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Diabetic retinopathy (DR) is a late microvascular complication of Diabetes

Mellitus (DM) that could lead to permanent blindness in patients, without early

detection. Although adequate management of DM via regular eye examination

can preserve vision in in 98% of the DR cases, DR screening and diagnoses

based on clinical lesion features devised by expert clinicians; are costly, time-

consuming and not su�ciently accurate. This raises the requirements for

Artificial Intelligent (AI) systems which can accurately detect DR automatically

and thus preventing DR before a�ecting vision. Hence, such systems can help

clinician experts in certain cases and aid ophthalmologists in rapid diagnoses.

To address such requirements, several approaches have been proposed in the

literature that useMachine Learning (ML) andDeep Learning (DL) techniques to

develop such systems. However, these approaches ignore the highly valuable

clinical lesion features that could contribute significantly to the accurate

detection of DR. Therefore, in this study we introduce a framework called

DR-detector that employs the Extreme Gradient Boosting (XGBoost) ML

model trained via the combination of the features extracted by the pretrained

convolutional neural networks commonly known as transfer learning (TL)

models and the clinical retinal lesion features for accurate detection of DR.

The retinal lesion features are extracted via image segmentation technique

using the UNET DLmodel and captures exudates (EXs), microaneurysms (MAs),

and hemorrhages (HEMs) that are relevant lesions for DR detection. The

feature combination approach implemented in DR-detector has been applied

to two common TL models in the literature namely VGG-16 and ResNet-

50. We trained the DR-detector model using a training dataset comprising

of 1,840 color fundus images collected from e-ophtha, retinal lesions and

APTOS 2019 Kaggle datasets of which 920 images are healthy. To validate

the DR-detector model, we test the model on external dataset that consists

of 81 healthy images collected from High-Resolution Fundus (HRF) dataset

and MESSIDOR-2 datasets and 81 images with DR signs collected from Indian
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Diabetic Retinopathy Image Dataset (IDRID) dataset annotated for DR by

expert. The experimental results show that the DR-detector model achieves a

testing accuracy of 100% in detecting DR after training it with the combination

of ResNet-50 and lesion features and 99.38% accuracy after training it with the

combination of VGG-16 and lesion features. More importantly, the results also

show a higher contribution of specific lesion features toward the performance

of the DR-detector model. For instance, using only the hemorrhages feature

to train the model, our model achieves an accuracy of 99.38 in detecting

DR, which is higher than the accuracy when training the model with the

combination of all lesion features (89%) and equal to the accuracy when

training the model with the combination of all lesions and VGG-16 features

together. This highlights the possibility of using only the clinical features, such

as lesions that are clinically interpretable, to build the next generation of

robust artificial intelligence (AI) systems with great clinical interpretability for

DR detection. The code of the DR-detector framework is available on GitHub

at https://github.com/Janga-Lab/DR-detector and can be readily employed

for detecting DR from retinal image datasets.
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Introduction

Diabetic Retinopathy (DR) is a microvascular disorder

associated with long-term diabetes mellitus and is one of the

leading causes of preventable vision loss across the worldwide

(1). DR manifests in individuals diagnosed with Type 1 Diabetes

(T1D) or Type 2 Diabetes (T2D). Roughly one-third of diabetic

patients are affected by DR (2, 3), and the likelihood of

developing DR scales with the length of diabetes duration (4).

The progression of DR in T1D and T2D is characterized

by damage to the retina. The retina is a multilayered network

of rod and cone photoreceptor cells integrated with bipolar

and ganglion cells that enable vision by encoding information

gained from light as nerve impulses (5). The retina is supplied

with oxygen and nutrients by an extensive vascular system. In

T1D and T2D, high blood glucose levels contribute to pro-

inflammatory changes that increase the permeability of the

blood-retina barrier, leading to leakage of fluids and blood into

the retina (6). High blood glucose can also block small retinal

capillaries, impeding the delivery of nutrients and contributing

to further damage (7).

Although adequate management of DM via regular eye

examination can preserve vision in DR in many cases, DR

screening and diagnoses currently involve highly trained and

qualified medical professionals at a high cost. Thus, there is a

continuous need for the development of automatic approaches

for DR detection as a cheaper alternative to the time-consuming

manual DR diagnosis by trained clinicians. A promising

application of these approaches is Computer Assisted Diagnosis

(CAD) support for detection of DR. An advantage of such

CAD applications is that they offset the burden on medical

professionals like expert ophthalmologists and fill their absence

in addition to preventing DR before affecting vision. This

consideration is critical, considering that the global burden of

DR is expected to expand to 700 million cases by the 2040s (8).

Many DR detection techniques suitable for CAD utilizeMachine

Learning (ML), Deep Learning (DL) algorithms and various

previously pretrained DL models commonly known as Transfer

Learning (TL) models.

The TL models have been successfully used for automated

binary and multi-class classification of color fundus retinal

images for DR detection (9–12). These algorithms have shown

a great performance in the automatic detection of DR in non-

clinical setups when the dataset is very small and might cause

chances for underfitting or high generalization error. In such

cases, TL is preferred over standard DL techniques. Recently,

the focus has been shifted to TL feature-based models, where

common TL algorithms are used for extracting many important

local (textural) features from retinal images for detection of

DR and predicting its severity level through convolving with

a sliding window and forming a filter. For example, features

extracted from AlexNet TL model (13) were passed to the

Support Vector Machine (SVM) ML model to enhance the

efficiency of the DR classification system, where SVM model

achieved accuracies of 97.93 and 95.26% in five-class DR

classification with linear discriminant analysis (LDA) feature

selection and principle component analysis (PCA) dimensional

reduction, respectively (14), when training themodel and testing

Frontiers inMedicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2022.1050436
https://github.com/Janga-Lab/DR-detector
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Hassan et al. 10.3389/fmed.2022.1050436

on Kaggle dataset1. As an extension to the same direction,

features from the final layers of VGG-19 TL model (15) were

collected and aggregated to get a deeper representation of retinal

images, and these dense features were reduced by PCA and

singular value decomposition (SVD) (16), where it was fed to

a deep Neural network (DNN) model that achieved accuracies

of 97.96, and 98.34% in DR severity classification with PCA and

SVD, respectively when training themodel and testing on Kaggle

dataset. Yaqoob et al. (17) introduced a feature representation

extracted by ResNet-50 TL model (18) that was fed to Random

Forest (RF) classifier for binary and multiclassification of DR.

This approach achieved an accuracy of 96% when it was applied

on a dataset comprised of two DR categories for detecting DR

and accuracy of 75.09% when it was applied as on five DR

category dataset for predicting the severity of DR.

Bodapati et al. (19) introduced a DR classification model

that aggregates features extracted from multiple convolution

blocks of TL models to enhance feature representation and

hence improve DR detection. The model has compared various

methodologies of pooling and feature aggregation and it was

concluded that averaging pooling with simple fusion approaches

using Deep Neural Networks (DNN) led to an improved

performance. The authors of this work claimed that their

approach for blending features from the convolution layers

of the same TL model is simpler and better than the simple

concatenation of features extracted from various TL models

at a different scale that was presented early in (20). The

latter approach introduced a multi-modal blended TL feature

representation for extracting deep features from penultimate

layers of multiple TL models and blending them using different

pooling approaches to obtain the final DR image representation.

However, besides the local features presented by various

TL models or the fusion of those features, the global image

features have been playing an important role in DR detection.

Those features are represented by the contour and structural

features that describe retinal lesions like exudates (EXs),

microaneurysms (MAs), and hemorrhages (HEMs), where the

presence of DR disease is characterized by detecting one or more

of these lesions. Thus, those global features (lesion features) are

considered as good signs of retinal image lesions and hence

can be successfully applied to improve the final accuracy of a

TL-feature based DR screening system. Therefore, there were

some attempts that used image segmentation techniques for

extracting/detecting retinal lesion features that can be used for

DR detection and staging (21, 22). In such image segmentation-

based methods, a label is assigned to every pixel of an image

based on pixel characteristics (23). The labels are encoded in

a segmentation mask with equal dimensions to the image. In

binary segmentation tasks, each mask pixel represents either

the foreground (corresponds to an area-of-interest in the image;

1 https://www.kaggle.com/c/aptos2019-blindness-detection/data

value = 1) or the background (corresponds to all non-area-of-

interest; value = 0). Thus, binary segmentation tasks are useful

for extracting notable areas from biomedical images.

With the introduction of deep learning (DL), especially

convolutional neural network (CNN), the DL based methods

have resulted in an outstanding performance in medical image

segmentation (24). UNET-architecture CNN models are one

of DL models that achieve remarkable performance in medical

image segmentation tasks (25). For the task of retinal image

segmentation for DR detection, there were multiple research

reports that demonstrate the use of UNET for segmentation

of leakage-prone blood vessels (26, 27). UNET models have

also been successfully developed for the segmentation of MAs

(28–31), EXs (32–35), and HEMs (36).

Although TL and segmentation features provide robust

information for DR detection, they were not used together in

the literature for a two-class (binary) DR-detection. Only a

few existing research attempts utilized the fusion of both types

of features for improving the performance of predicting the

severity levels of DR (37, 38). For example, Harangi et al. (37)

proposed a framework that combines AlexNet TL-based features

with image-level features that reflect the intensity, shape, and

texture of the structures of the image and lesion-specific features

associated with MAs and EXs. This combination of features

was passed through an additional fully connected layer followed

by a softmax function that achieved an accuracy of 90.07% in

predicting the class probabilities corresponding to 5 classes for

DR that express its severity levels. In Bogacsovics et al. (38), the

same idea was extended to several commonly used TL models

for local image feature extraction other than AlexNet. Next, the

results of concatenating the TL features of those models with

the hand-crafted features (image level and lesion features) were

objectively compared to demonstrate the best concatenation

framework that improves the accuracy of predicting DR grades.

Next, the best concatenation was passed through an additional

fully connected layer then a softmax function to predict the five

class probabilities of DR severity. However, both approaches

in (37, 38) were not tested for binary classification of DR to

report the presence of the disease. Also, the performance of

the lesion feature extraction was not explicitly investigated as

well as the impact of those features on DR detection. Moreover,

both approaches combined the image level features with TL and

lesion features for training the DR severity levels predictors,

increasing the curse of dimensionality.

Therefore, in this study we propose a framework called DR-

detector (Figure 1) that employs the XGboost ML model (39)

for an accurate detection of DR. The model is trained with a

combination of the TL features, and three clinical lesion features

that capture EXs, MAs, and HEMs. Such a combination is used

to get a better representation of retinal image features that can

be used to decide about the presence of DR disease. Thus, we

seek the power of TL model to extract features that accurately

capture the local textural retinal images while simultaneously
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FIGURE 1

The workflow of DR-detector framework for detection of DR using a combination of TL and lesion features. (A) Extracting TL features from

VGG-16 and ResNet-50 models. (B) Extracting MAs, EXs, and HEMs lesion features from retinal fundus images using U-Net semantic

segmentation models. (C) Flat combination of TL and lesion features in DR-detector framework.

taking advantage of the power of lesion features to represent

the global features of the retinal images that would result in

improving the performance of the DR-detector model and its

interpretability for clinical use.We tested the DR-detectormodel

on an external dataset of retinal images for detection of DR.

We have applied our proposed framework to two common

TL models in the literature namely VGG-16 and ResNet-50

models (Figure 1A). The experimental results show that the DR-

detector model achieves an accuracy of 100% in detecting DR

when testing it on an external dataset after training it with

the combination of Resnt-50 and lesion features and 99.38%

accuracy after training it with the combination of VGG-16 and

lesion features. The results also show a higher contribution

of some lesion features toward the performance of the model

over other lesion features. For instance, using the hemorrhages

feature to train the model, our model achieves an accuracy of

99.38 in detecting DR which is higher than the accuracy of

the model when training it with the combination of all lesion

features (89%) and equal to the accuracy when training it with

the combination of all lesions and VGG-16 features together.

Thus, we arrived at two major conclusions. First, the extracted

relevant lesion features can complement the textural features

extracted by the TL model to improve the performance of

DR-detector model and its interpretability for clinical use in

detecting the presence of DR disease. Second, the contribution of

lesion features to the performance of DR-detector model varies

from one lesion feature to another. This highlights the possibility

of using only the lesion features for training the next generation

of robust and accurate AI models with clinical interpretability

for DR detection.

Materials and methods

Approach pipeline

The main objective of this work is to develop a robust and

efficient framework called DR-detector for automatic detection

of DR. Thus, we employed ML model namely the XGBoost in

this framework to achieve this objective. This model is trained

with a combination of two types of extracted features. The

first type is deep convolutional features extracted using a TL

model (VGG16-model or Resnet50) pre-trained previously on

ImageNet dataset (40) (Figure 1A). Those deep features were
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known as the most descriptive and discriminate features that

ultimately improve the performance of DR recognition (16).

The second type of features are three clinical lesion features

that capture the EXs, MAs, and HEMs and are extracted using

image segmentation via U-Net DL model (Figure 1B). Those

lesion features were found to be the most common pathological

signs of DR in the literature (41). Next the performance of

DR-detector model is tested on external dataset of fundus

retinal images after training it with the combination of TL and

lesion features (Figure 1C). In summary, the proposed pipeline

of the DR-detector framework (Figure 1) has five different

modules including TL feature extraction (Figure 1A), lesion

feature extraction (Figure 1B), and feature combination, model

training and model evaluation (Figure 1C).

Datasets

Training dataset

We conduct our experiments on 1,840 color fundus images.

920 images of them have DR signs, and the remaining are

healthy images. Those images were used for training the DR-

detector model. The images with DR signs were collected from

two public-available datasets, namely the e-ophtha2, and retinal

lesions (42, 43) with binary masks for extracting and quantifying

the EXs, Mas, and HEMs lesion features. The healthy images

were collected from APTOS 2019 Blindness Detection Kaggle

competition training dataset (44). The Binary masks for healthy

eye images are generated by creating all-black images with

identical dimensions.

The images in the training dataset have various levels of

DR on a scale of 0 to 4 [0 - No DR (healthy), 1-Mild, 2-

Moderate, 3-Severe, 4-Proliferative DR] to indicate different DR

severity levels. However, the data is imbalanced as it consists

of 920 healthy images of DR-level 0, 120 images of DR-level 1,

681 images of DR-level 2, 64 images of DR level 3, 55 images

of DR level 4. Since we found that there is not enough data

from DR classes of DR-levels (1–4) that we can include in the

training dataset to balance it, we decided to go with the binary

classification of DR for automatic detection of this disease.

Therefore, we adopt the training data set for binary classification

problem by merging all images of DR signs of 1–4 into a single

positive class of 920 images labeled as DR and the remaining 920

images are labeled as healthy and assigned to the negative class

as shown in Table 1.

Testing dataset

For testing the DR-detector model, we have used a dataset

of 162 color fundus images, where 81 of them are annotated as

DR affected, and the remaining are from healthy individuals.

Those images were collected from three publicly available

2 https://www.adcis.net/en/third-party/e-ophtha/

TABLE 1 Number of healthy and DR images in the training dataset.

DR severity level Number of healthy and DR images

0 920 (Healthy)

1 920 (DR)

2

3

4

Total 1,840

TABLE 2 Number of healthy and DR images in the testing dataset.

DR severity level Number of healthy and DR images

0 81 (healthy)

1 81 (DR)

2

3

4

Total 162

datasets, namely High-Resolution Fundus (HRF) dataset (45),

Indian Diabetic Retinopathy Image Dataset (IDRID) dataset

(46), and MESSIDOR-2 datasets (47). The IDRID contained

81 color fundus images (4,288 x 2,848) with binary masks

representing DR-affected eyes needed to extract and quantify

the EXs, Mas, and HEMs lesion features. However, IDRID

dataset does not contain any healthy eye images, so the healthy

eye images in the testing dataset were randomly selected from

HRF and MESSIDOR-2 datasets. Binary masks for healthy

eye images are generated by creating all-black images with

identical dimensions.

Similar to the training data, the images in the testing dataset

have 0–4 levels of DR to indicate different DR severity levels.

However, the dataset is imbalanced as it consists of 81 healthy

images of DR-level 0 and 81 images of DR affected images with

2 images of DR-level 1, 34 images of DR-level 2, 22 images of DR

level 3, and 23 images of DR level 4. Since there is not enough

data from DR classes of DR-levels (1–4) that we can include in

the testing dataset to balance it, it has been more convenient to

use such data for binary classification of DR for detection of the

disease. To achieve this, we adopt the testing data set for binary

classification problem by merging all images of DR levels of 1–4

into a single positive class of 81 images labeled as DR and the

remaining 81 images are labeled as healthy and assigned to the

negative class as shown in Table 2.

Image feature extraction with transfer
learning

In this approach, local representations of the retinal

image’s features are obtained from the TL model (either the
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VGG16 or the Resent50 pretrained models) by extracting deep

features from the final layers of the pre-trained models. When

performing feature extraction with TL models, we treat the

pre-trained network as an arbitrary feature extractor, allowing

the input image to propagate forward, stopping at pre-specified

layer, and taking the outputs of that layer as our features.

As for extracting deep features using VGG-16 pretrained

model, the original VGG-16 model (15) is adopted first to

address the automatic detection of DR (top subfigure of

Figure 1A). For this task, the model expects input images of

224∗224∗3. Thus, images are reshaped to 224∗224∗3 before

feeding them to this model. Next the soft-max layer and fully

connected (FC) layers are removed from VGG-16 model (area

after the solid vertical blue line in top subfigure of Figure 1A)

and the model utilizes the VGG-16 network (15) for feature

extraction via the final layer prior to the FC layers—that outputs

volume of size 7 x 7 x 512 dim (area with dashed border in

top subfigure of Figure 1A). This output will serve as VGG-16

extracted features which will be flattened later into a feature

vector of 25,088-dim combined with the lesion features, as

described later in section Combination of TL and lesion features.

As for extracting deep features using the ResNet-50

pretrained model, the original ResNet-50 model (17) is adopted

first to address the detection of DR task (bottom subfigure

of Figure 1A). For this task, the model expects input images

of 224∗224∗3. Thus, images are reshaped to 224∗224∗3 before

feeding them to this model. Next, the soft-max layer and fully

connected (FC) layers are removed from ResNet-50 model

(area after the solid vertical blue line in the bottom subfigure

of Figure 1A) and the model utilizes the ResNet-50 network

(18) for feature extraction via the final layer before the fully

connected (FC) layers—that outputs volume of size 7 x 7 x 2,048

dim (area with dash border in bottom subfigure of Figure 1A).

This output will serve as ResNet-50 extracted features which will

be flattened later into a feature vector of 100, 352-dim combined

with lesion features as described later in section Combination of

TL and lesion features.

Lesion feature extraction with image
segmentation

Retinal image lesions associated with DR

Retinal lesions that develop early over the course of DR,

including MAs, EXs, and HEMs (Supplementary Figure 1), are

clinically importantmarkers used to distinguish between healthy

and DR-affected eyes. Below, we elaborate about each of these

three lesions:

Microaneurysms

MA are the earliest symptoms of DR. These lesions are

widened protrusions extending from capillary walls and are

associated with abnormal fluid leakage through breakdown of

the blood-retina barrier. MA can rupture to create hemorrhages,

leading to greater leakage of capillary fluids and damage to

surrounding retinal tissues. The number of microaneurysms can

be used to gauge the progression of DR (48).

Exudates

EXs are lipids and proteins (fibrinogen, albumin) carried

by filtrating fluids past the blood-retina barrier into the retinal

tissue (49).

Hemorrhages

HEMs occur whenMA burst, and leak blood and serum into

the retina. Intraretinal bleeding is a sign of worsening DR. Blood

can impair DR patient vision and increased intraretinal pressure

can contribute to retinal damage (50).

Framework for UNET- model-based lesion
detection and quantification

We have developed a framework to extract MAs, EXs,

and HEMs lesions from retinal fundus images using U-Net

semantic segmentation models (Figure 1B) and deployed it in

DR-detector framework for extracting lesion features. The steps

for the UNET-based retinal lesion detection and quantification

workflow are described below:

Pre-processing

Binary thresholding is applied to set all pixels corresponding

to the image background (the non-eye margins) equal to zero.

Multiple studies demonstrate the green channel encodes the

greatest contrast between retinal structures (32–34). Input RGB

retinal fundus images are split by channel and the green

channel is extracted. Contrast Limited Adaptive Histogram

Equalization (CLAHE) (8x8 tile size) (51) is applied to the green

channel to correct the contrast over-amplification. A gamma

correction is utilized to adjust luminescence of the CLAHE

output (γ = 0.8). The contrast enhancement stages are shown

in Supplementary Figure 2. After contrast enhancement, images

are divided into patches.

Each preprocessed retinal image and its corresponding

ground truth mask is divided into overlapping square (n x n)

patches. n is set to 128 pixels (px) for MAs (due to small lesion

size) and is set to 256 px for EXs and HEMs. Created patches are

randomly selected for augmentation operations.

Augmentation for image and corresponding binary mask

patches involves creating new training instances from existing

ones by applying a spatial or color operation to represent them

in a new orientation or perspective. The random flip (horizontal,

vertical) and random rotation (360◦) techniques from Keras

ImageDataGenerator (52) are used to augment training patches.

Any augmentation technique applied to a fundus image patch is

likewise applied to its ground truth patch.
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Segmentation

The input retinal fundus images are preprocessed and

divided into augmented patches as described above. K-fold

cross-validation (k = 5) is applied to the patches. The batch

size for each fold is set to 32 and the number of epochs is

set to 3. Epoch training and validation steps are set as the

number of training or validation patches per fold divided by

batch size, respectively.

Patch probability maps output by the UNET DL model are

merged to construct a probability map with equal dimensions

to the input image. A threshold of 0.5 is applied to convert the

reconstructed probability map into a binary image mask.

Feature counts

Canny edge detection (53) is applied to find the edges

around mask foreground regions (white). Contour detection

(54) is used to fill Canny edge gaps and fully close the foreground

shapes. The number of lesions within the segmentation

mask is defined as the number of distinct objects described

by contours.

U-net model implementation

Keras (55), the free python deep learning API with

TensorFlow (56) back end was used to construct a base UNET

model for binary semantic segmentation. Input patches are

supplied to the input layer as tensors with shape (32, n, n, 1).

The UNET contracting path used for downsampling is defined

by 5 convolution blocks, each with 2 (3 x 3) convolution

layers (activation = “ReLU,” padding = “same”) and a (2 x 2)

pooling layer. The UNET expansive path used for upsampling

is defined by 5 convolution blocks, each with a (2 x 2)

transpose convolution layer (activation = “ReLU,” padding

= “same”), concatenation layer, and 2 (3 x 3) convolution

layers (activation = “ReLU,” padding = “same”). A (1 x 1)

output layer using a sigmoidal activation function returns the

model output. Binary focal entropy is selected as the loss

function due to large class imbalance between foreground and

background pixels.

The model output is a pixelwise probability map for each

input patch. The probability map values range from 0 to 1; values

closer to 0 represent pixels more likely to belong to the negative

class and pixels closer to 1 represent pixels more likely to belong

to the positive class.

Metrics for performance evaluation of U-net
model

We evaluate the performance of U-Net DL model in

extracting each of the three lesions in terms of accuracy, recall,

precision, F1-score, and IoU. The mathematical equations that

describe each of these metrics are shown below:

Accuracy =
TP+ TN

TP+ FP+ FN+ TN
(1)

Recall =
TP

TP+ FN
(2)

Precision = =
TP

TP+ FP
(3)

F1− score = 2∗
Precision∗Recall

Precision+ Recall
(4)

Intersection over union (IoU) =
A ∩ A′

A ∪ A′
(5)

Where:

TP= True Positives (the sum of positive (foreground) pixels

classified by the model)

TN = True Negatives (sum of correctly classified

negative pixels)

FP = False Positives (the sum of negative (background)

pixels misclassified by the model)

FN = False Negatives (the sum of misclassified

positive pixels)

A = Area of ground truth pixels and A′
= Area of

predicted pixels.

High recall values indicate that most of pixels belonging

to the positive class (lesions) are predicted correctly by

U-Net segmentation models. High precision values across

the three lesion types also demonstrate the U-Net models

successfully differentiate between lesion foreground and non-

lesion background regions. High accuracy and F1 scores values

reflect the excellent model performance and robustness. IoU is a

useful metric for image segmentation by measuring the overlap

between predicted and ground truth segmentation masks. This

can be done for a class by dividing the intersection (overlap) of

ground truth and predicted pixels belonging to the class by the

total number of pixels in both masks belonging to the class. IoU

score ranges from [0–1], where scores closer to 1 indicate greater

agreement between predicted and ground truth masks.

Combination of TL and lesion features

The DR-detector framework performs a fusion of the TL

features with lesion features to get a better representation of

the features used for detection of DR. This is achieved by

concatenating the flat representation of the features obtained

by TL model (either VGG-16 or ResNet-50) with three

lesion features that captures EXs, MAs and HEMs via image

segmentation technique (Figure 1C).

By combining the TL features and the lesion features, the

resulting feature vector for each image in the training dataset

that will be used for training the XGboost DR-detector model

would be of size = 25,088 + 3 = 25,091 dim for VGG-16 and

100,352+ 3= 100,355 dim for ResNet-50.
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Metrics for performance evaluation of DR
detection

The accuracy, precision, recall, F1-score and the area under

the ROC curve (AUC) (57) have been used to evaluate the

Xgboost model’s performance deployed in the DR detector

framework. The mathematical equations that define each of the

first four metrics were previously defined in Equations (1–4) for

evaluating the performance of U-Net segmentation models for

lesion types. However, TP,FP,FN and TN terms for DR-detection

task have a different indication from their previous annotation

for evaluting the image segmentation task using U-Net model

and hence are described below:

TP refers to the number of correctly classified DR images.

FP refers to the number of healthy images misclassified as

DR images

FN refers to the number of DR images misclassified as

healthy images

TN refers to the number of correctly classified

healthy images.

As for the AUC metric, it measures the entire two-

dimensional area under the ROC curve (58) which measures

how accurately the model can distinguish between DR and

healthy images.

Experimental setup and model
development

All experiments in this study were executed on Ubuntu

Linux server with 128 GB of RAM, 16 Intel Xeon E5-

2609 1.7GHZ CPU cores, and 8 GPU cards. The optimized

distributed gradient boosting python library (59) has been

used for implementing the XGBoost model. The scikit-learn

toolkit3, the free machine learning python library has been used

for implementing other ML models that were developed as a

proof of concept to show that XGBoost was chosen because it

outperforms other ML models (see Tables 4, 5). The Keras free

python library (55) with tensorflow back end (56) was used to

implement the TL models as well as the deep neural network

(DNN) models to compare the performances in DR detection

to the XGboost as an evidence to show the outperformance of

later model.

Results

U-net model performance evaluation

U-Net model performance evaluation results are shown

in Table 3. The table shows an outperformance of the U-Net

model for predicting MAs and EXs lesions over HEMs lesions.

3 https://scikit-learn.org/stable/

In other words, the general trend we observed was that the

performance evaluation results for the HEMs segmentation

model were consistently lower than those for the MAs and EXs

models. We attribute this to the variation in the appearance of

retinal hemorrhages, which can range from small, concentrated

regions (dot hemorrhages) to larger and more irregular

shapes. Examples of U-Net model predictions are shown in

Supplementary Figure 3.

DR detection using VGG-16 and lesion
features

As a proof of concept, we developed different ML models

and trained them on the combination of VGG-16 and lesion

features including the support vector machine (SVM), K-

Nearest Neighbors (KNN), Xgboost, Logistic Regression (LR),

Multi-Layered Perceptron (MLP), Decision Tree (DT), and

Random Forest (RF) with default settings in addition to a DNN

model with different structures including one input layer with

128 nodes, one input layer with 256 nodes and one hidden

layer with 128 nodes, and one input layer with 512 nodes and 2

hidden layers with 256 and 128 nodes, respectively. As shown in

Table 4, XGBoost outperformed all other ML and DNN models

achieving 99.38% accuracy in detecting DR.

DR detection using ResNet-50 and lesion
features

Table 5 shows the performance evaluation results of all DR

detectionmodels using the combination of ResNet-50 and lesion

features. As can be observed from the table, XGBoost continued

to outperform all other ML and DNN models achieving 100%

accuracy for detection of DR.

Performance of DR-detector with a
single type of feature to understand
feature importance and contribution

We decided to deploy XGBoost model in DR-detector

framework for automatic detection of DR since it outperforms

all other ML and DNN models as highlighted in the previous

sections and documented in Tables 4, 5. For deep analysis of the

features that highly contribute to the performance of XGBoost

model in the detection of DR, we have analyzed the importance

of each feature by evaluating the XGBoost model performance

with each type of extracted features including the TL and lesion

features. This has been achieved by building three versions of

the XGBoost model, where each version of the model is trained

with only one type of feature. Figure 2 shows a bar chart that
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TABLE 3 Performance evaluation results of UNET model on extracting each type of lesions feature with the best 5-fold cross validation accuracy

from all trials.

Lesion type Recall Precision F1-score Accuracy IoU

MAs 0.94 0.93 0.98 0.98 0.84

EXs 0.94 0.95 0.98 0.98 0.83

HEMs 0.84 0.86 0.85 0.95 0.81

TABLE 4 The performance of all Ml models and DNN for detection of DR using a combination of VGG-16 and retinal lesion features.

Classifier Accuracy % Precision Recall F1-score AUC

Xgboost 99.38 1 0.99 0.99 0.994

KNN 47.53 0.45 0.25 0.32 0.475

LR 51.85 0.52 0.57 0.54 0.519

SVM 43.21 0.45 0.62 0.52 0.432

MLP 53.09 0.52 0.93 0.66 0.531

DT 88.27 1.00 0.77 0.87 0.883

RF 68.52 0.71 0.63 0.67 0.685

DNN (1 layer) 48 0.48 0.58 0.53 0.481

DNN (2 layers) 50 0.5 0.38 0.43 0.5

DNN (3 layers) 52 0.52 0.56 0.54 0.519

The bold values highlight the best accuracy, precision, recall, F1-score, and AUC of ML and DNN learning models for detection of DR using a combination of VGG-16 and retinal lesion

features.

represents the performance of XGBoost with VGG-16, ResNet-

50 and lesion features (Supplementary Table 1). Clearly, we see

a significant outperformance of the lesion features over the TL

features that have been either extracted by VGG-16 or Resnt-

50 models. This highlights the importance of the clinically

manifested symptoms reflected in the form of lesion features in

the detection of DR and how they can complement the textural

features extracted by the TL model to improve the XGBoost

performance and its interpretability for clinical use in detecting

the presence of DR disease.

Performance of DR-detector with all
possible feature combinations

Figure 3 shows a bar chart that represents the performance

of XGBoost (DR-detector model) on the testing dataset

with all possible combinations of TL and lesion features

(Supplementary Table 2). Clearly, the figure shows that (Resent-

50 and lesion) feature combination leads to the best performance

of XGBoost model among all combinations and is slightly

better than the performance of the model using (VGG-16 and

lesions), and (VGG-16, ResNet-50, and lesions) combinations

that lead to equal model performances. The figure also shows

poor performance of XGBoost with VGG-16 and ResNet-

50 combination (i.e., when the lesion features are specifically

excluded) which also highlights the importance of lesion features

in the detection of DR.

Lesion feature importance and their
e�ect on XGBoost performance

For deep analysis of the contribution of each lesion feature to

the performance of DR-detector model in DR detection, we have

reported the importance of each lesion feature through training

and testing the XGBoost model with each type of lesion feature

individually. This has been achieved by building three versions

of the XGBoost model, where each version of the model is

trained with one lesion feature. Figure 4 shows the performance

of XGBoost with EXs, MAs and HEMs lesion features as well

as with their combinations (Supplementary Table 3). Clearly, the

table shows a significant outperformance of XGBoost model

using HEMs lesion feature over its performance using either

the MAs or EXs lesion features which equally contribute to

the performance of the model. More importantly, the model

also achieves better performance using HEMs alone than its

performance using the combination of the three lesion features

altogether. Thus, our results highlight the importance of HEMs

as a feature in the detection of DR and how it can be used

to allow the interpretability of the model for clinical use in

DR detection.
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TABLE 5 The performance of all Ml models and DNN for detection of DR using a combination of ResNet-50 and retinal lesion features.

Classifier Accuracy % Precision Recall F1-score AUC

Xgboost 100 1.00 1.00 1.00 1.0

KNN 42.59 0.37 0.21 0.27 0.426

LR 53.09 0.52 0.68 0.59 0.531

SVM 45.68 0.48 0.84 0.61 0.457

MLP 47.53 0.49 0.95 0.64 0.475

DT 96.30 1 0.93 0.96 0.963

RF 56.79 0.55 0.70 0.62 0.568

1 layer-DNN 43.8 0.42 0.33 0.37 0.44

2 layer-DNN 48 0.49 0.75 0.59 0.481

3 layer-DNN 49 0.49 0.46 0.47 0.488

The bold values highlight the best accuracy, precision, recall, F1-score and AUC of ML and DNN learning models for detection of DR using a combination of Resnet-50 and retinal lesion

features.

FIGURE 2

The performance of XGBoost with VGG-16, ResNet-50 and lesions features.

Discussion

There are several observations that can be summarized

from our experimental results. First, using our proposed

approach we found that the integration of lesion features

with the TL features significantly improves the performance

of the DR-detector model and adds a clear importance to its

clinical interpretability. However, currently it is not possible

to only work with the lesion features for training the DR-

detector model as there are few retinal imaging datasets in

the literature that provide the image masks corresponding

to the retinal images in the dataset that are needed to

extract and quantify the lesion features using the U-Net

segmentation models and obtaining those masks need the

involvement of trained ophthalmologists which is costly

and time-consuming.

It was also observed that deploying the XGBoost model as

an ensemble of ML classifiers in the DR-detector framework

led to a better binary classification of DR and error detection

than deploying dense classifiers of DL models as introduced in
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FIGURE 3

The performance of XGBoost with all possible combinations of TL and lesion features.

FIGURE 4

The performance of XGBoost with each type of lesion features as well as their combinations.
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few previous studies (20, 37, 38). This motivated us to use the

flat combination of TL and lesion features (Figure 1C) which is

simpler, straight forward and more convenient to be applied to

the XGBoost ML model than combining both types of features

using different pooling approaches (20), or by extending the

last fully connected (FC) layer of TL model with additional

number of neurons equal to the number of lesion features

and using softmax function to obtain the predictive DR class

probabilities (37).

Regarding the contribution of lesion features to the DR-

detector (XGBoost) model performance, our approach shows

that lesion features have different contributions to the model

performance. Particularly, it shows a significant contribution of

the hemorrhages over the other two lesion features for binary

identification of DR (Supplementary Table 3). This is likely

because hemorrhages may arise early during the progression

of DR and are associated with the worsening of vision

and the development of other vision-threatening lesions. Our

observations highlight the importance of such a feature to train

the binary classifier of DR-detector framework and adds value

for its clinical usage in DR diagnosis. However, it remains to be

seen how our presented results will hold when testing our lesion

feature-based models on different fundus retinal testing datasets

with more complex demographics and varying quality.

It is also noteworthy to mention that although we have

applied the DR-detector framework to a relatively small training

and testing datasets in comparison with the large datasets that

have been used in the literature for DR detection [e.g.,(17)] our

datasets are from heterogenous sources i.e., have different variety

of retinal images that were imported from multiple publicly

available datasets with different settings of capturing the fundus

retinal images. This, of course, highlights the efficiency of our

proposed framework in detecting the initial signs of DR, even

when applied to a set of retinal fundus images that were not

imported from the same resource. Thus, we expect a better

performance of DR-detector framework with larger training and

testing datasets in the future.

Conclusions and future work

In this study, we have proposed a framework called DR-

detector that combines the features extracted from fundus

retinal image by transfer learning model and the lesion features

extracted using semantic image segmentation via U-Net DL

model for accurate detection of DR using the XGboost ML

model deployed in this framework. The model was trained using

the combination of both features on a training dataset collected

from various publicly available datasets and was tested on an

external dataset that consists of DR images from IDRID dataset

and healthy images from HRF and Messior-2 dataset. Our

experimental results show that our proposed framework for DR

detection achieves a testing accuracy of 100% in detecting DR

using the combination of Resnt-50 and lesion features and 99%

testing accuracy using the combination of VGG-16 and lesion

features. Based on these results, we arrived at the conclusion that

the extracted clinically relevant lesion features have a significant

impact on the performance of the DR-detector model and would

be an excellent complement to the textural features extracted by

the TLmodel to improve the performance of DR-detector model

and its interpretability for clinical use for detecting the presence

of DR disease.

We anticipate a natural extension of our current work is

to first extend to other TL models that are commonly used in

the literature to study how they perform for DR classification

task and then expand our general framework to be applied

for the prediction of different severity levels of DR. Finally,

we are looking forward to applying our approach to combine

TL features with other types of DR lesion features such as

cotton wool spots, foveal avascular zone, optic disc, and retinal

blood vessels since these features were known in the literature

to be associated with greater severity of DR (60). This might

lead to better performance of the DR-detector model and its

interpretability for clinical use on much larger and clinically

diverse datasets, especially if it will be extended to predict the

various grades of DR.
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