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ABSTRACT Traditionally, exploration of genetic variance in humans, plants, and livestock species has been
limited mostly to the use of additive effects estimated using pedigree data. However, with the development
of dense panels of single-nucleotide polymorphisms (SNPs), the exploration of genetic variation of complex
traits is moving from quantifying the resemblance between family members to the dissection of genetic
variation at individual loci. With SNPs, we were able to quantify the contribution of additive, dominance,
and imprinting variance to the total genetic variance by using a SNP regression method. The method was
validated in simulated data and applied to three traits (number of teats, backfat, and lifetime daily gain) in
three purebred pig populations. In simulated data, the estimates of additive, dominance, and imprinting
variance were very close to the simulated values. In real data, dominance effects account for a substantial
proportion of the total genetic variance (up to 44%) for these traits in these populations. The contribution of
imprinting to the total phenotypic variance of the evaluated traits was relatively small (1–3%). Our results
indicate a strong relationship between additive variance explained per chromosome and chromosome
length, which has been described previously for other traits in other species. We also show that a similar
linear relationship exists for dominance and imprinting variance. These novel results improve our under-
standing of the genetic architecture of the evaluated traits and shows promise to apply the SNP regression
method to other traits and species, including human diseases.
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Traditionally, exploration of genetic variance in humans, plants, and
livestock species has been limited mostly to the use of additive effects
estimated using pedigree data. In this context, the role of genetics in
complex traits has been quantified as heritability, e.g., the proportion of
the total phenotypic variance explained by additive genetic variance
(Visscher and Goddard 2014). However, the estimation of heritability
via the use of additive models does not only capture additive gene
action but can potentially also capture part of the dominance effects
and epistatic interactions (Hill et al. 2008; Falconer and Mackay 1996).

In addition, traditional additive models ignore imprinting effects,
which also are expected to contribute to the genetic architecture and
evolution of complex traits (Lawson et al. 2013; Cheng et al. 2013).
Therefore, the proportion of phenotypic variation that is explained by
all genetic effects and howmuch of the total genetic variation is actually
due to additive effects is still unclear in modern genetics (Vinkhuyzen
et al. 2013).

One of the main limitations to better understanding the genetic
architecture of complex traits is that typically the data structure does not
allow simultaneous estimation of additive, dominance, and imprinting
variance (De Vries et al. 1994; Vitezica et al. 2013). Further, imprinting
effects might be confounded with common litter or maternal effects
(Wolf and Cheverud 2012; Tier and Meyer 2004). With the develop-
ment of dense panels of single-nucleotide polymorphisms (SNPs), the
exploration of genetic variation of complex traits is moving from the
quantification of the resemblance between family members to the dis-
section of genetic variation at individual loci (Vinkhuyzen et al. 2013).
Because these genetic effects can be estimated, simultaneously, we can
now aim to quantify the contribution of additive, dominance, and
imprinting variance to the total genetic variance.
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Dominance effects are of great interest for both plant and livestock
breeding because dominance has been suggested as one of the genetic
mechanisms explaining heterosis (Visscher et al. 2000; Xiao et al. 1995;
Davenport 1908; Bruce 1910; Shull 1908; Charlesworth and Willis
2009; Shen et al. 2014). Only recently, however, with the development
of molecular genetics, attempts have been made to quantify and exploit
the proportion of genetic variance due to dominance effects in plants
(Muñoz et al. 2014) and livestock (Toro and Varona 2010; Su et al.
2012; Da et al. 2014; Nishio and Satoh 2014; Vitezica et al. 2013; Zeng
et al. 2013; Sun et al. 2014). Regarding imprinting, hundreds of
imprinted genes (e.g., IGF2, DIO3, and NOEY2) have been identified
in mammals (http://geneimprint.com/site/genes-by-species); however,
the fraction of the total genetic variance due to imprinting effects has
not yet been investigated using genomic data.

Moving beyond additive effects, e.g., accounting for dominance and
imprinting effects in addition to additive effects, may not only improve
our understanding of the genetic architecture of complex traits, but also
improve the prediction of phenotypes (de losCampos et al. 2010; Lee et al.
2008). This could be beneficial, for example, in predicting disease risk in
humans (Wray et al. 2007) or for establishingmating strategies in plant or
animal breeding aimed atmaximizing the phenotypic performance of the
(crossbred) offspring (Muñoz et al. 2014; Toro and Varona 2010).

The objective of this study was to estimate the contribution of
additive, dominance, and imprinting effects to the total genetic variation
with an SNP regression approach. The method was validated in sim-
ulated data and applied to three traits in three purebred pig populations.

MATERIALS AND METHODS

Genomic data
A total of 2013 Landrace, 2402 Large White, and 1384 Pietrain animals
were genotypedwith the IlluminaPorcine SNP60Beadchip (Ramos et al.
2009). SNPs with call rate,0.95, minor allele frequency,0.05, strong
deviation from Hardy-Weinberg equilibrium (x2 . 600), GenCall ,
0.15, unmapped SNPs, and SNPs located on sex chromosomes, accord-
ing to the Sscrofa10.2 assembly of the reference genome (Groenen et al.
2012), were excluded from the data set. After quality control, 34,912
SNPs for Landrace, 36,578 SNPs for Large White, and 38,116 SNPs for
Pietrain of the initial 64,232 SNPs were kept for phasing procedures. All
animals had a frequency of missing genotypes ,0.05; therefore, no
animals were excluded due to high frequency of missing genotypes.

Phasing and imputation of missing genotypes were performed
within each line via AlphaImpute (Hickey et al. 2011), which combines
genomic and pedigree information to determine the parental origin of
alleles. The pedigree depth used in this analysis was up to five gener-
ations (between genotyped animals).

For each SNP of each individual, AlphaImpute (Hickey et al. 2011)
generates two probabilities, with P1 being the probability that a specific
allele was received from its father, say an allele G of a G/C SNP, and P2
the probability that the same allele was received from its mother. Con-
sidering a heterozygous animal (GC) where the G allele was inherited,
with certainty, from its father (and therefore a C allele from itsmother),
the probabilities would be P1= 1 and P2= 0. To obtain the regressors
that allow the estimation of additive (regA), dominance (regD), and
imprinting (regI) genetic variance, the following transformation of
these probabilities was applied: regA = [(P1 + P2) – 1], regD = (|P1 –
P2|), and regI = (P1 – P2). Thus, the genotypes (GG, GC, CG, CC) were
recoded as (21, 0, 0, 1), (0, 1, 1, 0) and (0,21, 1, 0) to evaluate additive,
dominance and imprinting variances, respectively.

To ensure accurate phasing, only animals that had both parents or
at least one parent and one sib genotyped were used in further steps. As
the result of these restrictions, 1538 Landrace, 1595 Large White, and
1272 Pietrain animals were available for the estimation of variance
components.

Simulation
To verify whether our data structure and statistical model allow disen-
tangling additive, dominance, and imprinting effects, we simulated for
the Landrace population a trait with additive, dominance, and imprint-
ing effects, with mean 0, total genetic variance equal to 0.30, and total
phenotypic variance equal to 1. Real genotypes of this population were
used in the simulation procedures. A total of 15 SNPs with minor allele
frequency between 0.45 and 0.50 were selected randomly to have an
effect on the trait [quantitative trait loci (QTL)]: five with only additive
effects, five with only dominance effects, and five with only imprinting
effects. These SNPs were located on different chromosomes that also
were selected randomly. Each QTL accounted for 2% of the total
phenotypic variance. Therefore, the additive, dominance, and imprint-
ing heritabilities were 10% each. The genetic variance (VG) of a single
QTL was defined as described by De Koning et al. (2002):

VG ¼ Va þ Vd þ Vi

Va ¼ 2pq
�
aþ dð p-qÞ�2

Vd ¼ ð2pqdÞ2
Vi ¼ 2pqi2

where Va, Vd, and Vi are, respectively, the additive, dominance, and
imprinting variances and a, d, and i are, respectively, the additive,
dominance, and imprinting effects of a given QTL with allele frequen-
cies p and q. Because each QTL was simulated to either have an
additive, dominance, or imprinting effect, a of each additive QTL,
d of each dominant QTL and i of each imprinted QTL could be

n Table 1 Descriptive statistics

Dataset
NT, units BF, mm DG, g

N m SD N m SD N m SD

Landrace
All 141,248 15.27 1.06 36,413 12.47 2.54 37,071 598.47 70.63
Genotyped 1538 15.62 1.04 1405 12.55 2.20 1394 628.27 62.93

Large White
All 156,065 15,08 1.05 41,192 12,38 2.49 41,740 632.30 71.78
Genotyped 1595 15.40 0.98 1453 12.20 2.37 1468 649.86 69.09

Pietrain
All 33,964 7.98 1.49 31,184 603.86 75.89
Genotyped 1272 7.82 1.28 1145 630.70 65.64

Number of animals with phenotypic information (N), mean (m), and standard deviation (SD) of the traits number of teats (NT), backfat (BF), and lifetime daily gain from
birth to ~120 kg (DG).
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defined as: a ¼
ffiffiffiffiffiffi
0:02
2pq

q
, d ¼

ffiffiffiffiffiffi
0:02

p
2pq and i ¼

ffiffiffiffiffiffi
0:02
2pq

q
. The simulated phe-

notype of the jth animal then becomes:

phenotypej ¼
Xn¼15

s¼1

ðregAjsas þ regDjsds þ regIjsisÞ þ ej

where n is the number of QTL (SNPs) affecting the trait, e is a random
environmental component sampled from a random distribution with
variance equal to 0.70, and regA, regD, and regI are defined as de-
scribed in the section Genomic data. We generated 10 replicates of
this simulation, and SNPs that met the selection criteria were allowed
to have an effect in only one of the replicates.

Phenotypes
The phenotypic data consisted of the traits number of teats, backfat, and
lifetime daily gain, which corresponds to the average daily weight
increase from birth to ~120 kg. The response variables used to estimate
the genetic variances were phenotypes preadjusted for fixed effects
instead of the original observations. The preadjustment was based
on a larger data set that included all contemporaneous animals of the
genotyped animals, rather than just using the group of genotyped
animals. Using this larger data set allowedus to accountmore accurately
for contemporary group effects. The fixed effects estimates used for the
preadjustment of the phenotypes were obtained by fitting a single trait
pedigree-based linear model using ASReml v3.0 (Gilmour et al. 2009).
Themodel for number of teats consisted of sex and herd-year-season as
fixed effects and an additive genetic effect and a residual as random
effects. The model for backfat consisted of sex, herd-year-week, and
weight as fixed effects and an additive genetic effect, common litter
effect, and a residual as random effects. For lifetime daily gain, the
model consisted of sex and herd-year-week as fixed effects and an
additive genetic effect, common litter effect and a residual as random
effects. For the Landrace population, the final data set consisted of
141,248 animals for number of teats, 36,413 animals for backfat, and
37,071 animals for lifetime daily gain. For the Large White population,
the final data set consisted of 156,065 animals for number of teats,
41,192 animals for backfat, and 41,740 animals for lifetime daily gain.
For the Pietrain population, the final data set consisted of 33,964 ani-
mals for backfat and 31,184 animals for lifetime daily gain. The trait
number of teats was not recorded in the Pietrain population. Descrip-
tive statistics of the phenotypes are shown in Table 1.

Statistical analyses
Parameters were estimated using models with random regression on
SNP genotypes. Single trait within-line analyses were performed with
three different models implemented in the program BayZ (http://www.
bayz.biz/), the same for both real and simulated data:

y ¼ 1mþ ðLbÞ þ Aaþ e ðMA modelÞ
y ¼ 1mþ ðLbÞ þ AaþDdþ e ðMAD modelÞ
y ¼ 1mþ ðLbÞ þ AaþDdþ Iiþ e ðMADI modelÞ

where y is a vector of preadjusted phenotypic observations; m is the
mean of the populations and 1 a vector of ones; L is the design matrix
for the common litter effects (only used for backfat and lifetime daily
gain); b is a unknown vector of common litter effects; A, D, and I are
designmatrices with regressors for additive, dominance, and imprint-
ing effects respectively; a, d, and i are unknown vectors of additive,
dominance, and imprinting effects, respectively;, and e is a vector of
residuals. The entries of the design matricesA,D, and I are regressors
calculated from the observed phased probabilities of the marker
genotypes (regA, regD, and regI), as described in the genomic data
section above.

Assumed distributions were: a ~ N(0,Is2
a), d ~ N(0,Is2

d), i ~ N(0,
Is2

i ), b ~ N(0,Is2
L), and e ~ N(0,I s2

e ), with s2
a, s

2
d , s

2
i being the per-

SNP variance for additive, dominance, and imprinting effects, and s2
L

and s2
e the common litter and residual variance, respectively. The

model was fittedwith a Bayesian approach in the Bayz software package
(http://www.bayz.biz/) as described by Krag et al. (2013) to estimate
variance components and heritabilities in SNP-basedmodels. The prior
distributions for unknown variance parameters were set as unbounded
uniform, which makes the Bayesian posterior distribution mathemat-
ically identical to the likelihood. The generated Monte Carlo chain
starts with all regression parameters and other location parameters at
zero, and all variance parameters at 1, and blocked Gibbs samplers are
used to facilitate mixing. Each model was run as a single chain with a
length of 500,000 (real data) and 100,000 (simulated data), which was
sampled each 100 iterations. The first 50,000 iterations of each run were
regarded as burn-in period.

Because the evaluated models were SNP-based models, they do not
readily provide estimates of total explained variance. One way to obtain
the total explained variance from a model term like Aa is to write
var(Aa) =AA9s2

a and compute or evaluate the expected average diagonal
of AA9 to provide the constant to scale the per-SNP explained variance
to total explained variance. In this way total variance in the models can
be expressed as

�ðs2
LÞ þ s2

Aa + s2
e

�
for MA,

�ðs2
LÞ þ s2

Aa + s2
Dd + s2

e

�
for MAD and

�ðs2
LÞ þ s2

Aa + s2
Dd + s2

Ii + s2
e

�
for MADI, with s2

Aa=
AA’s2

a (total additive variance), s2
Dd= DD’s2

d (total dominance
variance), and s2

Ii= II’s2
i (total imprinting variance). Only for backfat

and lifetime daily gain, s2
L was included. Alternatively, the variance

contributed by a random effect could be estimated by evaluating the
sample variance of the entries of the vectors Aa, Dd, and Ii at each
iteration of the Gibbs sampler (Sorensen et al. 2001). This has the advan-
tage that the posterior standard deviations also can be obtained for total
explained variance, and explained variances can be split easily by chro-
mosome. The latter is done by computing var(Aa) per Markov chain

n Table 2 Estimated variance components and proportion of phenotypic variance (s2
P) explained by additive, dominance, and imprinting

effects for the simulated data

Model
Variance Components Variance Explained

s2
e s2

Aa s2
Dd s2

Ii s2
Aa/s

2
P

� s2
Dd/s

2
P s2

Ii/s
2
P

MA 0.869 6 0.035 0.115 6 0.036 0.116 6 0.035
MAD 0.789 6 0.038 0.091 6 0.035 0.110 6 0.048 0.092 6 0.035 0.111 6 0.047
MADI 0.698 6 0.041 0.097 6 0.033 0.097 6 0.057 0.102 6 0.028 0.098 6 0.027 0.097 6 0.061 0.103 6 0.032

Simulated 0.700 0.100 0.100 0.100 0.100 0.100 0.100

s2
e, residual variance; s

2
Aa, total additive variance; s2

Dd, total dominance variance; s2
Ii, total imprinting variance. s2

Aa/s
2
P
�, narrow-sense heritability; MA, model including

only additive effects; MAD, model including additive and dominance effects; MADI, model including additive, dominance, and imprinting effects.
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Monte Carlo cycle only for the part of the covariates in A and matching
regression parameters in a that belong to a particular chromosome. The
narrow-sense heritability was defined as s2

Aa/s
2
P, and the proportion of

phenotypic variance explained by dominance and imprinting effects was
defined as s2

Dd/s
2
P and s2

Ii/s
2
P, respectively.

The portioning of the genetic variance as described previously has
been defined as the “genotypic model” (Vitezica et al. 2013), which
implies that s2

Aa, s
2
Dd, and s2

Ii are the variance of the genotypic addi-
tive, dominance, and imprinting values, respectively. The genotypic
model and the breeding (or classical) model are statistically equivalent
(i.e., they lead to the same probability model). However, the parameters
obtained with these models have different interpretations. In the geno-
typic model, the additive variance is the variance of additive effects
(average difference between homozygotes), whereas in the breeding
model, additive effects are functions of allele substitution effects. To
make the variance estimates from the genotypic model comparable
with the estimates of the breeding model, a transformation of these
results was proposed by Vitezica et al. (2013). We have applied the
transformation proposed by Vitezica et al. (2013) to the estimates from
the MAD model and included the results in the supporting material
(supporting information, File S1).

Finally, we evaluated whether the proportion of variance explained
by a single chromosome was related to its physical length. The length
of a given chromosome was defined as the distance between the first
and the last SNP on this chromosome according to the Sscrofa 10.2
assembly (Groenen et al. 2012). The relationship between variance
explained and physical length of the chromosome was expressed as
the coefficient of determination (r2) from the regression of variance
explained on physical length. Variance explained by each chromo-
some individually was obtained based on the effects of SNPs on that
chromosome. SNP effects were from the analyses where all SNPs
from all chromosomes were evaluated simultaneously. Variance per
chromosome was estimated for all three models evaluated (MA, MAD,
and MADI).

Model comparison
Modelswere compared using theDeviance InformationCriterion (DIC,
Spiegelhalter et al. 2002). DIC is widely used for Bayesian model com-
parison and is analogous to the Akaike Information Criterion (Akaike
1974). DIC combines a measure of model fit (the expected deviance)
with a measure of model complexity (the effective number of param-
eters) over all iterations after burn-in. The model with lowest DIC is
chosen as the best fitting model (Spiegelhalter et al. 2002).

Data availability
Relevant data is available as supplemental information.

RESULTS

Simulation
Averagenarrow-sense heritability over the 10 replicates of the simulated
trait was estimated at 0.116, 0.092, and 0.098 using the MA, MAD, and
MADI models, respectively (Table 2). The average proportion of phe-
notypic variance explained by dominance effects was 0.111 using the
MAD model and 0.097 using the MADI model. Using the MADI
model, the average proportion of phenotypic variance explained by
imprinting effects was 0.103.

The pairwise sampling correlation between additive, dominance,
imprinting and error variance are shown in Table S1. The average
correlation between the different variances of the 10 replicates of the
simulated trait ranged from20.586 to 0.018. The strongest correlations
(20.586 to 20.186) were observed between the residual variance and
the variance of the three components of genetic variance evaluated. The
lowest correlations (approximately zero) were observed between im-
printing and additive variance and between imprinting and dominance
variance.

Real data
For the trait number of teats, the narrow-sense heritability estimated
using MA was 0.319 in the Landrace and 0.343 in the Large White
population (Table 3 and Table 4). When both MAD and MADI were
used, the narrow-sense heritability was approximately the same in
both populations (~0.306). The estimates of the proportion of pheno-
typic variance explained by dominance effects, however, showed a large
difference between populations. The proportion of phenotypic variance
explained by dominance effects for number of teats in the Landrace
population (0.039) was a little bit more than one third that of the Large
White population (~0.100). The proportion of phenotypic variance
explained by imprinting effects for number of teats was low in both
populations, 0.015 in the Landrace and 0.010 in the Large White.

For the trait backfat, the narrow-sense heritability estimated using
MA was 0.520, 0.390, and 0.419 in the Landrace, Large White, and
Pietrain populations, respectively. Additive heritabilities decreased to
0.469, 0.353, and 0.394 in the Landrace, Large White, and Pietrain
populations, respectively, when the MA model was replaced by MADI
(Table 3, Table 4, and Table 5). MAD andMADI resulted in almost the
same estimates of narrow-sense heritability, and of the proportion of

n Table 3 Variance components and proportion of phenotypic variance (s2
P) explained by additive, dominance, and imprinting effects for

the real data in the Landrace population

Trait Model
Variance Components Variance Explained

s2
e s2

L s2
Aa s2

Dd s2
Ii s2

Aa/s
2
P

� s2
Dd/s

2
P s2

Ii/s
2
P

NT MA 0.739 6 0.042 0.346 6 0.041 0.319 6 0.035
MAD 0.714 6 0.046 0.334 6 0.045 0.042 6 0.034 0.306 6 0.037 0.039 6 0.031
MADI 0.700 6 0.046 0.334 6 0.043 0.042 6 0.036 0.016 6 0.014 0.305 6 0.036 0.039 6 0.033 0.015 6 0.012

BF MA 1.232 6 0.120 0.431 6 0.115 1.803 6 0.150 0.520 6 0.035
MAD 1.082 6 0.138 0.362 6 0.117 1.604 6 0.199 0.345 6 0.172 0.472 6 0.047 0.102 6 0.052
MADI 1.031 6 0.135 0.369 6 0.119 1.596 6 0.195 0.345 6 0.166 0.057 6 0.038 0.469 6 0.046 0.102 6 0.050 0.017 6 0.011

DG MA 1,435 6 111 380 6 106 662 6 113 0.267 6 0.043
MAD 1,213 6 141 314 6 105 525 6 122 446 6 185 0.210 6 0.047 0.178 6 0.071
MADI 1,185 6 138 319 6 104 554 6 124 395 6 179 47 6 34 0.221 6 0.048 0.158 6 0.070 0.019 6 0.014

s2
e, residual variance; s

2
L , common litter variance; s2

Aa, total additive variance; s2
Dd, total dominance variance; s2

Ii, total imprinting variance; s2
Aa/s

2
P
�, narrow-sense

heritability; NT, number of teats; BF, backfat; DG, average daily gain from birth to ~120 kg; MA, model including only additive effects; MAD, model including additive
and dominance effects; MADI, model including additive, dominance, and imprinting effects.
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phenotypic variance explained by dominance effects for backfat in all
populations and narrow-sense heritability was always lower than the
estimate based on MA. Similar to number of teats, the proportion of
phenotypic variance explained by dominance effects for backfat was
variable between populations with estimates of 0.102 in the Landrace,
0.146 in the Large White, and 0.064 in the Pietrain population. The
proportion of phenotypic variance explained by imprinting effects for
backfat was 0.017 in the Landrace, 0.029 in the Large White, and 0.020
in the Pietrain population.

Finally, for the trait lifetime daily gain, the narrow-sense herita-
bility estimatedusingMAwas 0.267 in the Landrace, 0.241 in the Large
White, and 0.314 in the Pietrain population (Table 3, Table 4, and
Table 5). Again, the narrow-sense heritability and the proportion of
phenotypic variance explained by dominance effects were similar
with the use of either MAD or MADI in all populations, and additive
estimates were smaller than those from the MA model. The propor-
tion of phenotypic variance explained by dominance effects estimated
with MADI were greater for lifetime daily gain than for the other two
traits in the Landrace (0.158) and Pietrain populations (0.199) and
similar to dominance for backfat in the Large White population
(0.130). The proportion of phenotypic variance explained by im-
printing effects of lifetime daily gain was again low, as for the other
2 traits (,0.020 in all populations).

Model comparison
Based on the estimated DIC (Table 6), MAD and MADI presented a
better fit to the data than MA for all traits in all populations, except for
number of teats in the Landrace population (which was the trait with
the lowest proportion of dominance variance in this study). TheMADI
model was slightly superior to MAD for backfat in the Landrace pop-
ulation, for all traits in the Large White population, and for lifetime
daily gain in the Pietrain population.

Variance explained by individual chromosomes
After estimation of SNP effects using all SNPs simultaneously, we
estimated the additive, dominance, and imprinting variance by using
the complete set of SNPs and also the variances per individual chro-
mosomes. Estimates obtained from genome-wide SNPs were close to
results from adding up the contributions of individual chromosomes.
The largest difference was observed for number of teats in the Landrace
population. The additive variance estimated using all SNPs was 0.33
for number of teats, while adding up the contributions of individual

chromosomes resulted in an estimate of 0.39 for number of teats. The
variance explained per chromosome for all traits in all populations
using MADI is shown in File S2. We report results obtained using
MADI. Very similar results were observed with all three models (MA,
MAD, and MADI).

For all traits, the proportion of additive, dominance, and imprint-
ing variance explained per chromosome showed a strong linear rela-
tionship with chromosome length (r2 ranging from 0.84 to 0.94).

DISCUSSION

Simulation
Analysis of simulateddatawith theMADImodel resulted in estimates of
additive, dominance, and imprinting variance thatwere very close to the
simulated values (Table 2). However, the additive variance was over-
estimated when using the MA model and the dominance variance was
overestimated with the MAD model. This is a sensible result as all
models, except the MADI model, are under-parameterized. A model
that allows a proper dissection of the variances should yield variance
components that are uncorrelated (Hill 2010). To test this we calculated
the pairwise sampling correlations between the error, additive, domi-
nance, and imprinting variance. The pairwise sampling correlations
were moderate and mostly negative (Table S1). On the basis of these
simulation results, we therefore concluded that data structure and the
methodology will allow us to disentangle additive, dominance and
imprinting variance, although this simulated scenario may not be rep-
resentative of the genetic architecture of a real complex trait.

Real data
In all populations, we observed a reduction in the narrow-sense heri-
tability of all evaluated traits when dominance effects were accounted
for (e.g., using MAD instead of MA). The smallest decrease in narrow-
sense heritability was observed for number of teats (4.2%) and the
highest for lifetime daily gain (21.3%), both in the Landrace population
(Table 3). The broad-sense heritability (sum of the heritabilities due to
all genetic effects used in the model) of all evaluated traits increased in
all three populations when dominance and imprinting effects were
added to the model. The broad-sense heritability of lifetime daily gain
was.30% greater when using MADI compared to using MA (Table 3,
Table 4, and Table 5). A reduction of additive genetic variance and an
increase in the broad-sense heritability was previously reported (Su
et al. 2012) when nonadditive genetic effects were included in themodel

n Table 4 Variance components and proportion of phenotypic variance (s2
P) explained by additive, dominance, and imprinting effects of

the real data in the Large White population

Trait Model
Variance Components Variance Explained

s2
e s2

L s2
Aa s2

Dd s2
Ii s2

Aa/s
2
P

� s2
Dd/s

2
P s2

Ii/s
2
P

NT MA 0.637 6 0.032 0.333 6 0.032 0.343 6 0.029
MAD 0.578 6 0.041 0.299 6 0.037 0.094 6 0.043 0.307 6 0.034 0.097 6 0.044
MADI 0.563 6 0.040 0.300 6 0.038 0.103 6 0.043 0.010 6 0.009 0.307 6 0.035 0.105 6 0.043 0.010 6 0.009

BF MA 1.086 6 0.090 0.371 6 0.084 0.931 6 0.093 0.390 6 0.034
MAD 0.927 6 0.105 0.307 6 0.085 0.848 6 0.105 0.320 6 0.125 0.353 6 0.039 0.133 6 0.051
MADI 0.834 6 0.115 0.302 6 0.084 0.852 6 0.104 0.353 6 0.134 0.071 6 0.041 0.353 6 0.039 0.146 6 0.055 0.029 6 0.017

DG MA 1,867 6 129 282 6 114 682 6 100 0.241 6 0.033
MAD 1,715 6 144 234 6 108 590 6 120 300 6 157 0.208 6 0.040 0.106 6 0.055
MADI 1,659 6 149 230 6 108 557 6 129 370 6 178 34 6 29 0.195 6 0.043 0.130 6 0.062 0.012 6 0.010

s2
e, residual variance; s

2
L , common litter variance; s2

Aa, total additive variance; s2
Dd, total dominance variance; s2

Ii, total imprinting variance; s2
Aa/s

2
P
�, narrow-sense

heritability; NT, number of teats; BF, backfat; DG, average daily gain from birth to �120 kg; MA, model including only additive effects; MAD, model including additive
and dominance effects; MADI, model including additive, dominance, and imprinting effects.
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to evaluate daily gain in pigs. For height in trees, the narrow-sense
heritability was found to reduce by 26% with the inclusion of non-
additive genetic effects in the model (Muñoz et al. 2014). According
to Muñoz et al. (2014) and Pante et al. (2002), such a reduction in the
additive genetic variance should be expected when dominance effects
are present, since dominance effects also contribute to the additive
genetic variance in the MA model. However, Vitezica et al. (2013)
reported that such a reduction in the additive variance should be seen
as an underestimation, as a consequence of overestimating the domi-
nance variance. These authors described that when dominance is fitted
in genotypic models (such as the one applied in the current study and
by Su et al. (2012) and Muñoz et al. (2014), the part of the dominance
effect that contributes to the allele substitution effect is shifted to the
dominance variance. Because of this shift, the estimates from genotypic
models are not directly comparable to pedigree-based estimates. There-
fore, with methodology applied in the current study we could interpret
the decrease in the narrow-sense heritability from the MAmodel com-
pared to the MAD model as the contribution of dominance effects to
the additive genetic variance. If the aim is to estimate breeding values
and dominance deviations (i.e., the traditional breeding model), the
parameterization proposed by Vitezica et al. (2013) should be applied.

The substantial greater values for the broad-sense heritability com-
pared to the narrow-sense heritability indicate that dominance effects
make an important contribution to the genetic variance of the evaluated
traits and populations in this study, especially to the trait lifetime daily
gain. For lifetime daily gain in the Pietrain population usingMADI, we
observed the greatest proportion of phenotypic variance explained by
dominance effects (0.198), with a ratio between dominance and additive
variance of 0.82. In other lines, the ratios were also high. Using the same
model,we foundthat the ratiobetweendominanceandadditive variance
was 0.71 in the Landrace and 0.66 in the Large White population.
Moreover, our results also show that additive variance accounts for the
largest fraction of the genetic variance. This is in agreement with a
previous study that described that additive variance is expected to
account for .50% (often about 100%) of the total genetic variance
(Hill et al. 2008). However, the estimates of additive variance of the
traits in the populations here evaluated might still become smaller if
epistatic interactions exist and would be included as a separate variance
component. Although the role of epistatic interactions in the genetic
architecture of complex traits has been investigated in different species
(Muñoz et al. 2014; Su et al. 2012; Le Rouzic et al. 2008), we did not
attempt to estimate epistatic variance because the power to identify
these effects in segregating populations was expected to be low
(Melchinger et al. 2007). To be able to detect epistatic interactions in
outbred populations, loci with these effects should have a large effect
and segregate with an intermediate frequency (Hill et al. 2008).

Individual loci that show the effect of imprintinghavebeen identified
for pigs, such as IGF2 (insulin-like growth factor 2 gene, Jeon et al. 1999;
Nezer et al. 1999). The contribution of imprinting to the total genetic
variance is, however, still unknown. No reports were found in literature
that attempt to quantify total imprinting variance using genomic data.
In this study, the trait with the greatest proportion of phenotypic var-
iance explained by imprinting effects was backfat (0.017 in the Land-
race, 0.029 in the Large White, and 0.020 in the Pietrain population),
although the estimates were still quite low, in comparison with the
amount of narrow-sense heritability and the proportion of phenotypic
variance explained by dominance effects. In mice, a gene expression
QTL mapping study for body composition traits showed that imprint-
ing QTL accounted for only a limited amount of the phenotypic var-
iance (,2.50%) for most traits (Cheng et al. 2013). In a pedigree-based
study in pigs, it was shown that 5–7% of the phenotypic variance of
backfat and 1–4% of growth rate was explained by paternal imprinting
(De Vries et al. 1994). That study also showed maternal imprinting to
account for 2–5% and 3–4% of the phenotypic variance of backfat and
growth rate, respectively. Although our genomic estimates are lower
than the pedigree-based estimates described by De Vries et al. (1994),
the two results agree that imprinting effects are more important for
backfat than for growth traits. The amount of phenotypic variance of
number of teats due to imprinting effects has not yet been described in
the literature. However, two imprinted QTL have been reported on
chromosomes 2 and 12 (Hirooka et al. 2001). These twoQTL explained
1.3 and 2.2%of the phenotypic variance of number of teats, while in our
study the proportion of phenotypic variance explained by imprinting
effects of number of teats in both populations was #1.5%. The larger
imprinting variances found by Hirooka et al. (2001) may in part be
explained by the design, an experimental F2 population, analyzed in
their QTL study.

Due to the low proportion of phenotypic variance explained by
imprinting, the relevance of estimating imprinting effects may be low
when the aim is to predict the phenotypes number of teats, backfat, and
lifetime daily gain in the evaluated populations. However, this study
shows that, when present, dominance and imprinting variance can be
detected and estimated with a SNP regression model. Using pedigree-
based analysis this would typically not be feasible, for different reasons.
First, the estimation of dominance variance using pedigree data requires
data from large full-sib families (Vitezica et al. 2013), which is often not
available in humans and livestock species. Second, pedigree-based
methods have difficulties in disentangling imprinting from maternal
and permanent environmental effects (Wolf and Cheverud 2012; Tier
and Meyer 2004). Third, pedigree-based analysis often overestimates
additive variance (Vinkhuyzen et al. 2013) and underestimates domi-
nance variance (Muñoz et al. 2014). Although the use of genome-wide

n Table 5 Variance components and proportion of phenotypic variance (s2
P) explained by additive, dominance, and imprinting effects for

the real data in the Pietrain population

Trait Model
Variance Components Variance Explained

s2
e s2

L s2
Aa s2

Dd s2
Ii s2

Aa/s
2
P

� s2
Dd/s

2
P s2

Ii/s
2
P

BF MA 0.610 6 0.050 0.096 6 0.041 0.510 6 0.054 0.419 6 0.038
MAD 0.570 6 0.056 0.082 6 0.040 0.476 6 0.064 0.085 6 0.060 0.392 6 0.046 0.070 6 0.050
MADI 0.551 6 0.060 0.084 6 0.041 0.481 6 0.062 0.078 6 0.058 0.024 6 0.019 0.394 6 0.044 0.064 6 0.047 0.020 6 0.016

DG MA 1,804 6 143 223 6 123 931 6 130 0.314 6 0.040
MAD 1,488 6 163 148 6 102 735 6 150 584 6 195 0.248 6 0.047 0.198 6 0.065
MADI 1,468 6 172 154 6 101 718 6 169 591 6 239 32 6 31 0.242 6 0.054 0.199 6 0.080 0.011 6 0.010

s2
e, residual variance; s2

L , common litter variance; s2
Aa, total additive variance; s2

Dd, total dominance variance; s2
Ii, total imprinting variance; s2

Aa/s
2
P
�, narrow-sense

heritability; BF, backfat; DG, average daily gain from birth to ~120 kg; MA, model including only additive effects; MAD, model including additive and dominance
effects; MADI, model including additive, dominance, and imprinting effects.
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markers, compared to pedigree data, has been described as a more
precise alternative to partition the genetic variance (Vinkhuyzen
et al. 2013; Muñoz et al. 2014; Lee et al. 2008), it also has its pitfalls.
If the causal variants are not in linkage disequilibrium with the SNPs
used for the estimation of the variance components, their contribu-
tion to the variance will not be captured. The proportion of the vari-
ance explained by the SNPs is therefore likely to be underestimated
(Vinkhuyzen et al. 2013). This phenomenon has been described as “the
case of the missing heritability” (Maher 2008). Our genomic estimates
of the additive genetic variance (Table 3, Table 4, and Table 5) were on
average 28% lower than pedigree-based estimates that were obtained
using the same data accounting only for additive effects. The pedigree-
based heritability of number of teats was 0.340 in the Landrace and

0.420 in the Large White population; the pedigree-based heritability of
backfat was 0.668 in the Landrace, 0.490 in the Large White and 0.513
in the Pietrain population; and the pedigree-based heritability of life-
time daily gain was 0.401 in the Landrace, 0.300 in the LargeWhite and
0.474 in the Pietrain population (data not shown). Although these dif-
ferences between the genomic and pedigree estimates are considerable,
it is difficult to say if they are more likely due to an overestimation with
pedigree or due to an underestimation with genomics. Nevertheless,
using genomic data to estimate additive, dominance, and imprinting
variances allows us to not only better understand the genetic architec-
ture of the evaluated traits, but it might also improve the prediction of
phenotypes compared to pedigree-based methods.

In recent studies, the inclusion of dominance effects in genomic
evaluations of livestock has been reported to increase the accuracy and
decrease the bias of estimated breeding values (Toro and Varona 2010;
Su et al. 2012). In addition, using dominance in genomic evaluations is
expected to result in greater cumulative response to selection of pure-
bred animals for crossbred performance than additive models, espe-
cially in the presence of overdominance and when retraining is not
performed at each generation (Zeng et al. 2013). Even when purely
additive effects were evaluated, the inclusion of dominance in the ge-
nomic evaluations did not decrease the accuracy of prediction (Toro
and Varona 2010; Su et al. 2012; Zeng et al. 2013). In plants, simulta-
neously accounting for additive and non-additive effects was more
stable and yielded higher predictive ability of the mean phenotype than
models that only account for additive effects (Muñoz et al. 2014). Also
in mice, the prediction of phenotypes of complex traits using a model
with additive and dominance effects has proven to be feasible and
accurate (Lee et al. 2008). Therefore, combining additive, dominance,

n Table 6 Deviance information criterion

Population Trait MA MAD MADI

Landrace NT 1418 1431 1458
BF 2199 2133 2093
DG 11,433 11,325 11,333

Large White NT 1225 1206 1180
BF 2174 2051 1992
DG 12,894 12,861 12,838

Pietrain BF 1089 1051 1053
DG 10,059 9954 9952

Numbers given in bold indicate the lowest deviance information criterion (best
fit) obtained for each trait in each population. MA, model including only additive
effects; MAD, model including additive and dominance effects; MADI, model
including additive, dominance, and imprinting effects; NT, number of teats; BF,
backfat; DG, average daily gain from birth to ~120 kg.

Figure 1 Proportion of additive, dominance,
and imprinting variance explained per individual
chromosome against physical length of the chro-
mosome. (A) Number of teats in the Large White
population; (B) backfat in the Landrace population;
(C) lifetime daily gain in the Pietrain population.
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and imprinting under a genomic prediction scope opens new perspec-
tives for the optimization of animal and plant breeding programs aim-
ing for an improved prediction of crossbred performance, and also for
identification of individuals that are at a risk for a given disease.

Variance explained per individual chromosome
The strong linear relationship between chromosome length and pro-
portion of variance explained per chromosome in our study was in line
with the strong relationship between additive variance explained per
chromosome and chromosome length previously described in humans
(Yang et al. 2011) and in chickens (Abdollahi‐Arpanahi et al. 2014).
Here we also showed that the same applies for dominance and imprint-
ing variance. This indicates that the additive, dominance, and imprint-
ing variance of number of teats, backfat and lifetime daily gain in these
populations is explained by many genes located throughout the ge-
nome, rather than by a few mutations with large effects.

The relationship between variance explained and chromosome
length for number of teats in the LargeWhite population, backfat in the
Landrace population, and lifetime daily gain in the Pietrain population
usingMADI is illustrated in Figure 1.Althoughour results show that the
variance of all three genetic effects have a strong relationship with
chromosome length, the r2 for the additive variance was lower than
the r2 for dominance and imprinting variance, especially in the Land-
race and Large White populations. In addition, in the Pietrain popula-
tion, the r2 for dominance and imprinting variance (Figure 1C) was
lower than the r2 observed in the Landrace and Large White popula-
tions. This was observed because the proportion of variance explained
by chromosome 8 in the Pietrain is clearly lower than in the Landrace
and Large White populations. Having a closer look at the data of chro-
mosome 8, we observed that the number of SNPs on this chromosome in
the Pietrain population was on average 15% lower than in the Landrace
and the Large White populations (n = 1632 in Pietrain, n = 1871 in
Landrace, n = 1985 in Large White). Besides chromosome 8, the num-
ber of SNPs per chromosome was similar in all three populations. This
difference in number of SNPs on chromosome 8 is observed because
in the Pietrain population, compared to the Landrace and the Large
White populations, more SNPs presented lowminor allele frequency or
were completely fixed and therefore were excluded from the estimation
of the variance components. This large number of SNPswith lowminor
allele frequency (or completely fixed) could be due to an ascertainment
bias due to the selection of SNPs for the SNP chip used in this study.
However, this could be also an indication that genes that influence traits
included in the selection index of Pietrain are located on this chromo-
some. The breeding objectives in Pietrain (sire line) are distinct from
those in the Landrace and Large White (dam lines) which are more
similar. Given this difference, some alleles could havemoved to fixation
in Pietrain but not in Landrace and Large White.

The proportion of additive variance explained by chromosome 7 for
number of teats in the LargeWhite population is relatively high (Figure
1A). This chromosome explained 21% more additive variance than
chromosome 13, which is 62% longer than chromosome 7. This large
proportion of explained variance is in agreement with the presence of a
QTL for number of teats on this chromosome. In a previous study on a
subset of the current Large White population, it was shown that on
chromosome 7 a QTL is located in the region of the VRTN gene,
explaining 2.5% of genetic variance (Duijvesteijn et al. 2014). In the
current study, we showed that chromosome 7 accounted for 7.75% of
the additive variance (5.64% of the total genetic variance using MADI).

Dominance effects account for a large proportion of the total genetic
variance (up to 44%) for number of teats, backfat and lifetime daily gain

in the pig populations evaluated. Although the contribution of imprint-
ing effects to the total phenotypic variance of the evaluated traits was
relatively small (1–3%), the SNP regression method allowed estimation
of the additive, dominance and imprinting effects and resulting vari-
ances. Our results indicate a strong relationship between additive var-
iance explained per chromosome and chromosome length, which has
been previously described for other traits in other species. In addition,
we also show that a similar linear relationship exists for dominance and
imprinting variance. These novel results improve our understanding of
the genetic architecture of the evaluated traits. The model can now be
applied to other traits and species. Our results also open new perspec-
tives for the inclusion of dominance and imprinting effects in predic-
tion of phenotypes, especially regarding mate allocation techniques in
animal and plant breeding, and for assessment of the risk of disease in
humans.
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