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Abstract

The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies
(PML-NBs), which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease
USP7 (also called HAUSP) is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins
that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase
the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal
carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption
was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein
interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML
isoforms, most notably isoforms I and IV. CK2a and RNF4, which are known regulators of PML, were dispensable for USP7-
associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase
disrupts PML-NBs through recruitment of another cellular protein(s) to PML NBs, independently of its catalytic activity.

Citation: Sarkari F, Wang X, Nguyen T, Frappier L (2011) The Herpesvirus Associated Ubiquitin Specific Protease, USP7, Is a Negative Regulator of PML Proteins
and PML Nuclear Bodies. PLoS ONE 6(1): e16598. doi:10.1371/journal.pone.0016598

Editor: David Harrich, Queensland Institute of Medical Research, Australia

Received September 10, 2010; Accepted January 4, 2011; Published January 31, 2011

Copyright: � 2011 Sarkari et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a research grant (93652) from the Canadian Institutes of Health Research and a National Cancer Institute of Canada
studentship to F.S. L.F. is a tier 1 Canada Research Chair in Molecular Virology. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lori.frappier@utoronto.ca

Introduction

The promyelocytic leukemia (PML) tumor suppressor protein

exists as multiple isoforms most of which associate to form PML

nuclear bodies (PML-NBs)[1,2,3]. Through associations with

many additional proteins, PML-NBs control several cellular

functions including p53 activation, apoptosis, senescence, DNA

damage repair and innate antiviral responses [4]. Due to these

important roles, loss of PML-NBs is associated with cancer

development or progression in a variety of solid tumours and

disruption of PML function through fusion to RARa plays a

causative role in promyelocytic leukaemia [5,6,7,8]. In general loss

of PML is not due to changes in PML transcripts [7] but rather

occurs at the level of the protein, triggered by post-translational

modifications of PML.

PML is subject to several post-translational modifications. PML

is phosphorylated by casein kinase-2 (CK2), an event that targets

PML for degradation via ubiquitin-dependant and proteasome-

mediated pathway [9,10]. However, the ubiquitin ligase respon-

sible for CK2-induced polyubiquitylation and degradation of PML

is not presently known. PML is also modified by the addition of

small ubiquitin-like modifiers (SUMO), a requirement for PML-

NB formation [4]. PML SUMOylation is increased in response to

arsenic treatment, resulting in the recruitment of SUMO-

dependant ubiquitin ligase RNF4, which then ubiquitylates PML

and commits it to proteasome mediated degradation [11,12,13].

Although post-translational modifications are integral to PML-NB

functions and maintaining PML levels, they are incompletely

understood [5]. In particular, the understanding of processes that

govern PML-ubiquitylation is still in its infancy. For instance,

while there is evidence for PML de-SUMOylation by SENP-1 and

SENP-5 [14,15], whether PML ubiquitylation is also regulated by

deubiquitylating enzymes (DUBs) remains unknown.

Studies with herpesviral proteins have offered another perspec-

tive on the regulation of PML levels and functions. The ICP0

protein of herpes simplex virus (HSV), which is an E3 ubiquitin

ligase, was shown to disrupt PML-NBs and degrade PML protein

by a mechanism that involves polyubiquitylation and proteasome-

mediated degradation of PML [16,17,18,19]. These effects require

the catalytic RING domain of ICP0 and, at least in some cell

backgrounds, correlates with the ability of ICP0 to interact with

the ubiqutin specific protease, USP7 [20]. USP7 was originally

identified as an interacting partner of ICP0 that partially localized

to PML-NBs [21,22,23]. Further studies have revealed that USP7

regulates the autoubiquitylating activity and thus the stability of

ICP0 [24,25]. USP7 has also been widely studied as a regulator of

the p53 tumor suppressor [26,27,28,29,30]. USP7 deubiquitylates

and stabilizes not only p53, but also its predominant ubiquitin

ligase, Mdm2 and its functional regulator MdmX [31]. By

stabilizing p53 and its negative regulators, USP7 offers an elegant

way to fine tune the levels and the activity of p53.

Using proteomic approaches, we have previously identified an

interaction between the Epstein-Barr virus (EBV) protein EBNA1

and USP7 [32]. Unlike ICP0, EBNA1 does not appear to be
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stabilized by USP7 [32]. However the USP7-EBNA1 interaction

has important consequences for the host and the virus alike. In

keeping with the role of USP7 in the p53 pathway, EBNA1 can

interfere with the stabilization of p53 by USP7 by effectively

competing with p53 for its binding site in the USP7 N-terminal

domain (NTD) [33,34]. EBNA1 can also recruit USP7 to EBV

sequences that regulate viral gene expression and genome

persistence where, in complex with GMP synthetase, USP7 can

deubiquitylate histone H2B and affect EBNA1-mediated tran-

scriptional activation [35]. In addition, like ICP0, EBNA1 was

recently shown to disrupt PML-NBs by inducing the degradation

of the PML protein [36]. This effect of EBNA1 was not seen using

an EBNA1 mutant defective in USP7-binding nor was it evident

when wildtype EBNA1 was expressed in conjunction with USP7

silencing. The combined results implicate USP7 in the regulation

of PML-NBs.

In this study we explored the possibility that USP7 directly

regulates PML. Contrary to observations with other targets of

USP7, we found that USP7 negatively regulates PML levels and

PML-NBs by a mechanism that is independent of its catalytic

activity and independent of the previously described PML

regulators CK2 and RNF4.

Results

USP7 negatively regulates PML-NBs
In order to investigate the potential role of USP7 in regulating

PML-NBs, we treated the EBV-negative nasopharyngeal carcino-

ma cell line, CNE2, with siRNA for USP7 (siUSP7) or control

siRNA for GFP (siGFP). Immunofluorescence imaging of these

cells, clearly showed increased PML staining in cells silenced for

USP7 expression and quantification of the number of PML-NBs

showed that the average number of PML-NBs per cell increased

from 13 6 0.1 in siGFP cells to 1860.8 in USP7-silenced cells

(Figure 1A). The distribution of the number of PML-NBs per cell

revealed that USP7-silenced cells had a large increase in the

percentage of cells with more than 19 PML-NBs and a decrease in

the number of cells with less than 15 PML-NBs (Figure 1A, right

panel). Occasionally we were able to find cells in the same field of

view that had both USP7-silenced cells and neighbouring cells that

continued to express USP7 (Figure S1), allowing for a direct

comparison of PML-NBs in silenced and non-silenced cells in the

same culture. Such images also showed that PML staining was

much stronger in USP7-silenced cells, than in cells in which USP7

expression was still detectable.

We further examined the role of USP7 in regulating PML-NBs,

by overexpressing myc-tagged USP7 in CNE2 cells. While the

number of PML-NBs greatly varied from cell to cell, overexpres-

sion of USP7 led to a reduction in the number of PML-NBs

(Figure 1B, top panel). In multiple experiments the average

number of PML-NBs decreased from 1360.12 in untransfected

cells to 960.9 in cells overexpressing USP7. In addition, for USP7

overexpressing cells, there was a dramatic increase in the

percentage of cells with fewer than 10 PML-NBs compared to

untransfected cells (Figure 1B, top panel). Together the results

show that USP7 has a destabilizing effect on PML-NBs.

USP7 catalytic activity is dispensable for PML-NB
disruption

The finding that a deubiquitinase destabilized a protein, as

opposed to a stabilizing it, was surprising and prompted us to ask

whether the catalytic activity of USP7 was required for its effect on

PML-NBs. To this end, CNE2 cells were transfected with a

construct expressing USP7 with a point mutation in cysteine 223

(C223S) known to be critical for ubiquitin cleavage [28] (Figure 2).

Interestingly, expression of C223S reduced the number of PML-

NBs to a greater degree than WT USP7 (Figure 1B, 2nd row). The

average number of PML-NBs in C223S-positive cells was reduced

to 761.2 as compared to 1360.12 in control cells, with a

substantially larger percentage of cells containing fewer than 10

PML-NBs than for control cells or even for cells expressing WT

USP7. These results indicate that USP7 regulates PML-NBs

through a mechanism that is independent of its catalytic activity.

We next examined which USP7 domain(s) was responsible for

PML-NB disruption. It has been shown that both the N-terminal

(amino acids 1-208; NTD) and C-terminal (amino acids 560-1102;

CTD) regions of USP7 form stable structural domains that

mediate protein interactions [33] (see Figure 2). Therefore we

expressed these domains individually in CNE2 cells (fused to a

nuclear localization sequence to ensure nuclear uptake) and

examined PML-NB numbers and morphology. Expression of

either the NTD or CTD dramatically decreased the number of

PML-NBs, comparable in magnitude to C223S (Figure 1B, rows 3

and 4). We also noticed that, in addition to reducing the number of

PML-NBs, USP7 overexpression altered their morphology. While

there were fewer PML-NBs in cells expressing USP7, C223S,

NTD and CTD, the bodies that remained in these cells tended to

be larger and stained brighter for PML than those in untransfected

cells (Figure 1B). We also expressed the USP7 catalytic domain

(208–560) on its own in the CNE2 cells and saw no obvious

changes in the size or number of the PML NBs relative to

untransfected cells (Figure 1B, bottom row). Taken together these

results indicate that USP7 negatively regulates PML-NBs, through

both the N- and C-terminal domains and that its catalytic activity

is dispensable for this effect.

USP7 N- and C-terminal domains localize to PML-NBs
In most cells USP7 is found throughout the nucleus, often

forming discrete foci, some of which associate with PML-NBs

(Figure 3A). However how USP7 associates with PML-NBs is not

known. To better understand how the USP7 NTD and CTD

affect PML-NBs, we asked whether, like WT USP7, they

associated with PML-NBs. Immunofluorescence microscopy of

ectopically expressed USP7 or USP7 mutants yielded bright pan

nuclear staining, making it difficult to determine if the USP7

proteins formed PML-associated foci. To circumvent this problem,

we briefly triton-extracted the CNE2 cells to remove excess

nucleosolic proteins, soon after transfection with USP7 expression

plasmids when PML-NBs are largely intact. The myc-tagged full

length USP7 formed foci that closely associated with PML-NBs

(Figure 3B, top panel) in a manner similar to endogenous USP7.

Additionally, both the USP7 NTD and CTD formed nuclear foci,

some of which were closely associated with PML-NBs (Figure 3B,

two middle panels). In contrast, we did not see any obvious

association of the USP7-CAT domain with PML-NBs (Figure 3B,

bottom panel). This suggests that the USP7 domains that disrupt

PML-NBs do so through interactions with them. We also noticed

that the over-expressed USP7 domains formed some foci that were

not associated with PML-NBs, similar to what is observed with

endogenous USP7. The nature and function of these foci is not yet

known.

USP7 regulates PML protein levels
PML-NBs can be disrupted due to loss of PML proteins or due

to failure of the PML proteins to interact to form a NB. These two

mechanisms can be distinguished by Western blotting for the PML

proteins since only the first mechanism results in decreased levels

of PML proteins. To this end, we examined the levels of the PML
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Figure 1. USP7 regulates PML-NBs independent of its ubiquitin cleavage activity. (A) CNE2 cells were treated with siRNA against USP7
(siUSP7) or GFP (siGFP) then cells were fixed and stained for PML and endogenous USP7. The number of PML-NBs was counted for a minimum of 50
cells for each sample in three independent experiments. Histogram on the right represents the average distribution of number of PML-NBs in siGFP
(white bars) and siUSP7 (black bars) samples, where error bars represent standard deviation from the three independent experiments. Images shown
are for siUSP7 samples in which green stained cells serves as an internal control for cells in which USP7 expression has not been silenced. (B) CNE2
cells were transiently transfected with 2 mg of a plasmid expressing WT USP7 or USP7 domains as indicated or with the empty plasmid (Mock).

USP7 Negatively Regulates PML Bodies
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proteins before and after silencing USP7 in CNE2 cells.

Treatment of CNE2 cells with USP7 siRNA efficiently decreased

USP7 levels, compared to treatment with siRNA for GFP or

transfection reagent alone (Figure 4A, top panel). In SDS-PAGE,

PML proteins migrate as a ladder of multiple isoforms represent-

ing products of alternatively spliced transcripts and their post-

translationally modified versions [2]. Compared to the siGFP or

mock treated controls, USP7 silencing led to an increase in most or

all isoforms of PML (Figure 4A, middle panel). USP7 silencing

specifically affected PML proteins as opposed to other PML-NB

components, as the levels of the Sp100 and hDaxx proteins,

known to be highly associated with PML-NBs, were largely

unaffected by USP7 silencing (Figure 4B).

USP7 can alter levels of the p53 tumor suppressor [37] and p53

can activate PML transcription [38]. The effect of USP7 on p53

levels requires the catalytic activity of USP7, and therefore our

finding that catalytically inactive USP7 disrupts PML NBs strongly

suggests that this effect is not due to p53 modulation. However, to

further verify that the increase in PML levels after USP7 silencing

was not due to changes in the stability of p53, we repeated USP7

silencing experiments in p53-negative H1299 cells. Silencing of

USP7 caused an increase in PML levels even in the absence of p53

(Figure 4C), indicating that the ability of USP7 to modulate PML

levels is independent of p53. Microscopy images of H1299 and

Saos2 cells (also p53-negative) after overexpression of USP7 or the

C223S mutant also confirmed that USP7 can trigger loss of PML

NBs in the absence of p53 and that the effect is independent of

ubiquitin cleavage by USP7 (Figure S2).

Since PML protein degradation is mediated by polyubiquityla-

tion, we asked whether USP7 affects the degree of PML

ubiquitylation. To this end, CNE2 cells were transfected with a

construct expressing HA-tagged ubiquitin along with siRNA

against GFP or USP7. Transfected cells were also treated with

the proteasome inhibitor MG132 to allow polyubiquitylated

proteins to accumulate. Immunoprecipitation of endogenous

PML recovered comparable amounts of PML from both siGFP

and siUSP7 treated samples (Figure 4D, left panel), however, when

the same samples were probed for HA, the level of PML

containing HA-ubiquitin was greatly decreased after USP7

silencing (Figure 4D, right panel). Therefore USP7 is required

for optimal polyubiquitylation of PML.

USP7 physically interacts with PML
Whether or not the association of USP7 with PML-NBs involves

an interaction with PML proteins is unknown. To test this

possibility, we immunoprecipitated endogenous PML isoforms

from nuclear extracts and blotted for USP7. This revealed that a

fraction of the endogenous USP7 interacted with the PML

proteins (Figure 4E). We also conducted the reciprocal experiment

in which an antibody against USP7 was used to pull down USP7

(Figure 4F), as indicated by two bands characteristic of USP7 [39].

Western blots for total PML revealed that one PML isoform

preferentially coimmunoprecipitated with USP7 (Figure 4F) and

its size is consistent with PML IV. These data suggest that USP7

physically interacts with PML-NBs through PML proteins and has

a preference for PML IV.

CK2 is dispensable for USP7 induced PML-NB disruption
Scaglioni and colleagues [10] showed that casein kinase 2 (CK2)

phosphorylates PML proteins on serine 517 which primes them for

polyubiquitylation and proteasome-mediated degradation. There-

fore we wondered if the USP7-associated degradation of PML

required PML phosphorylation by CK2. We tested this possibility

by assaying USP7-associated PML-NB disruption in CNE2 cells

deprived of CK2 activity in the following two ways. First, we

silenced CK2a using siRNA and then overexpressed either USP7

or C223S in the siRNA treated cells. CK2a expression was

efficiently decreased by siRNA treatment and did not affect USP7

levels, as shown in Figure S3 (compare lanes 3 and 4). Consistent

with previous reports of a role for CK2 in PML turnover [10],

CK2 silencing resulted in increased levels of PML-NBs in general,

however depletion of CK2 had no noticeable effect on the ability

Figure 2. The USP7 proteins used in this study. Pertinent regions of USP7 including, the N-terminal domain (NTD), the C-terminal domain (CTD),
the catalytic domain (CAT), p53 binding region and the point mutation (C233S) that abrogates catalytic activity are indicated relative to amino acids
numbers (shown below).
doi:10.1371/journal.pone.0016598.g002

24 hours post-transfection, cells were fixed and stained using PML (red) and c-Myc (green) antibodies. Effect of USP7 overexpression on the number
of PML-NBs was quantified as in (A), except at least 100 cells were counted for each sample.
doi:10.1371/journal.pone.0016598.g001
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of USP7 or C223S to disrupt PML-NBs (Figure 5A). We also

verified that CK2 was silenced in cells overexpressing USP7 by

staining the cells for both CK2 and the myc tag on USP7. As

shown in Figure S4, CK2 was depleted in virtually all of the cells

including those overexpressing USP7.

To rule out the possibility that residual CK2a remaining after

silencing was sufficient to bring about USP7-induced PML-NB

disruption, we assessed the effect of USP7 and C223S on PML-

NBs in CNE2 cells treated with emodin, an inhibitor of CK2

catalytic activity (Figure 5B). As reported previously [10], emodin

treatment on its own increased PML staining. However inhibition

of CK2 activity by emodin did not hinder disruption of PML-NBs

by either USP7 or C223S (Figure 5B). Note that it was not possible

to get accurate counts of PML-NBs in these experiments since

emodin treatment results in distortion and/or fusion of PML-NBs

such that it is not clear where one body ends and the next begins.

However the decrease in PML staining was obvious in all USP7-

and C223-expressing cells examined. These observations indicate

that USP7 negatively regulates PML-NBs in a manner indepen-

dent of CK2 phosphorylation of PML.

USP7 is important for arsenic-induced PML degradation
Arsenic is known to induce PML SUMOylation and eventual

degradation of PML and is used as a treatment for acute

promyelocytic leukemia [40]. To determine whether USP7 is

important for arsenic-induced degradation of PML, CNE2 cells

were transfected with siRNA against GFP or USP7 in quadrupli-

cates and two of each sample were treated with arsenic trioxide

(Figure 6A). As expected, silencing of USP7 resulted in PML

stabilization in both replicates in the absence of arsenic trioxide

(Figure 6A, compare lanes 1 and 3 with lanes 2 and 4). In siGFP

samples, treatment with arsenic trioxide led to degradation of

PML as expected (Figure 6A, compare lanes 1 and 3 with 5 and 7).

Darker exposures revealed the presence of high molecular weight

forms of PML in arsenic treated samples, indicative of PML

Figure 3. USP7 N- and C-terminal domains associate with PML NBs. (A) CNE2 cells were stained for endogenous USP7 and PML. USP7 foci
that localize to PML NBs (arrows) or do not localize to PML NBs (arrow heads) are indicated. (B) CNE2 cells were transfected with plasmids expressing
USP7, the USP NTD, the USP7 CTD or the USP7 catalytic domain (CAT). Cells were harvested 18 hours post-transfection and were extracted with 0.5%
Triton X-100 on ice for 4 minutes, prior to fixing and staining with PML and c-Myc antibodies. Arrows identify USP7 foci that localize to PML-NBs.
doi:10.1371/journal.pone.0016598.g003
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modified with SUMO and/or ubiquitin. Arsenic treatment of

siUSP7 samples did not reduce PML levels to the same degree as

in siGFP control cells (Figure 6A, compare lanes 5 and 7 with lanes

6 and 8). While this could be due to the higher starting level of

PML after siUSP7 treatment, what is most telling is the striking

increase in the proportion of PML migrating as highly modified

forms (above the 130 marker) as compared to the unmodified

forms (between the 55 and 130 markers). This disproportionate

accumulation of higher molecular weight forms of PML, which are

normally rapidly degraded, suggests that the degradation of post-

translationally modified PML induced by arsenic treatment

requires USP7.

The PML high molecular weight forms were further analysed

for the presence of SUMO by immunoprecipitation of total PML

from each sample and blotting for endogenous SUMO1

(Figure 6B). This confirmed that the slower migrating PML forms

evident after USP7 silencing and arsenic treatment (lane 4) were

SUMOylated. Note that these SUMO1-modified forms are not

detectible in the control siGFP sample, likely because they are

degraded readily in presence of USP7. These results indicate that

USP7 is dispensible for arsenic-induced SUMOylation of PML but

is important for subsequent degradation of these modified

isoforms.

USP7 regulation of PML-NBs is independent of RNF4
The degradation of PML proteins after arsenic treatment

involves polyubiquitylation of PML by RNF4 [11,12,13].

Therefore we tested whether the USP7-associated disruption of

PML-NBs requires RNF4, by treating cells with siRNA against

RNF4 prior to overexpressing USP7 or C223S. While siRNF4

treatment significantly decreased RNF4 levels (Figure S3, compare

lanes 1 and 3), it did not noticeably affect the ability of USP7 or

Figure 4. USP7 regulates PML protein levels and physically interacts with PML. (A–C) CNE2 cells (A and B) or H1299 cells (C) were
subjected to 2 rounds (+) or 3 rounds (++) of transfections with siRNA against USP7 (siUSP7) or GFP (siGFP) or no siRNA (mock). Equal amounts of total
cell lysates were analyzed by western blotting using the antibodies indicated. In (C) the blot on the right confirms the lack of p53 expression in H1299
as compared to CNE2 cells. (D) CNE2 cells were treated with siRNA against USP7 or GFP then were transfected with a plasmid expressing HA-tagged
ubiquitin. PML ubiquitylation was then analyzed by immunoprecipitating endogenous PML and western blotting with HA antibody. (E and F)
Endogenous PML (E) or USP7 (F) was immunoprecipitated from CNE2 nuclear extracts using anti-PML or anti-USP7 antibody then western blotted
using the reciprocal antibody as indicated. Normal rabbit IgG was used a negative control (IgG) for non-specific immunoprecipitation. ‘Input’
represents 5% of the nuclear lysate used for immunoprecipitation. The band representing IgG is marked by an asterisk.
doi:10.1371/journal.pone.0016598.g004
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C223S to disrupt PML-NBs (Figure 5C). Although we could only

find a small number (10) of cells that detectably expressed USP7 or

C223S after RNF4 silencing, quantification of PML-NBs from

these cells revealed that all cells had 5 or fewer PML-NBs with an

average of 2.661.3 PML-NBs. This is considerably less than in the

RNF4 silenced cells without USP7 overexpression which had an

average of 17.364.0 PML-NBs with none of these cells having 5

or fewer PML-NBs. In addition, USP7 silencing did not affect

RNF4 levels (Figure S3, compare lanes 2 and 3) nor did it affect

the ability of RNF4 to associate with PML (Figure S5). These

findings suggest that USP7 induces degradation of PML by a

mechanism that is independent from RNF4-mediated PML

degradation.

USP7 regulates individual PML isoforms
While silencing of USP7 led to an increase in the levels of all

isoforms of endogenous PML, the preferential recovery of one PML

form with USP7 in co-IP experiments raised the possibility that

PML regulation by USP7 might require a specific PML isoform. To

test this possibility, we first silenced endogenous PML in CNE2 cells

by stably expressing shRNA against all PML isoforms from a

lentivirus as previously described by Everett et al [41]. Expression of

shRNA led to depletion of all PML isoforms beyond the limit of

detection in CNE2 cells (Figure 7A, compare first two lanes, and

Figure S6A). EYFP-tagged PML isoforms resistant to the initial

shRNA were then individually and stably expressed in the PML-

depleted cells (from the herpes simplex type 1 gD gene promoter)

using a second lentivirus [42]. PML isoforms I, II, IV, V and VI

were expressed to varying but detectible degrees, while expression of

PML III could not be detected and thus was not included in further

analysis (Figure 7A and data not shown). In addition, the individual

recombinant PML proteins were confirmed by microscopy to form

nuclear bodies closely resembling those formed by endogenous

PML (Figure S6B). Each of these cell lines was treated with siRNA

against USP7 or a negative-control siRNA and effects on the levels

of the individual PML proteins examined by western blotting. As

shown in Figure 7B, USP7 silencing led to increased levels of PML

isoforms I, II and IV, with the largest effects on PML I and IV, while

minimal to no effect of USP7 silencing was observed on PML V and

VI.

Figure 6. USP7 is important for arsenic-induced PML degradation. (A) CNE2 cells were treated with siRNA for USP7 (U) and siRNA for GFP (G)
in quadruplicates. 24 hours post-transfection, two samples for each siRNA set were treated with 1 mM As2O3 for 6 hours then equal amounts of cell
extracts were analyzed by western blotting using the antibodies indicated. (B) CNE2 cells were treated with siRNA and As2O3 as in (A). PML was
immunoprecipitated from untreated and treated cells and SUMOylated PML was analyzed by western blotting using anti-SUMO1 antibody.
doi:10.1371/journal.pone.0016598.g006

Figure 5. Requirement for CK2a and RNF4 for USP7-induced PML-NB degradation. (A) CNE2 cells were transfected with siRNAs against
RNF4, USP7, CK2a or GFP and silencing was confirmed by western blotting (see Fig. S3). 24 hours after the last round of siRNA transfections, CNE2
cells silenced for CK2a expression were transfected with a plasmid expressing myc-tagged USP7 or my-tagged C223S (as in Figure 1B). 24 hours later
cells were fixed and stained with anti-PML and anti-c-Myc antibodies. PML-NBs was quantified as in Figure 1B. (B) CNE2 cells were treated with 50 mg/
mL emodin 24 hours prior to transfection with USP7 or C223S expression plasmids. 6 hours post transfection, cells were given a second 24 hr emodin
treatment, followed by fixation and immunofluorescence microscopy as in (A). Two different fields of view are shown for USP7 samples to show
reproducibility. (C) Cells were treated as in (A), except siRNA against RNF4 was used to silence RNF4, prior to USP7 and C223S overexpression. Two
different fields of view are included for C223S to show reproducibility.
doi:10.1371/journal.pone.0016598.g005
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We also examined the nuclear bodies formed by each PML

isoform after USP7 and control siRNA treatments and saw a

noticeable increase in the number and intensity of PML I and

PML IV bodies after silencing USP7, with no obvious effect on the

nuclear bodies formed by the other PML isoforms (Figure 8A).

Counts of the number of PML bodies per cell showed that the

number of nuclear bodies formed varied with different PML

isoforms and that only those formed by PML I and PML IV were

significantly affected by USP7 silencing, resulting in doubling of

the nuclear body number (Figure 8B; p values comparing control

and siUSP7 treated samples were 0.001, 0.1, 0.01, 0.2 and 0.5 for

PML I, II, IV, V and VI, respectively). These data confirm that

USP7 can regulate PML proteins even when expressed from a

heterologous promoter, and show that USP7 has a preference for

PML isoforms I and IV.

We then investigated whether the USP7 NTD and CTD were

sufficient to disrupt the NBs formed from either PML I or PML IV

or whether each of these USP7 domains was responsible for

regulating one of these PML isoforms. To this end, CNE2 cells

expressing only PML I or PML IV (or PML V as a negative

control) were transfected with expression plasmids for the USP7

NTD or CTD (fused to a myc tag) and cells expressing these

domains were identified using an anti-myc antibody in immuno-

fluorescence microscopy. The PML NBs were visualized by PML

staining and counted in cells expressing and not expressing NTD

or CTD (Figure 9). Both the NTD and CTD were found to induce

pronounced (2–3 fold) loss of PML I and PML IV NBs (p values all

between 0.0001 and 0.00027) whereas PML V NBs were much

less affected by either the NTD or the CTD. These results confirm

the specificity of USP7 and show that the NTD and CTD have

similar preferences for PML I and IV NBs.

Discussion

USP7 is bound by at least two herpesvirus proteins (ICP0 and

EBNA1) [22,32] and has more recently emerged as a key regulator

of the p53 tumour suppressor [43] and several other cellular

proteins [44,45,46,47]. USP7 can regulate the stability, function

and even the sub-cellular localization of its substrates, in each case

by virtue of its deubiquitylating activity. Here we showed that

USP7 can also function independently from its deubiquitylating

activity to negatively regulate the levels of PML proteins and the

formation of PML-NBs, by inducing the polyubiquitylation of

PML.

Figure 7. USP7 regulates some individual PML isoforms. (A) Endogenous PML expression was silenced in CNE2 cells then silenced cells were
engineered to stably express single EYFP-tagged PML isoforms I, II, IV, V and VI. PML content of these cell lines was analysed, relative to parental CNE2
cells, by western blotting equal amount of whole cell lysates and probing with PML antibody recognizing all PML isoforms. The position of each
unmodified recombinant PML protein is indicated by an asterisk and the position of molecular weight markers are indicated on the left. A blot for
actin is also shown as a loading control. (B) Cells described in (A) were transfected with siRNA against USP7 (U) or negative control siRNA (C) then
equal amount of cell lysate were analyzed by western blotting using the indicated antibodies.
doi:10.1371/journal.pone.0016598.g007
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Figure 8. USP7 preferentially affects NBs formed from PML I or IV. (A) CNE2 cells expressing the indicated individual PML isoforms were
treated with siRNA against USP7 (siUSP7) or negative control siRNA (siC). Cells were then fixed and stained for USP7 and PML and counter stained
with DAPI. Images using the same antibody were captured with the same exposure times. (B) The number of PML NBs per cell were counted for 100
cells for each of the samples in (A). Average numbers are shown with standard deviations calculated from 3 independent experiments. P values
between the control and siUSP7 samples are 0.001 for PML I, 0.1 for PML II, 0.01 for PML IV, 0.2 for PML V and 0.5 for PML VI.
doi:10.1371/journal.pone.0016598.g008

USP7 Negatively Regulates PML Bodies

PLoS ONE | www.plosone.org 10 January 2011 | Volume 6 | Issue 1 | e16598



A function of USP7 in PML regulation ties in well with its

known association with PML-NBs and with its interactions with

herpesvirus proteins ICP0 and EBNA1, both of which associate

with and disrupt PML-NBs [22,23,36]. Indeed the interaction of

ICP0 and EBNA1 with USP7 has been found to be important for

PML-NB disruption at least in some cell backgrounds [20,36]. A

direct role of USP7 in the regulation of PML levels is consistent

with the idea that ICP0 and EBNA1 usurp this role of USP7 to

promote degradation of PML proteins and disrupt PML-NBs. In

fact our recent studies have shown that EBNA1 independently

recruits both USP7 and CK2 to PML NBs (through direct

interactions with different EBNA1 sequences) and that recruitment

of both USP7 and CK2 is critical for PML disruption [48].

We investigated the mechanism of the association of USP7 with

PML-NBs and found that both the N- and C-terminal domains of

USP7 were sufficient to mediate this association. These domains

also disrupted PML-NBs suggesting that this disruption involved

the association between USP7 and PML-NBs. The USP7 NTD is

a TRAF domain that is known to bind p53, Mdm2 and MdmX in

addition to the viral EBNA1 protein [28,31,34,49]. The C-

terminal half of USP7 also appears to have protein interactions as

its main function and has been reported to bind FOXO in

addition to the viral ICP0 protein [33,46]. It is not clear that any

of these known interactions would account for the targeting to and

disruption of PML-NBs by these USP7 domains, and it is likely

that additional functionally important interactions with these

domains remain to be uncovered.

We also showed that USP7 and PML physically interact in

coimmunoprecipitation experiments. Although the PML antibody

coimmunoprecipitated only a small amount of endogenous USP7

from nuclear extracts, this is in keeping with previous observations

that only a small pool of USP7 forms nuclear foci and that a

fraction of these foci colocalize with PML NBs. In reciprocal

experiments, USP7 antibody coimmunoprecipitated PML and

interestingly, one isoform of PML was preferentially recovered.

This suggests that USP7 might be recruited to PML NBs via an

interaction with a specific PML isoform, where it can then bring

about degradation of all PML isoforms. It is not yet clear if the

USP7-PML interaction is direct or mediated by another protein.

We have previously shown that EBNA1 also interacts with a single

isoform of PML [36] and the size of the isoform that interacts with

both EBNA1 and USP7 is consistent with the size of PML IV [50].

This similarity may underscore the importance of USP7 for

EBNA1-mediated PML NB disruption.

We examined whether USP7 relied on a specific PML isoform

to bring about degradation of the other isoforms using cells

expressing single PML isoforms. In keeping with the importance of

PML IV for the association of USP7 with PML NBs, we found

that USP7 silencing had a significant effect on the number of

nuclear bodies formed by PML IV alone but not by PML II, V or

VI alone. We also observed significant effects of USP7 on PML I

nuclear bodies, suggesting that the PML tail sequence that is

shared by PML I and IV but is absent in the other PML isoforms

(exon 8a) might be important for USP7-associated PML

degradation. Similarly, the levels of PML I and IV were the

PML isoforms most affected by USP7 as determined by Western

blotting. In addition, the N or C-terminal domains of USP7 that

were shown to be sufficient for localization to and disruption of

Figure 9. USP7 NTD and CTD both regulate PML I and IV NBs. (A) CNE2 cells expressing the indicated individual PML isoforms were
transfected with plasmids expressing myc-tagged USP7 NTD or CTD, then were fixed and stained for myc and PML and counter stained with DAPI. (B)
The number of PML NBs per cell were counted for 100 cells that were expressing or were not expressing (control) the USP7 domain for samples in (A).
Average numbers are shown with standard deviations (from 3 independent experiments).
doi:10.1371/journal.pone.0016598.g009
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native PML NBs, were also found to be sufficient to disrupt NBs

formed by PML I and PML IV (but not PML V). Since the

expression of the individual PML isoforms is not driven by the

same promoter as for the endogenous PML proteins, these

experiments also show that the effects of USP7 siRNA on PML

expression is not due to indirect effects from induction of the

interferon response. Taken together, the results suggest that

preferences of USP7 for specific PML isoforms underlies its ability

to trigger loss of PML-NBs and proteins.

The observations that USP7 promotes PML-ubiquitylation and

negatively regulates PML levels were counter intuitive since USP7

generally stabilizes its target proteins by removing their ubiquitin

moieties. One possible explanation would be that USP7 stabilizes

a ubiquitin ligase that targets PML for ubiquitin-mediated

degradation. There is precedent for this possibility as, under some

circumstances, USP7 can negatively regulate p53 levels by

stabilizing the Mdm2 E3 ligase [26,28]. However, for PML

regulation, this possibility is unlikely given that the USP7 catalytic

activity was not required to disrupt PML-NBs. A more likely

scenario is that USP7 recruits a negative regulator (see model in

Figure 10), for example a ubiquitin ligase, to PML-NBs or that

USP7 plays a role in the recruitment of PML to the proteasome

for degradation. In support of these possibilities, USP7 has been

identified as a component of the proteasome [51,52] and has so far

been reported to interact with two cellular E3 ubiquitin ligases,

Mdm2 and MARCH7, in addition to the viral E3 ligase, ICP0

[22,26,44]. However Mdm2 does not appear to be required for

PML disruption by USP7, as Mdm2 silencing had no noticeable

effect on the ability of overexpressed USP7 to induce the loss of

PML NBs (data not shown). The ability of USPs to function

independently from their catalytic activity is not unique to USP7,

as there have been similar reports for USP11 and USP18 (also

called UBP43). USP11 upregulates IkB kinase a in a ubiquitin-

independent manner [53], while USP18 has been shown to

negatively regulate interferon signalling through protein interac-

tions that are independent of its isopeptidase activity [54].

Overall our results point to a novel model of PML regulation in

which USP7 triggers degradation of PML by a mechanism that

does not require phosphorylation of PML by CK2 or poly-

ubiquitylation by RNF4. Unlike all previously reported USP7

functions, its role in PML regulation does not require the catalytic

activity of USP7 but rather is a function of the USP7 protein

interaction domains. It is becoming increasingly clear from

numerous recent publications that USP7 is an important regulator

of many cellular processes. This work further emphasizes the

diverse roles of USP7 by showing that the cellular functions of

USP7 extend beyond its role as a deubiquitylating enzyme.

Materials and Methods

Plasmids
To generate the pCANmycUSP7 plasmid, USP7 cDNA was

PCR amplified from the pET3a-USP7 plasmid (a gift from Roger

Everett). The amplified fragment was ligated into HindIII and XbaI

sites of the pcDNA3.1-derived plasmid, pCANmyc. pCAN-

mycC223S plasmid was generated by QuickChange mutagenesis

of pCANmycUSP7 using the following primers: 59CAGGGAGC-

GACTTCTTACATGAACAGCCTG39 and 59CAGGCTGTT-

CATGTAAGAAGTCGCTCCCTG39. USP7 NTD and USP7

CTD fragments were generated by PCR-amplification of the

sequences encoding these domains from pCANmycUSP7 using the

primers 59CGCCGCAAGCTTCCGAAAAAAAAAAAACGCA-

AAGTGATGAACCACCAGCAGCAGC 39 and 59 CCGGGA-

TCCTCACTTTGAATCCCACGCAACTCC 39 for the NTD

and 59CGCCGCAAGCTTCCGAAAAAAAAAAAACGCAAA-

GTGGAAGCCCATCTCTATATGCAAG 39 and 59GCGGG-

ATCCTCAGTTATGGATTTTAATGGCC 39 for the CTD.

The sequence coding for the SV40 T antigen nuclear

localization signal was included in the 59 primers to generate an

in-frame NLS at the N-terminus of each domain. Amplified

fragments were ligated into pCMVmyc [55] between HindIII and

BamHI sites.

Cell lines and transfections
CNE2 are EBV-negative nasopharyngeal carcinoma cells (see

CNE2Z in [56]). siRNA transfections were performed as described

previously [35], except only 50 pmoles of siRNA was used in 6cm

dishes. STEALTH siRNA for CK2 and RNF4 was obtained from

Invitrogen. 24 hours after siRNA transfections, cells were

processed for Western blots or microscopy or moved to larger

vessels for plasmid DNA transfections. For overexpression

experiments, CNE2 cells (grown on coverslips in a 6cm dish) at

70% confluence were transfected with 2 mg of plasmids expressing

myc-tagged USP7 or USP7 domains using lipofectamine 2000

(Invitrogen).

Immunofluorescence microscopy
Immunofluorescence microscopy was performed as previously

described [36] using primary antibodies for USP7 [32], PML (PG-

M3, Santa Cruz) or myc (Rabbit A-14 from Santa Cruz or mouse

monoclonal 9E10, kindly provided by Dr. Alan Cochrane) and

secondary antibodies goat anti-rabbit AlexaFluor 488 and goat

anti-mouse Alexafluor 555 from Invitrogen.

Western Blotting
Cells were lysed in 9 M urea, 5 mM Tris.Cl pH 6.8, followed

by brief sonication and microcentrifugation. 30 mg of total protein

was subjected to SDS-PAGE and western blots were performed

using antibodies against USP7, PML (Bethyl, A301-167A), Sp100

(Santa Cruz, sc-25568), hDaxx (C-20; Santa Cruz, SC-7000,), p53

Figure 10. Model of USP7 interactions with PML NBs. Model
showing USP7 (blue) interactions through its NTD or CTD with PML
proteins I or IV in PML NBs (red). The ability of either the NTD or CTD to
disrupt PML NBs suggests that either domain can recruit a PML negative
regulator (such as an E3 ubiquitin ligase) to the PML NBs, shown here as
protein X (green).
doi:10.1371/journal.pone.0016598.g010
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(DO-1; Santa Cruz, SC-126), CK2a (Abcam, ab10466-50), c-Myc

(A-14; Santa Cruz, SC-789), b-Actin (Ab-1; Calbiochem, CP01),

SUMO-1 (Zymed), HA (12CA5 monoclonal antibody;[57]) or

RNF4 (K7979 [58] kindly provided by Jorma Palvimo) and

appropriate HRP-conjugated secondary antibodies for detection

by chemiluminescence.

PML Ubiquitylation Assay
siRNA-treated CNE2 cells were transfected with 5 mg of

plasmid expressing HA-tagged ubiquitin (kindly provided by

Ron Hay, University of Dundee). 48 hours post-transfection, cells

were treated with 10 mM MG132 (Sigma) for 10 hours. Harvested

cell pellets were frozen then thawed and boiled in 200 mL of SDS

lysis buffer (62.5 mM Tris.Cl pH 6.8, 2% SDS, 10% glycer-

ol,1 mM N-ethyl maleimide). Clarified lysates were diluted 5-fold

in IP buffer (50 mM Tris.Cl pH 8.0, 150 mM NaCl, 1% NP-40)

and precleared with protein A/G sepharose beads (Santa Cruz,

SC-2003) and 2 mg normal rabbit IgG (Santa Cruz, SC-2345),

prior to overnight incubation with PML antibody (Bethyl, A301-

167A). After washing in IP buffer, immunoprecipitates were eluted

in loading buffer (60 mM Tris.Cl pH 6.8, 1% SDS, 100 mM

DTT, 5% glycerol) prior to western blotting.

Immunoprecipitation
Nuclei prepared from CNE2 cells by hypotonic lysis were incubated

in RIPA buffer (50 mM Tris.Cl pH 8.0, 150 mM NaCl, 1% NP40,

0.1% sodium deoxycholate, 1 mM PMSF and protease inhibitors

(P8340, Sigma)) at 4uC for 15 minutes. Nuclear lysates were clarified

by centrifugation and precleared with protein A/G sepharose. 1.5 mg

of lysate was incubated overnight at 4uC with 2 mg normal rabbit IgG

and 2 mg of USP7 (Bethyl, A300-033A) or PML antibodies coupled to

ExactaCruz resin (SantaCruz) according to manufacturer’s instruc-

tions. Immunoprecipitates were immunoblotted as above.

Cells expressing single PML isoforms
pLKO.shPML1 expressing anti-PML shRNA [41] and pLNGY-

PML.I, II, IV, V and VI expressing EYFP-tagged shPML1-resistant

PML isoforms were kindly provided by Dr. Roger Everett and are

described in detail elsewhere [42]. These plasmids were used to

generate lentiviruses as previously described [59]. One ml of filtered

culture medium containing the shRNA-lentivirus was added to

16105 CNE2 cells with polybrene (Sigma) at a final concentration

of 8 mg/ml and after 24h was replaced with medium containing

2 mg/ml puromycin. 72 hours later puromycin was removed and

cells were cloned by serial dilution and checked for PML expression

by immunofluorescence microscopy using antibody against all PML

isoforms. A clone with no detectable PML-NBs (designated as

CNE2Z-shPML) was further confirmed by Western blotting to lack

PML expression and was used to generate cell lines expressing single

PML isoforms by incubating 16104 CNE2Z-shPML cells with

250 ml culture supernatant containing lentivirus encoding a

shRNA-resistant PML isoform. Cells containing the second

lentivirus were selected in 1 mg/ml G418 (GIBCO) for 7 days,

then cloned by serial dilution. Fluorescence microscopy was

performed for the EYFP tag to confirm that all cells expressed

NBs containing EYFP-PML. Western blots were also performed on

50 mg of total cell extract using anti-PML antibody to confirm the

expression of the PML isoform. USP7 silencing experiments were

performed in the single PML isoform cells as described above except

that cells received 3 rounds of siRNA treatments using AllStars

Negative Control siRNA (Qiagen) as a negative control (instead of

siGFP), and 40 mg of cell extract was analyzed in the western blots.

The microscopy experiments in Figure 8 and 9 were performed as

above except that the secondary antibodies goat anti-rabbit

AlexaFluor 555 and goat anti-mouse AlexaFluor 488 were used to

detect USP7 and PML, respectively.

Supporting Information

Figure S1 USP7 silencing increases PML staining. CNE2 cells

were transfected with siRNA against USP7 and stained for USP7

and PML. An image is shown where a few unsilenced cells remain

(green) for direct comparison to the neighbouring cells that are

silenced for USP7 expression.

(TIF)

Figure S2 USP7 and C223S overexpression disrupts PML NBs

in H1299 and Saos2 cells. Saos 2 (A) or H1299 (B) cells were

transfected with a plasmid expressing myc-tagged USP7 or the

catalytically inactive USP7 mutant C223S. Cells were fixed and

stained for myc and PML as in Figure 1B.

(TIF)

Figure S3 Western blots confirming USP7, RNF4 and CK2a
silencing. CNE2 cells were transfected with siRNAs against RNF4,

USP7, CK2a or GFP and protein levels were assessed by western

blotting using the antibodies indicated. These cells were then used

for the immunoflourescence microscopy shown in Fig 5.

(TIF)

Figure S4 USP7 overexpression does not affect CK2a silencing.

CNE2 cells were treated with siRNA against GFP or CK2a then,

24 hours later, were transfected with a plasmid expressing myc-

tagged USP7. 24 hours later, cells were fixed and stained for myc

and Ck2a. Similar down-regulation of CK2a was observed in cells

with or without myc staining (bottom row).

(TIF)

Figure S5 USP7 is not important for RNF-PML interaction.

CNE2 Cells were treated with siRNA against USP7 or GFP in

duplicate. 24 hours post transfection, samples were either left

untreated or treated with As2O3 for 8 hours. Following arsenic

treatment, samples were fixed and processed for IF microscopy

using anit-RNF4 and anti-PML antibodies and counter stained

with DAPI.

(TIF)

Figure S6 Individual PML isoforms form nuclear bodies. A.

CNE2 cells before (W.T.) and after (shPML) silencing of total

PML as shown after staining for total PML (red) and DAPI

counterstaining. B. CNE2 cells after silencing of endogenous PML

and reconstituting with the indicated single EYFP-tagged PML

proteins were fixed, stained with DAPI (blue) and PML antibody

(red) and visualized for EYFP (green). Images shown were

captured at the same exposure times.

(TIF)
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