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Abstract: Traditional aerogels lack specific functional groups for the adsorption of Pb2+, which results
in a low adsorption capacity and limits the application scope. Novel porous pectin-based aerogels
(PPEAs) were prepared by incorporating polyethylenimine (PEI) using ethylene glycol diglycidyl
ether (EGDE) as a cross-linker for the removal of Pb2+ from water. The cross-linking mechanism,
morphology, mechanical strength, thermal stability, adsorption properties, and mechanism of the
aerogels were investigated. The aerogels possessed several desirable features, such as a large
maximum Pb2+ adsorption capacity (373.7 mg/g, tested at pH 5.0), ultralight (as low as 63.4 mg/cm3),
high mechanical strength (stress above 0.24 MPa at 50% strain), and easy recyclability. Meanwhile,
the equilibrium adsorption data was well described by the Langmuir–Freundlich (Sips) model and the
kinetic adsorption process was well fitted using the pseudo-second-order model. The donor groups,
such as -NH2, and oxygen-containing functional groups were responsible for the Pb2+ adsorption,
which was confirmed by the FTIR and XPS analysis. The excellent characteristics mean that PPEAs
are highly effective adsorbents in the remediation of lead-containing wastewater.

Keywords: pectin; PEI; EGDE; aerogel; Pb2+; adsorption

1. Introduction

Lead pollution, which is one of the most serious environmental problems, mainly
comes from mining, batteries, glass manufacturing, metallurgy, printing, and wastewater
from smelters [1]. After entering the water, Pb2+ is difficult to degrade and will mainly be
transferred and transformed through chelation, colloid formation, adsorption, resolution,
etc., causing accumulation in organisms through the biological amplification effect of the
food chain [2], thus affecting the normal growth of animals and pose a threat to human
health [3]. In addition, Pb2+ is a plant stressor that affects the growth of plants [4]. In China,
the limit for lead in drinking water is 0.01 mg/L (GB 5749-2006). The excessive intake of
Pb2+ mainly harms the central nervous system, digestive system, reproductive system,
liver, kidney, and bone marrow hematopoietic function of the human body [5,6].

At present, the methods for removing Pb2+ from wastewater include biological treat-
ment, chemical precipitation, coagulation, ion exchange, membrane filtration, and adsorp-
tion [7,8]. Among those methods, adsorption is considered to be the most environmentally
friendly and effective method for the treatment of heavy metal wastewater since it has
good repeatability, is simple, has a high treatment efficiency, and is a mature and stable
process that is suitable for large-scale popularization and applications [9,10].

Aerogel is a kind of porous solid material with a highly interpenetrated structure.
Due to its unique properties, such as ultra-low density, high porosity, shape variability,
and ease of separation and recovery without secondary pollution, aerogels have attracted
significant attention regarding green and efficient wastewater treatment [11]. Compared
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with hydrogels that are used as adsorbents, aerogels have obvious advantages, such as be-
ing ultralight and moisture free, which make aerogels easy to transport and store. However,
due to the lack of specific functional groups on the surface, a single aerogel exhibits a low
adsorption capacity and cannot directly adsorb heavy metals. These shortcomings greatly
limit the application scope of aerogels. Some modified aerogels were created, such as MOF
aerogel, which has attracted research interest because of its outstanding flexibility, interest-
ing structures, and excellent adsorption characteristics [12]. However, the MOF aerogel
contained some heavy metal elements, which results in relatively poor biocompatibility.
Other modified aerogels with good biocompatibility and biodegradability are urgently
needed for further study.

Pectin is a kind of natural anionic polysaccharide that is different from starch and
cellulose. Pectin contains many -COOH groups and exhibits a strong heavy metal removal
capacity. In addition, pectin also shows excellent properties, such as good biocompatibility,
biodegradability, and high abundance. Recently, pectin itself, as well as pectin-based
hydrogels, were developed for the adsorption of Pb2+ from wastewater [13]. Although
some studies reported the unsatisfactory effect of pure pectin on the adsorption of heavy
metals [14,15], the adsorption performance of pectin may be significantly improved by the
fabrication of pectin-based aerogels because the aerogels have multitudinous advantages,
as we described above. However, only a few studies of pectin-based aerogels were reported
and they are tentatively used in the fields of drug delivery and thermal insulation [16,17].
Very few works were carried out on heavy metal adsorption by pectin-based aerogels.

In this study, pectin was cross-linked with polyethylenimine (PEI), which is a reagent
that is widely used in heavy metal adsorption because it consists of a great number of
amine groups [18,19], to prepare porous pectin-based aerogels (PPEAs). Different contents
of ethylene glycol diglycidyl ether (EGDE) were used as the cross-linking agent to regulate
the degree of modification (DM) of the PPEAs. The physicochemical properties, adsorption
behaviors, and adsorption mechanism of the PPEAs toward Pb2+ were characterized.
The information obtained will expand the application of pectin-based aerogels and provide
novel materials for the treatment of lead-containing wastewater.

2. Materials and Methods
2.1. Materials

Citrus pectin (type H121, galacturonic acid content of 82.29%, molecular weight of
527 kDa, esterification degree of 58.48%) was supplied by the general agent of CPkelco
(Shanghai, China); the parameters were measured in our previous study [20]. Polyethylen-
imine (PEI, molecular weight of 10 kDa), ethylene glycol diglycidyl ether (EGDE), sodium
hydroxide, hydrochloric acid, nitric acid, and Pb(NO3)2 were purchased from Aladdin
Reagent Company (Shanghai, China). All reagents were of analytical reagent grade and
used as received. All aqueous solutions were prepared with deionized water from a Milli-Q
system (Millipore, Billerica, MA, USA).

2.2. Preparation of PPEA

The preparation of the PPEAs is briefly depicted in Figure 1a–c and the details are as
follows: 3 g of pectin was dissolved in 100 mL deionized water and PEI was added into the
solution with the mass ratio of pectin to PEI of 2:3. The mixture was stirred continuously to
form a uniform aqueous solution. The cross-linking agent EGDE was added with different
mass fractions (0.05, 0.1, 0.2, 0.3%), and the bubbles were eliminated using an ultrasonic
treatment. The mixture was incubated in a 60 ◦C water bath to form a gel. After that,
the prepared gel was soaked in deionized water for 3 days and the water was replaced
every 8 h to remove the unreacted impurities. Finally, the dried aerogel samples were
obtained by freeze-drying and named PPEA0.05, PPEA0.1, PPEA0.2, and PPEA0.3 according
to their respective mass fractions.
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Figure 1. Illustration of the preparation (a–c) and chemical structure (e) of the PPEAs. The PPEAs standing on a dried 
flower (d) and floating on water (f). The adsorption mechanism of capturing Pb2+ using PPEAs (g). 

2.3. Dynamic Rheological Study 
The dynamic rheological characteristics of the pectin, PEI, pectin/PEI, and pec-

tin/PEI/EGED solutions during the hydrogel formation were investigated using an ARES-
G2 rheometer (TA Instruments, New Castle, DE, USA). To guarantee that all measure-
ments were taken in the linear viscoelastic region, amplitude sweep tests were first per-
formed (data not shown) using a parallel plate geometry (40-mm diameter) with a gap 
size of 1 mm at a constant frequency of 1 Hz when the strain γ ranged from 0.01 to 100%. 
After that, the change in the storage modulus (G′) and loss modulus (G″) over time was 
carried out at a constant frequency of 1 Hz and strain amplitude of 0.5% within the linear 
viscoelastic region (0.1–1.5%). The samples were covered with a thin layer of low-viscosity 
silicone oil to prevent the evaporation of water during the measurement. 

Figure 1. Illustration of the preparation (a–c) and chemical structure (e) of the PPEAs. The PPEAs standing on a dried
flower (d) and floating on water (f). The adsorption mechanism of capturing Pb2+ using PPEAs (g).

2.3. Dynamic Rheological Study

The dynamic rheological characteristics of the pectin, PEI, pectin/PEI, and pectin/PEI/
EGED solutions during the hydrogel formation were investigated using an ARES-G2
rheometer (TA Instruments, New Castle, DE, USA). To guarantee that all measurements
were taken in the linear viscoelastic region, amplitude sweep tests were first performed
(data not shown) using a parallel plate geometry (40-mm diameter) with a gap size of 1 mm
at a constant frequency of 1 Hz when the strain γ ranged from 0.01 to 100%. After that,
the change in the storage modulus (G′) and loss modulus (G”) over time was carried out at
a constant frequency of 1 Hz and strain amplitude of 0.5% within the linear viscoelastic
region (0.1–1.5%). The samples were covered with a thin layer of low-viscosity silicone oil
to prevent the evaporation of water during the measurement.
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2.4. Characterization of PPEAs
2.4.1. Elemental Analysis

The elemental analysis was carried out with an elemental analyzer (Vario Micro cube
Elementar, Langenselbold, Germany). The degree of modification (DM), which is defined as
the number of PEI molecules attached per 100 galacturonic acid molecules, was calculated
using the following method.

First, supposing that X PEI molecules were attached to Y pectin molecules, the content
nitrogen element in PEI (mN) is

mN =
14 MPEI×X

MEI×R0
(1)

where R0 is Avogadro’s constant and MPEI and MEI are the molecular weights of PEI and
ethylenimine, respectively.

The carbon content in pectin (mC2) is

mC2 = mD −mC1 = mD −
2× 12

14
mN (2)

where mD is the amount of the carbon element of PPEA as determined by the elemental
analyzer and mC1 is the carbon content of PEI.

At the same time:

mC2 =
Y×Mpectin×6× 12

MGalA×R0
(3)

where Mpectin and MGalA are the molecular weights of pectin and galacturonic acid, respectively.
Therefore, the number of PEI molecules that are attached per pectin (N) molecule is

N =
24 mN

14 mC − 24 mN
×

72 MEI×Mpectin

14 MPEI×MGalA
(4)

and the degree of modification (DM) was calculated as follows:

DM(%) =
N ×MGalA

Mpectin×CGalA
×100 =

24 mN
14 mC − 24 mN

× 72 MEI
14 MPEI×CGalA

×100 (5)

where CGalA, which is the galacturonic acid content of pectin, is 0.8229 g/g.

2.4.2. Other Characterizations

Fourier transform infrared (FTIR) spectra were examined using a Nicolet 5700 spec-
trometer (Thermo Fisher Scientific, Madison, WI, USA) in the range from 4000 to 400 cm−1

with a resolution of 4 cm−1. The morphologies of the samples were measured using SEM
(JEOL JSM-6701 F Instrument, Tokyo, Japan). The compression test was carried out us-
ing a TA-XT2i Texture Analyzer (Stable Micro Systems, Surrey, UK). The aerogels were
deformed via compression at a constant speed of 0.01 mm/s to a strain of up to 50%
using a cylindrical probe P/36R. The water contact angle was measured using an OCA
25 tester (Dataphysics Instruments, GmbH, Filderstadt, Germany). The thermal properties
were analyzed using thermogravimetric analysis (TGA-50, Shimadzu, Tokyo, Japan) in the
temperature range 30–600 ◦C at a heating rate of 20 ◦C/min under an Ar atmosphere. X-ray
photoelectron spectroscopy (ESCALAB250Xi, Thermo Fisher Scientific, Madison, WI, USA)
was conducted to analyze the surface chemical composition of the samples before and
after adsorption.

2.5. Batch Adsorption Experiments

To evaluate the adsorption performance of the samples, a series of adsorption ex-
periments was conducted by changing the pH value (2.0–6.0), contact time (2–600 min),
and initial Pb2+ concentration (20–600 mg/L). For the regeneration study, the PPEAs were



Foods 2021, 10, 3127 5 of 17

regenerated using a 0.1 mol/L HNO3 solution. After the adsorption, the clear supernatant
could easily realize solid–liquid separation via salvaging, and the concentrations of Pb2+

in the supernatant were monitored using an atomic absorption spectrophotometer (AAS,
A3AFG-12, Puxi, Beijing, China). The removal rate R (%) and the adsorption capacity qe
(mg/g) for Pb2+ were calculated as follows:

R =
C0 − Ce

C0
× 100 (6)

qe =
V(C0 − Ce)

m
(7)

where C0 and Ce (mg/L) are the initial and equilibrium concentrations of Pb2+ solution,
respectively. V (L) is the volume of the solution and m (g) is the mass of the PPEA.

3. Results and Discussion
3.1. Dynamic Rheological Properties of PPEA Hydrogels

The properties of aerogels are directly affected by their corresponding hydrogels [21].
Therefore, dynamic time-sweep oscillatory analysis of the pectin, PEI, pectin/PEI, and pectin
/PEI/EGDE solutions was undertaken to monitor the formation of the hydrogel, and the
results are shown in Figure 2. Under the conditions of this experiment, the pectin itself
could not form gels in water. Low G′ and G” values were observed in both the pure pectin
and PEI solutions, just like those of most polymer solutions. However, when the pectin was
mixed with PEI, the G′ was somewhat increased, with G′ > G”, indicating the formation
of a weak gel network, probably due to the formation of intermolecular hydrogen bonds
between -COOH, the -OH of pectin, and the -NH2 of PEI. With the incorporation of EGDE,
covalent polymerization between pectin and PEI occurred (Figure 1b,e) and formed a
strong cross-linking network, resulting in the G′ of the PPEA hydrogel increasing quickly
(Figure 2A,B). The cross-linking structure influenced the mechanical property, morphology,
and Pb2+ adsorption behavior of the PPEAs, as will be confirmed in the next section.
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3.2. Characterization of PPEAs
3.2.1. Degree of Modification of PPEAs

The DMs of the PPEAs were calculated from the results of elemental analysis according
to the Equations (1)–(5) and are listed in Table 1. It was found that DM increased with
the amount of EGDE. When EGDE was added at 0.05%, 0.1%, 0.2%, and 0.3%, DM was
4.66 ± 0.03, 6.23 ± 0.03, 6.74 ± 0.05, and 7.67 ± 0.08%, respectively. It was found that a
high EGDE concentration showed a better modification performance because when the
amount of PEI was sufficient, more EGDE promoted the amidation reaction. Having more
PEI attached to a pectin molecule may be conducive to heavy metal adsorption because
PEI contains abundant amine groups, which can interact with heavy metals through
chelation [22,23].

Table 1. The elemental compositions and degrees of modification (DMs) of PPEAs.

Samples C (%) N (%) DM (%)

PPEA0.05 40.49 ± 0.06 a 14.98 ± 0.06 a 4.66 ± 0.03 a
PPEA0.1 45.80 ± 0.34 b 18.67 ± 0.11 b 6.23 ± 0.03 b
PPEA0.2 46.11 ± 0.62 b 19.23 ± 0.29 b 6.74 ± 0.05 c
PPEA0.3 46.79 ± 0.07 b 20.21 ± 0.08 c 7.67 ± 0.08 d

Mean values in the same column with different letters are significantly different (Tukey’s test, p < 0.05). Data are
presented as means ± standard deviations of triplicate measurements.

3.2.2. FTIR before Adsorption

The covalent cross-linking between pectin and PEI was supported by the FTIR results
(Figure 3A). Compared with pectin, the absorption band of the PPEAs around 3400 cm−1

(corresponding to the stretching vibration of the -OH group and hydrogen bonding) be-
came wider and stronger, which was caused by the increased number of amine groups
in the structure [24]. The absorption peaks at 2842 cm−1 were assigned to the symmet-
ric vibration of the -CH2 groups in the PEI. The peaks at around 1633 cm−1 were also
broadened, which were assigned to the overlap of the bending vibration of -NH2 group
and asymmetric stretching of the carboxylic C=O double bond of new amide linkages
and carboxyl. The peak at 1418 cm−1 was attributed to the N-H bending vibration peak.
The PEI sample had an obvious peak due to the N-H bending vibration. This particular
peak in the PPEAs also existed because of the addition of PEI. The stretching vibration
peak appeared at 1105.7 cm−1, indicating the formation of -CONH- linkages [25]. The peak
at 1315 cm−1 was the C-O vibration peak. The peak could be observed at all the PPEAs and
pectin samples but not in the PEI because the C-O functionalities did not exist in the PEI.
A peak at 1733.7 cm−1 for the C=O bond of carboxyl groups and their esters disappeared,
which also confirmed the reaction between the -COOH of the pectin and the -NH2 of the
PEI. All the above results indicated that PEI was indeed introduced into the PPEAs through
covalently cross-linking the -COO− of pectin with the amido groups of PEI to form -CONH-
linkages, which directly contributed to the development of the aerogel [26].

3.2.3. Morphology

The optical image of PPEA0.3, as a representative aerogel, is shown in Figure 1d.
The PPEA0.3 is stood on a dried flower, indicating its ultralight feature. The densities (ρ) of
the four PPEAs were calculated using the formula ρ = m/v, where m and v represent the
mass and the volume of the PPEA, respectively. It was found that the densities of PPEA0.05,
PPEA0.1, PPEA0.2, and PPEA0.3 were 107.2, 104.8, 78.4, and 63.4 mg/cm3, respectively.
These densities were lower than those of many reported polysaccharide-based aerogels,
such as chitin-based aerogel (120~220 mg/cm3) [27] and alginate aerogel (130 mg/cm3) [28].
The low density of the PPEAs endowed them the ability to float on the water’s surface for
Pb2+ adsorption (Figure 1f) such that they had the advantages of easy removal and reuse.
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The detailed morphologies of the PPEAs were observed using SEM, where the results
showed that the aerogels were typical macroporous materials with 3D network structures.
The morphology of the PPEAs varied greatly. From Figure 4A, it was observed that
PPEA0.05 was composed of a fibrillated and lamellar structure in the network, where the
fibril structure was dominant. With the increase in the EGDE amount, the structure of the
aerogels became more regular and the pores became smaller and denser. The morphologies
of PPEA0.1 and PPEA0.02 appeared like a “honeycomb” (Figure 4C,E), while the morphology
of PPEA0.3 looked like a “sponge” (Figure 4G). The morphology may be associated with
the cross-linking effect between pectin and PEI that was induced by the EGDE, where
the EGDE played a critical role in stabilizing the aerogel skeleton and maintaining the
structural integrity [29]. The open porous structure may allow the solution to easily enter
the interior of the aerogel, thus affecting the adsorption efficiency.
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3.2.4. Mechanical Properties and Wettability

Appropriate mechanical properties are vital for the practical application of aerogels.
The stress–strain mechanical properties are presented in Figure 5A. At the beginning of the
compression test, the slope of the stress–strain curve was very large, and the slope of the
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curve increased with the amount of EGDE. The stress of PPEA0.3 and PPEA0.2 reached the
maximum loading force of the texture analyzer (7000 N) at the strains of 12.7 and 24.6%,
respectively. In addition, the stresses of PPEA0.05 and PPEA0.1 at a strain of 50% reached
0.31 and 0.50 MPa, respectively. Compared with the compressive stress of other aerogels
that were described in previous studies [30,31], the compressive stresses of the PPEAs were
much higher. The high mechanical strengths of the PPEAs might have been because the
pectin and PEI were tightly cross-linked and intertwined, forming an orderly and regular
three-dimensional network structure, thus effectively improving the mechanical properties
of the aerogels.
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To determine the wettability of the aerogel, the water contact angles for the PPEAs
were observed. As shown in Figure 5B, the water contact angles for the PPEAs were almost
undetectable. After dropping one drop of water on the surface of PPEA0.3, the water was
absorbed immediately, indicating its very good hydrophilicity. The enhanced wettability
was because of the high level of hydrophilic groups, e.g., -OH, -COOH, and -NH2, that were
present in the PPEAs. Moreover, the porous structure with expanded channels may have
also facilitated the entrance of water. The excellent water hydrophilicity may have been
conducive to the rapid diffusion of heavy metal into the internal network of the aerogels
and afforded more available active sites for the adsorption of heavy metal ions [32].

3.2.5. Thermal Stability

In general, an aerogel should be able to withstand a somewhat high temperature, es-
pecially when dealing with mining wastewater containing several heavy metals. Any mod-
ification of an aerogel should not damage its thermal integrity. The thermal stability of
the adsorbents was determined using TGA analysis. The weight loss and corresponding
derivative weight curves of the PPEAs are demonstrated in Figure 5C,D, respectively.
It was observed that all the samples showed a similar weight loss trend. The mass loss
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between 50 and 200 ◦C was supposed to be the vaporization of water from the sample [33].
PPEA0.05 had the earliest loss, and the loss was large in the first stage (vaporization of
free water) and small in the second stage (vaporization of bound water), while PPEA0.3
showed the opposite trend to PPEA0.05, which may have been because PPEA0.3 had more
fine pores (as observed in Figure 4) and better water-holding capacity. The third quick
loss stage of 290–360 ◦C may have been due to the thermal decomposition of PPEAs [34].
In this degradation range, PPEA0.3 degraded first, while PPEA0.05 degraded most seri-
ously. PPEA0.1 and PPEA0.2 showed the best thermal stability. It was reported that fast
cross-linking kinetics could cause non-homogeneous structures of gels, thus influencing
the thermal stability of aerogels [35].

3.3. Adsorption Properties of PPEAs

The pH of a lead solution has a critical effect on the adsorption performance of the
absorbent as it determines the form of lead ion species and the electrostatic repulsive
forces between the absorbents and Pb2+ ions. When the pH value is above 6.0, Pb2+ will
form a precipitate of Pb(OH)2, while Pb2+ mainly exists in the form of free ions when
the pH value is below 6.0. Therefore, the effect of pH on the adsorption of Pb2+ was
studied at pHs between 2.0 and 6.0. As shown in Figure 6A, the removal rate of Pb2+

increased rapidly from pH 2.0 to 3.0, and then reached a plateau when the pH exceeded
3.0. This phenomenon was quite different from the other pectin-based Pb2+ adsorbents,
which usually showed an optimal adsorption pH of 5.0 [5,36]. The wider pH bearing
range of the PPEAs may have been because the co-existence of PEI, which contains a high
density of amino groups, changed the adsorption environment. In addition, the ability of
aerogels to remove Pb2+ was significantly enhanced with the increase in the EGDE content.
Both PPEA0.2 and PPEA0.3 showed strong Pb2+ removal efficiency (>90%) in the pH range
of 3.0–6.0. These results may have be because the DM and the porosity of aerogels became
higher with the increase in EGDE content, which facilitated the contact between the active
groups and Pb2+, thus improving the adsorption efficiency [37,38].
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The effect of the contact time on the adsorption of Pb2+ was estimated and is shown
in Figure 6B. All the PPEAs exhibited a high adsorption rate within the initial 70 min and
showed an obvious decrease between 70 and 120 min, after which the adsorption reached
a steady state. The high initial adsorption rate could be ascribed to the high concentration
gradient and availability of active sites, which acted as a driving force to facilitate the
mass transfer from the aqueous media to the PPEA’s surface. However, as the active
sites became saturated, the adsorption rate decreased and finally reached a constant level.
In addition, the adsorption capacity increased with the amount of EGDE, which was once
again attributed to the porous structure of aerogels with abundant functional groups that
facilitated the adsorption of Pb2+.

To understand the adsorption kinetic behavior, the experimental data were fitted using
pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The corre-
sponding parameters are presented in the Supplementary Materials, Table S1. According to
the calculated coefficient of determination (R2), the pseudo-second-order models exhibited
the highest R2 = 0.9993–0.9998 (Figure 6C). The pseudo-second-order model is based on
the assumption that the chemisorption is the rate-limiting step during the adsorption
process [39]. The low values of the rate constant (k2) in the pseudo-second-order model
suggested that the adsorption rate was primarily affected by the number of unoccupied
functional groups on the adsorbent and the rate of adsorption decreased with the increasing
contact time [40–42].

According to the SEM, except for abundant functional groups on the PPEAs, the ex-
cellent adsorption performance of the PPEAs may be related to their porous character-
istics; thus, the experimental results were also fitted using the intra-particle diffusion
kinetic model [43]. The intra-particle diffusion model showed two distinct linear stages for
PPEA0.05 and PPEA0.1, but three stages for PPEA0.2 and PPEA0.3, as illustrated in Figure 6D.
Generally, the three stages of the intra-particle diffusion models can be ascribed to (i) the
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fast external surface adsorption stage, (ii) the slow internal diffusion stage, and (iii) the
adsorption equilibrium stage [44]. In the first stage, due to the abundant active sites and
the boundary layer effect, Pb2+ could be quickly adsorbed onto the adsorbent surface.
Subsequently, the diffusion of Pb2+ from the adsorbent surface to the pore channel resulted
in a decrease in the adsorption rate. Considering that the intra-particle diffusion did not
pass through the origin point, as well as the difference in the adsorption rate between the
initial and final stages, both the intra-particle diffusion and the surface adsorption were
involved in controlling the adsorption rate.

An adsorption isotherm can be used to describe the type of interaction between an
adsorbent and heavy metal, which is crucial for optimizing the use of adsorbents. In the
present study, adsorption isotherms, namely, nonlinear Langmuir, Freundlich, and Sips
models, were chosen to fit the experimental results. The Langmuir isotherm is based
on the assumption that the adsorption sites are homogeneous and there is no obvious
interaction between the adsorbed substances. In contrast, the Freundlich isotherm describes
the adsorption process that occurs on heterogeneous surfaces with different energies [45].
The Sips isotherm is a combination of the Langmuir and Freundlich isotherms. Plots of
the fitted isotherms for adsorption of Pb2+ are shown in Figure 6E–H, and the adsorption
parameters are present in Table S1. The best-fitting equation was based on the highest
R2. According to the fitting results, the Sips isotherm was the most suitable model for
describing the adsorption of Pb2+ by PPEAs, which means that the adsorption was a
monolayer phenomenon and the adsorption sites were heterogeneous. The determined
values of qmax were 362.95, 375.6, 370.3, and 373.7 mg/g for PPEA0.05, PPEA0.1, PPEA0.2,
and PPEA0.3, respectively. Comparisons of the qmax values presented in this study with
those of other pectin-based adsorbents for Pb2+ adsorption found that the present PPEAs
showed better performance under analogous conditions, as shown in Table 2. The high
qmax indicated that the PPEAs could be very promising adsorbents for removing Pb2+ from
the aqueous solutions. However, a promising adsorbent should not only consider the
maximum sorption capacity. The other properties (such as mechanical properties, density,
and thermal properties) should also be considered. For example, PPEA0.3 had the lowest
density and best mechanical properties among the PPEAs.

Table 2. Comparison of the adsorption capacities of various pectin-based adsorbents for Pb2+

adsorption.

Adsorbents pH Temperature (K) qmax
(mg/g) References

Pectin microspheres 5.0 298 325 [46]
Pectin-based polymer hydrogel 5.5 298 130 [47]
Pectin-graft-poly(METAC-co-

AMPS)/MMT-C2 - 298 79.78 [48]

Pectin/activated carbon-based
porous microsphere 5.0 298 279.33 [49]

Pectin-rich fiber - 298 184 [50]
HHP-assisted pectinase

modified pectin 7.0 298 263.15 [51]

PPEAs 5.0 298 373.7 This study

METAC: 2-(methacryloyloxyethyl) trimethylammonium chloride, AMPS: 2-acrylamido-2-methyl-1-propane
sulfonic acid, MMT: composite with montmorillonite, HHP: high hydrostatic pressure. A hyphen in the pH
column means no mention was made of the pH in the research.

In addition to the excellent mechanical properties and adsorption capacity, good and
easy recyclability are also key indexes for developing a new heavy metal adsorbent [52].
In this study, a dilute HNO3 solution was used as an eluent to help with the release of Pb2+

from the binding sites of the adsorbent, and the PPEAs could be directly salvaged after
each adsorption and desorption cycle. The recyclability of the PPEAs was studied through
10 cycles of adsorption–desorption experiments. It was found that PPEA0.3 exhibited



Foods 2021, 10, 3127 13 of 17

the best regeneration performance, retaining a removal rate of over 93.5% after 10 cycles
(Figure 7). The morphologies of the PPEAs after 10 cycles were examined and are shown
in Figure 4B,D,F,H. The structure of the aerogel seemed more compact but kept most of the
porous structure. The compact structure might be attributed to the bridging effect of the
absorbed Pb2+. These Pb2+ ions could cross-link the carboxyl group and/or amine groups to
produce dense porous networks. The reason that most of the porous structure was retained
may have been because the PPEAs had good mechanical stability, which endowed them
with excellent adsorption performance in the continuous adsorption–desorption cycles.
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3.4. Adsorption Mechanism of PPEAs
3.4.1. FTIR after Adsorption

The adsorption mechanism was investigated by comparing the FTIR changes of the
PPEAs before and after the adsorption. It was found that the infrared spectroscopy after
adsorbing the Pb2+ had some obvious variations compared to those before adsorption.
A peak around 1382 cm−1 was observed for all the PPEAs after adsorption but not for
the PPEAs without Pb2+. This peak was attributed to the carboxyl groups of pectin
that had bound heavy metals [53]. In addition, the peak at ~1645 cm−1, which was
attributed to asymmetric stretching of the carboxylic C=O double bond, faded. This result
confirmed the involvement of carboxyl groups in the binding of Pb2+. The broad and
wide nature of the peaks (~3200–3400 cm−1) of all the modified aerogels was because
of mutual conventional hydrogen bonding between abundantly available -OH and -NH
functionalities. Because some of these hydrogen bonds were cleaved by the adsorbed
Pb2+, the separate -NH stretching peak (3255.2 cm−1) started to appear in the Pb2+ loaded
samples [11,54]. The peak at 636.3 cm−1, corresponding to the complexation of divalent
cation and amine groups [55], was intensified after adsorption. Therefore, the amine groups
of the PPEAs were also likely responsible for binding Pb2+.

3.4.2. XPS

The XPS wide-scan spectra of PPEAs before and after Pb2+ adsorption is shown in
Figure 8A. The XPS results of Pb 4f (Figure 8B) showed two energy bands after the adsorp-
tion, located at 144.1 and 139.1 eV, corresponding to the binding energy of the Pb 4f5/2 and
Pb 4f7/2 orbitals, respectively. This result showed that Pb2+ successfully adsorbed onto
the surface of the PPEAs [56]. To further investigate the interactions between the PPEAs
and Pb2+, the high-resolution O 1s and N 1s spectra before and after the adsorption of
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Pb2+ are shown in Figure 8C,D, respectively. The O 1s spectrum before the adsorption was
deconvoluted into three peaks, corresponding to C=O (530.5 eV), C-O (531.6 eV), and -OH
(532.3 eV) [57]. After the adsorption of Pb2+, it was found that the binding energy of those
groups shifted significantly (532.8, 532.2, and 530.9 eV, respectively). Furthermore, a new
strong peak appeared at 534.0 eV (O=Pb), indicating that oxygen-containing functional
groups, such as -COOH and -OH, had a strong binding ability with Pb2+ [58]. In addition,
the N 1s peak on the PPEAs was deconvoluted into three characteristic peaks (Figure 8D),
where their binding energies were 398.5, 399.8, and 400.7 eV, respectively, corresponding to
-N-, -NH-, and -NH2, respectively [58,59]. After the adsorption, two new peaks appeared
in the N 1s spectra at binding energies of about 402.0 and 403.1 eV. The 402.0 eV represents
-NH3+, which was formed by combining -NH2 with H+. The H+ was released from the ion
exchange between -COOH and Pb2+. The new binding energy 403.1 eV appeared after the
adsorption, which could be attributed to the formation of a -N···Pb2+ complex. According
to the theory of hard/soft and acid/base, the presences of donor groups, such as NH3+,
-NH2, and -NH, are responsible for the adsorption of divalent metal cations [60]. Therefore,
the XPS spectra of N 1s effectively confirmed that the adsorption mechanisms involved
both ion exchange and complexation.
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It should be noted that although all the PPEAs showed similar chemical adsorption
mechanisms, they showed different adsorption capacities, as we discussed in Section 3.2,
which may have been because the adsorption performance of the PPEAs was influenced
by two aspects. One was that the donor groups, such as NH3+, -NH2, and -NH, on the
PEI molecular chain and oxygen-containing functional groups, such as -COOH and -OH,
on the pectin chain could chelate or complex with Pb2+. Second, a highly porous structure
is also conducive to the diffusion of heavy metals within the aerogels. The physical
and chemical synergistic adsorption resulted in the good adsorption performance of the
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PPEAs. The adsorption mechanism of the PPEAs’ adsorption of Pb2+ is represented by the
schematic diagram in Figure 1g.

4. Conclusions

Novel 3D pectin-based aerogels (PPEAs) were synthesized by introducing branched
PEI onto pectin with EGDE as a cross-linker for the adsorption of Pb2+ from an aqueous so-
lution. This material exhibited a high adsorption capacity (>360 mg/g), a porous structure,
an ultralight weight (>60 mg/cm3), a robust mechanical strength, good thermal stabil-
ity (~260 ◦C), and excellent regeneration (>90% removal rate about Pb2+ after 10 cycles).
The Pb2+ adsorption kinetics was controlled by chemisorption, and the Sips model revealed
that the adsorption was a monolayer phenomenon and the adsorption sites were hetero-
geneous. FTIR and XPS indicated that both the amine- and oxygen-containing groups
were the main functional adsorbing sites. The newly fabricated pectin-based aerogels are
expected to be potential candidates for the efficient, renewable, and recycled adsorption of
Pb2+-like heavy metals.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10123127/s1, Table S1: The parameters of kinetic modeling and isotherm modeling
related to the adsorption of Pb2+ onto PPEAs.
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