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Prostate cancer is the second most commonly diagnosed male
cancer in the world. The molecular mechanisms underlying its
development and progression are still unclear. Here we show
analysis of a prostate cancer RNA-sequencing dataset that was
originally generated by Ren et al. [3] from the prostate tumor and
adjacent normal tissues of 14 patients. The data presented here
was analyzed using our RNA-sequencing bioinformatics analysis
pipeline implemented on the bioinformatics web platform, Galaxy.
The relative expression of fibronectin (FN1) and the androgen
receptor (AR) were calculated in fragments per kilobase of tran-
script per million mapped reads, and represented in FPKM unit. A
subanalysis is also shown for data from three patients, that
includes the relative expression of FN1 and AR and their fold
change. For interpretation and discussion, please refer to the
article, “miR-1207-3p regulates the androgen receptor in prostate
cancer via FNDC1/fibronectin” [1] by Das et al.
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ubject area
 Biology

ore specific sub-
ject area
Bioinformatics
ype of data
 Paired-end RNA-sequencing data (fastq format)

ow data was
acquired
Array Express database of the EMBL European Bioinformatics Institute
ata format
 Pre-processed RNA-sequencing data

xperimental
factors
The primary study performed by Ren et al. applied preprocessing steps to the
RNA-sequencing reads, which were, removal of sequencing adaptors and low-
quality reads with specific data preprocessing filters.
xperimental
features
Prostate tumor and adjacent normal tissues from 14 patients were sampled for
RNA sequencing and sequencing libraries were constructed using the Illumina kit
following the manufacturer's standard protocol, which was diluted to 2.5 pM for
sequencing on a single lane of an Illumina HiSeq2000 flowcell.
ata source
location
Prostate Cancer Discovery cohort at Shanghai Changhai Hospital, Shanghai,
China
ata accessibility
 Data available in the article and at: https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-567/
Value of the data

� Performing a Bioinformatics RNA-sequencing analysis on published transcriptome data allows
exploration and opportunities for discovery of new or not previously known biological
implications.

� Allowing reproducibility of the analysis by using the method of the automated RNA sequencing
pipeline on the Galaxy platform to analyze the same data and reusability of the pipeline to analyze
other cancer transcriptome data.

� Promoting transparency of the analysis by allowing the data and methods used in the analysis
accessible on databases and platforms.
1. Data

(Fig. 1).
2. Experimental design, materials and methods

We designed and implemented a comprehensive, standardized, and scalable RNA-sequencing
bioinformatics analysis pipeline as a workflow on the Galaxy platform [2] (http://galaxy.hunter.cuny.
edu:8080/u/bioitcore/w/ted-transcriptome-data-analysis) to analyze prostate cancer RNA-sequencing
datasets from the Array Express archive of the European Bioinformatics Institute (EBI) (http://www.
ebi.ac.uk/arrayexpress/ experiments/E-MTAB-567/). As described in the primary study by Ren et al.,
the samples comprised poly-A containing RNA sequencing paired-end reads and replicates from
fourteen prostate cancer patients [3]. The poly(A) random primed containing RNA were sequenced
using Illumina HiSeq 2000 at a read length of 200-250nt producing on average 400 million reads for
each library. The workflow requires eight input read files, one file of the human reference genome
(UCSC hg19), as well as one file of the gene annotations of the reference genome. The workflow in
total performs forty-four steps, using thirteen bioinformatics tools and requires approximately 84 h
on a 4 core processor server, with four stages:

http://https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-567/
http://https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-567/
http://galaxy.hunter.cuny.edu:8080/u/bioitcore/w/ted-transcriptome-data-analysis
http://galaxy.hunter.cuny.edu:8080/u/bioitcore/w/ted-transcriptome-data-analysis
http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/


Fig. 1. (A) Heatmap representing the strength of association between FN1 and AR in the samples from 11 patients with reliably
analyzable gene expression patterns (Po0.05). Similar color patterns represent a strong correlation. Upregulation of genes is
denoted by increasing color from blue to red. (B) 3 out of 14 patients from a Chinese study showed positive correlation between
FN1 and AR (patients 2, 5 and 13). (C) Boxplot of relative gene expression of FN1 and AR in normal versus prostate cancer
samples (patients 2, 5 and 13).
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) Data Groom and Alignment. The first stage involves two steps: i) standardizing the format of the
RNAseq reads using the FASTQ groomer tool and ii) read alignment against a pre-indexed human
reference genome (UCSC hg19) using the Tophat2 [4] tool. The FASTQ groomer tool converts the
specific sequencing formats of the FASTQ RNAseq reads to a standardized sequencing format. The
Tophat2 tool uses the ultra-fast short read mapper Bowtie2, which maps reads entirely in the exons
while Tophat2 identifies non-continuous mapped reads to search for junction signals in order to
produce a built set of possible introns in the transcriptome. The output is a Binary Alignment Map
(BAM) file of exonic reads, and also included to view the file in text format is the BAM-SAM [5]
converter.

) Differential Gene Expression Analysis. The second stage involves using the Cufflinks2 [6] software
suite to reconstruct the full set of transcripts and quantify their amounts. Cufflinks uses the BAM
alignment file from TopHat2 and a reference gene annotation file in Gene Table Format (GTF) to
generate a transcriptome assembly. The assemblies from the cancer and normal samples are
merged together using the Cuffmerge utility supplied with the same reference gene annotation file.
The Cuffcompare tool was used to validate the assembled transcripts produced from Cufflinks and
compare the assembled transcripts from the merged assembly to the reference gene annotation to
report new assembled transcripts of the reads and gene isoforms, creating as output a new
annotation GTF file. The Cuffcompare GTF file is then processed by Cuffdiff2 [6] along with the
alignment BAM files that serves as the replicates, in order to calculate expression levels in
fragments per kilobase of exon per million fragments mapped (FPKM). Cuffdiff also tests the
statistical significance of the observed changes and accounts for the variability in measurements of
an experiment. It reports results of differential expression analysis in eleven text files.

) Variant Analysis: The third stage involves three steps: i) identifying single genetic variants for each
position of the read bases against the reference genome using the SAMtools mpileup [5,7] tool ii)
calling the somatic and germ line mutations of the single genetic variants using the VarScan [6–8]
tool and iii) annotate and predict the effects of the single genetic variants using the SnpEff package.
The SAMtools mpileup tool uses the alignment BAM files with a reference genome, and generates a
“pileup” of read bases, in which the VarScan tool uses its variant calling algorithm to call mutations
on the mpileup files and reports results in a Variant Call Format (VCF) tabular file. The SnpEff
program uses its collection of variant annotation and effect prediction tools to annotate the called
genetic variants in the VCF files based on their genomic locations and categorizes and predicts their
coding effects.

) Isoform-Level Analysis: The fourth stage involves two steps i) detecting chimeric transcripts, RNAs
encoded by a fusion gene or by two different genes using the ChimeraScan tool and ii) quantifying
alternative splicing events using the SpliceTrap tool. The ChimeraScan tool aligns paired-end reads
using Bowtie2, to a combined genome-transcriptome reference and potential fusion breakpoints
arise from fragments that align to distinct references or distance genomic locations in the same
reference [9]. The main output file is a tabular text file named chimeras.bedpe. The SpliceTrap tool
measures exon inclusion ratios in paired-end RNA-seq data and outputs a text file of its gene
splicing locations and quantity [10]. Please refer to the article, “miR-1207-3p regulates the
androgen receptor in prostate cancer via FNDC1/fibronectin” [1] by Das et al. for analysis and
discussion [1].
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