction (β = 0.36, t = 1.19, p = 0.24), but there
was a significant effect of condition (β = 0.24, t = −2.44, p =

0.02), indicating the non-declarative learning group had smaller

percent absolute errors than the declarative learning group for
each segment of the 0–100 number-line.

DISCUSSION

In accordance with our hypotheses, the results of the present
study indicate that students who learned about number-lines
using an intervention based on the principles of errorless learning
and vanishing cues had better representations of symbolic
magnitude than those who learned about number-lines with
substantial declarative support. Importantly, we found these
effects despite differences in intervention implementation and
fidelity. Although it must be stressed that these data represent
only a modest first step toward answering the questions set
forth in the introduction and additional work is needed to
replicate these findings, the present study provides preliminary
evidence in support of using a combination of error reduction
or errorless learning and cue-fading techniques in early STEM
education. This is in line with the conclusions of Indahl
(2015) which found that interventions which use errorless
learning and vanishing cues can help eighth-grade students
learn to factor polynomials. The results of that work found
that students who learned to factor polynomials were more
efficient at factoring novel polynomials than those who learned
about polynomial factoring from a more traditional lecture.
However, these results did not replicate for tests of declarative
rule knowledge; many of the students who learned how to
factor polynomials from the non-declarative intervention were
able to factor polynomials without being able to articulate the
rules or mathematical procedures for factoring. In conjunction
with our results, these findings open up interesting future
questions regarding the qualities of knowledge representations
produced by the combination of errorless learning and cue-
fading techniques.

LIMITATIONS AND FUTURE DIRECTIONS

The lack of methodological consistency and fidelity makes more
fine-tuned analyses difficult at the present time. Future studies
should attempt to replicate and extend these findings using a
larger sample size and more methodological consistency. These
materials should also be evaluated in student populations
with more variability in background knowledge, math
anxiety, working memory, and developmental differences.
Additionally, the present study used a relatively immediate
post-test with limited possibilities for transfer. Future studies
should examine both the long-term effects of non-declarative
training (compared with declarative instruction) and the
extent to which non-declarative training impacts transfer
to a wide range of numerical skills and math achievement.
Finally, additional research is needed to determine which areas
of mathematics are amenable to non-declarative learning
techniques and which topics require direct instruction.
Nonetheless, this study represents compelling early evidence for
the suitability of errorless learning and cue-fading techniques in
educational settings.
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