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Abstract

T-cell prolymphocytic leukemia (T-PLL) is a rare blood cancer with poor prognosis. Overex-

pression of the proto-oncogene TCL1A and missense mutations of the tumor suppressor

ATM are putative main drivers of T-PLL development, but so far only little is known about the

existence of T-PLL gene expression subtypes. We performed an in-depth computational

reanalysis of 68 gene expression profiles of one of the largest currently existing T-PLL patient

cohorts. Hierarchical clustering combined with bootstrapping revealed three robust T-PLL

gene expression subgroups. Additional comparative analyses revealed similarities and differ-

ences of these subgroups at the level of individual genes, signaling and metabolic pathways,

and associated gene regulatory networks. Differences were mainly reflected at the transcrip-

tomic level, whereas gene copy number profiles of the three subgroups were much more sim-

ilar to each other, except for few characteristic differences like duplications of parts of the

chromosomes 7, 8, 14, and 22. At the network level, most of the 41 predicted potential major

regulators showed subgroup-specific expression levels that differed at least in comparison to

one other subgroup. Functional annotations suggest that these regulators contribute to differ-

ences between the subgroups by altering processes like immune responses, angiogenesis,

cellular respiration, cell proliferation, apoptosis, or migration. Most of these regulators are

known from other cancers and several of them have been reported in relation to leukemia

(e.g. AHSP, CXCL8, CXCR2, ELANE, FFAR2, G0S2, GIMAP2, IL1RN, LCN2, MBTD1,

PPP1R15A). The existence of the three revealed T-PLL subgroups was further validated by

a classification of T-PLL patients from two other smaller cohorts. Overall, our study contrib-

utes to an improved stratification of T-PLL and the observed subgroup-specific molecular

characteristics could help to develop urgently needed targeted treatment strategies.
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Introduction

T-cell prolymphocytic leukemia (T-PLL) is a rare but highly malignant mature T-cell leukemia

with aggressive clinical course and high mortality rates [1–5]. T-PLL was first described by [6]

almost 50 years ago. T-PLL represents less than 2% of all mature lymphocytic leukemias [7],

but it is still the most frequent mature T-cell leukemia in Western countries with an incidence

of approximately two cases per one million people per year [8]. T-PLL mainly affects elderly

people with a median age of 65 years at diagnosis [4, 7]. The median overall survival of T-PLL

patients from diagnosis is less than three years [3, 9]. The widely considered first line monoclo-

nal antibody therapy with alemtuzumab, which is effective in more than 80% of T-PLL

patients, is typically followed by a relapse of nearly all patients at a median time of one year [3].

Due to the increased age of T-PLL patients, only about 30–50% of patients are eligible for an

allogeneic hematopoietic stem cell transplantation, which represents the only curative option

that currently exists [3]. Therefore, strong efforts are necessary to identify novel compounds to

improve patient outcomes [3, 9–13].

Nowadays, T-PLL is diagnosed based on uniform diagnosis criteria that consider the histo-

logical presence of clonal prolymphocytic T-cells, the presence of complex chromosomal aber-

rations (e.g. inversions or translocations of chromosome 14), and a typical clinical

representation to distinguish T-PLL from other T-cell leukemias [14, 15]. T-PLL patients do

often present with exponentially rising lymphocyte counts in peripheral blood and bone mar-

row infiltration already at diagnosis, reflecting the uncontrolled proliferation of mature pro-

lymphocytic tumor T-cells [2, 4]. Due to the aggressiveness of the disease, clinical features

such as splenomegaly and hematological disorders (e.g. anemia, thrombocytopenia) are fre-

quently observed symptoms [4]. In some rare cases, patients can also show a primarily inactive

disease state, which eventually progresses into an active T-PLL over time [14, 16].

Increasing evidences suggest that chromosomal aberrations are a main driver of T-PLL

development. Especially the TCL1 gene family, the ATM gene, and DNA copy number alter-

ations affecting chromosome 8 have been identified as pathogenic or prognostic factors of

T-PLL [4, 5]. In most cases, complex T-PLL karyotypes show an overexpression of the proto-

oncogene TCL1A at chromosome 14q32.1 due to an inversion (inv(14)(q11;q32)) or a translo-

cation (t(14;14)(q11;q32)) [4, 5, 17]. This activation of TCL1A is frequently observed in combi-

nation with the inactivation of the tumor suppressor ATM at chromosome 11q22.3 by

deletions and/or missense mutations [17–19]. This combination of a TCL1A overexpression

with a damaging ATM aberration is thought to represent a potential key event that initiates

T-PLL development by contributing to impaired DNA damage repair and abrogated

p53-mediated cell death [17]. However, also T-PLL cases that lack the activation of TCL1A
have been reported [7, 17]. Thus, the landscape of molecular lesions that contribute to T-PLL

pathogenesis is complex and still not completely understood. Other recurrently observed

molecular alterations such as translocations affecting MTCP1 (a homolog of TCL1A) or haplo-

insufficiency of CDKN1B can also influence cell cycle, apoptosis and DNA repair and thereby

contribute to T-PLL development [4]. In addition, observed recurrent mutations of epigenetic

regulators (EZH2, TET2, BCOR), of the DNA damage regulator CHEK2, and of Jak-Stat signal-

ing genes (IL2RG, JAK1, JAK3, STAT5B) further increase the complexity of pathomechanisms

that can contribute to T-PLL development [20–22].

Despite these advances, a more detailed understanding of the complex molecular alterations

in T-PLL is required to further improve the stratification of patients. So far, only little is

known about the existence of T-PLL gene expression subtypes. A main reason for this is the

rarity of T-PLL that also restricts the number of available molecular profiles. Therefore, studies

that analyzed the transcriptional landscape of T-PLL have mainly focused on the comparison

PLOS ONE T-cell prolymphocytic leukemia gene expression subgroups

PLOS ONE | https://doi.org/10.1371/journal.pone.0274463 September 21, 2022 2 / 26

corresponding R codes and details to settings are

given in the materials and methods section. Utilized

R scripts and corresponding data sets are publicly

available from Zenodo at https://doi.org/10.5281/

zenodo.6586472.

Funding: This work was done within the Transcan-

2 ERA-NET consortium ‘ERANET-PLL’ funded by

the EU Horizon 2020 program (grant numbers:

01KT1906A/B). We also acknowledge support by

the German Research Foundation and the Open

Access Publication Funds of the SLUB/TU Dresden

to cover the article processing charge. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0274463
https://doi.org/10.5281/zenodo.6586472
https://doi.org/10.5281/zenodo.6586472


of T-PLL to normal controls. For example, differentially expressed genes involved in lympho-

magenesis, cell cycle regulation, apoptosis and DNA repair were identified by [23] comparing

five T-PLL samples to eight normal blood controls. Overall, TCL1A has shown the strongest

upregulation in different studies [10, 17, 24]. Also the proto-oncogene MYC, the miRNA-pro-

cessing regulator AGO2, and two other TCL1 family members, TCL1B and MTCP1, have

shown increased expression in comparison to normal controls [10, 17]. Further, a recent study

by [25] did not reveal clear T-PLL subgroups based on gene expression profiling, but

highlighted an important potential role of oncogenic miRNAs in T-PLL. Similarly, altered

miRNA regulatory networks in T-PLL and their impacts on DNA damage response and cell

survival have been revealed in [26].

With the recent availability of molecular data of a larger T-PLL patient cohort [17], a sys-

tematic computational search for robust T-PLL gene expression subgroups is now technically

feasible. The identification of such T-PLL subgroups can help to improve patient stratification

and may contribute to the development of urgently needed targeted treatment strategies for

individual T-PLL patients.

Here, we performed a computational analysis of the T-PLL data set from [17] with the goal

to identify and characterize potentially existing T-PLL subgroups. Three robust T-PLL gene

expression subgroups were identified by hierarchical clustering in combination with boot-

strapping. Similarities and differences between these subgroups were further determined at the

level of individual genes, signaling and metabolic pathways, gene copy number alterations,

and gene regulatory networks. The existence of these T-PLL subgroups was further supported

by analyses of patients from two other T-PLL cohorts. Our analysis contributes to a better

molecular stratification of T-PLL patients and may provide important information for the

development of targeted treatment strategies.

Results

Genome-wide gene expression analysis reveals three distinct T-PLL

subgroups

Hierarchical clustering of genome-wide gene expression profiles of 68 T-PLL samples and 10

healthy control samples was performed to characterize differences between T-PLL tumor T-

cells and normal CD3+ pan T-cells (Fig 1). This resulted in a grouping of all samples into four

major subclusters. One of these subcluster exclusively represented all normal control samples

(Fig 1, red subcluster, n = 10), whereas the other three subclusters represented the T-PLL sam-

ples according to their specific gene expression patterns. Interestingly, the first T-PLL sub-

group (Fig 1, SG1: blue subcluster, n = 18) was located in the same subtree like the normal

control group. The other two T-PLL subgroups SG2 and SG3 (Fig 1, SG2: green subcluster,

n = 11; SG3: orange subcluster, n = 39) were located in a separate subtree. Thus, SG2 and SG3

were more similar to each other in comparison to SG1.

The stability of the obtained subgroups was first analyzed by bootstrapping of genes [27],

which repeats the hierarchical clustering of all patients based on randomly chosen subsets of

genes (S1A Fig). The control group and the two T-PLL subgroups SG2 and SG3 showed good

moderate stabilities (AU values about 80%), whereas the T-PLL subgroup SG1 was less stable

(AU value 62%). Overall, the stability of the subclusters in the dendrogram further increased

towards the leaves representing the individual samples. In addition, also the stability of patient

assignments to the three T-PLL subgroups was analyzed. Even for random removals of ten

patients, the hierarchical clustering remained very stable with a median correctness of 95% for

the reconstruction of the initially observed subgroups (S2A Fig).
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Meta-information about treatment of patients before sample acquisition, sex, age, disease

stage, and immunophenotypic TCL1A surface marker expression of patients of the three

T-PLL subgroups have been mapped to the hierarchical clustering (Fig 1, annotation matrix

below column dendrogram, S1 Table). The majority of T-PLL samples was from untreated

Fig 1. Genome-wide clustering of T-PLL and normal control expression profiles. Heatmap representing z-score-

scaled expression measurements of 17,970 genes of each sample highlighting reduced (blue), unchanged (grey), and

increased (red) expression of each gene in a specific sample in comparison to all other samples. T-PLL and normal

control samples (columns) were clustered based on the similarity of their expression profiles and their corresponding

gene-specific expression values are visualized (rows). The column dendrogram above the heatmap represents the

clustering of individual samples defining four major subgroups: healthy control subcluster (red) and three T-PLL

subclusters (blue: SG1, green: SG2, orange: SG3) as shown in the annotation column ‘subgroups’ below the

dendrogram. Additional annotation columns contain further patient-specific meta-information: pretreatment before

sample acquisition (brown: no, yellow: yes), TCL1A gene activity status based on immunophenotypic protein

expression (pink: positive, violet: negative, grey: weak, white: NA), disease stage (light blue: active, dark blue: inactive,

white: NA), age (range from light—32 years—to dark yellow—78 years, white: NA), and sex (light green: male, dark

green: female, white: NA). Individual samples names are shown in the corresponding columns below the heatmap and

the dendrogram left to the heatmap represents the clustering of genes.

https://doi.org/10.1371/journal.pone.0274463.g001
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patients at diagnosis, but 12 of 68 samples were from patients in relapse after a previous

treatment (median time of sample acquisition after end of treatment: 120.5 days). Each of

the three revealed T-PLL subgroups contained at least one pretreated patient (SG1: 4 of 18,

SG2: 1 of 11, SG3: 7 of 39). The proportion of pretreated patients did not significantly differ

between the subgroups (Fisher’s exact test: p = 0.75). Thus, pretreated patients did not

strongly influence the identification and molecular composition of the revealed T-PLL

subgroups. The sex distribution was balanced for SG1 and SG2 (with male to female ratios

of 6:5 and 3:5) and strongly skewed for SG3 with a higher number of male patients (24:9),

but not significantly different (Fisher’s exact test: p = 0.08). The age was distributed equally

and did not show any specific pattern that distinguished the three T-PLL subgroups.

Further, almost all T-PLL patients for which a disease stage classification was available had

an active disease, except for three patients that were annotated as inactive. In addition,

almost all T-PLL patients were annotated to show an immunophenotypic expression of the

TCL1A driver protein. In more detail, all patients of SG1 were TCL1A positive, whereas in

few cases a weak or no immunophenotypic expression of TCL1A was reported for SG2 and

SG3. T-PLL patients with a positive TCL1A protein expression status showed significantly

greater TCL1A gene expression than patients with weak or no TCL1A protein expression

(S3 Fig, Wilcoxon rank sum test: p = 0.0004 for positive vs. negative, p = 0.01 for positive vs.

weak).

A Kaplan-Meier analysis was performed to analyze whether the patients of three revealed

T-PLL expression subgroups differed in their survival. Overall, the survival of T-PLL patients

from diagnosis did not strongly differ between the three subgroups (S4A Fig). However,

females had a higher risk independent of the T-PLL subgroup (p = 0.01, S4B Fig), but an addi-

tional differential gene expression analysis of male and female patients did not show strong

sex-specific expression differences. Therefore, other factors such as the immune system may

potentially contribute to this observation [28, 29].

Differential gene expression analysis of T-PLL subgroups

To identify genes that differ in their expression or that are commonly altered in the three

revealed T-PLL subgroups, we determined differentially expressed genes for each subgroup in

comparison to the normal control samples (Fig 2, S4 Table). Generally, more down- than up-

regulated genes were found for each subgroup (Fig 2A). SG1 showed a much smaller number

of significantly altered genes than SG2 or SG3 at the q-value cutoff of 5% (Fig 2B, left Venn

diagram, SG1: 1,726, SG2: 4,271, SG3: 3,060). In addition, a separate analysis of down- and up-

regulated genes showed a strong overlap of affected genes for SG2 and SG3, whereas SG1

shared much less commonly altered genes with both of them (Fig 2B, middle and right Venn

diagram). Especially for the comparison of SG1 and SG2, a large proportion of genes that was

down-regulated in one subgroup was up-regulated in the other subgroup and vice versa (Fig

2B). All these findings are in good accordance with the global gene expression patterns that

distinguished the three revealed T-PLL subgroups (Fig 1).

The identified differentially expressed genes of the individual T-PLL subgroups were fur-

ther analyzed for the enrichment of cancer-relevant gene annotation categories (S5A Fig).

Similar annotation patterns were observed for all three subgroups with gene counts propor-

tional to the number of altered genes. Especially the gene sets of essential genes and cancer

census genes were significantly enriched in each subgroup. Many signaling pathway genes and

transcription factors/co-factors were also altered in each subgroup and significantly enriched

in SG2 and SG3. Still, the overlap of genes between the subgroups was relatively small ranging

from 1.6% for tumor suppressors up to 6.7% for kinases (S5B Fig).
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Next, we analyzed how well the identified 5,858 differentially expressed genes at the q-value

cutoff of 5% were able to distinguish between the three T-PLL subgroups. Therefore, we reclus-

tered all samples based on these genes and found that all T-PLL samples were again assigned

to their previous subgroup, except TP067 which switched from SG1 to SG3 (S6 Fig). We also

analyzed the stability of this clustering by bootstrapping of genes [27]. Compared to the previ-

ous stability analysis of the hierarchical clustering of all genes, the robustness was strongly

increased for all subgroups (S1B Fig, AU values: 100% control, 88% SG1, 93% SG2, 91% SG3).

Such an improvement was also observed for repeated hierarchical clusterings based on subsets

of all patients, which now reached a median correctness of 97% for the reconstruction of the

initially observed subgroups (S2B Fig). Thus, the identified differentially expressed genes cover

Fig 2. Differential gene expression analysis of T-PLL subgroups. A: Volcano plots of differential gene expression analysis of each T-PLL subgroup in

comparison to the normal control group. The red horizontal dashed line marks the significance cutoff for the q-value cutoff 0.05. Genes above this line

were considered as up-regulated (brown) or as down-regulated (lilac) in the T-PLL subgroup compared to the normal control group. Genes below this

line were considered unchanged (gray). Some selected gene names are explicitly shown (red: known putative T-PLL drivers, blue: potential major

regulators derived from our network, black: other known cancer-relevant genes with strong expression changes). B: Venn diagrams of differentially

expressed genes at the q-value cutoff 0.05 showing similarities and differences between the three T-PLL subgroups. The left panel shows any significant

gene, independent of the sign of fold change (both up- and down-regulated), the middle panel shows only up-regulated genes, and the right panel

shows only down-regulated genes.

https://doi.org/10.1371/journal.pone.0274463.g002
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characteristic expression differences between the three T-PLL subgroups enabling to assign

individual heterogeneous T-PLL expression profiles to their corresponding subgroup.

We also specifically analyzed the subgroup-specific expression behavior of the two putative

main T-PLL driver genes TCL1A and ATM [17]. The proto-oncogene TCL1A was significantly

up-regulated in all three T-PLL subgroups compared to the normal controls, but the degree of

up-regulation was different between the subgroups. The TCL1A expression levels were on

average greater in SG1 than in SG2 and SG3 (S7 Fig, S4 Table, average log2-fold change for

T-PLL vs. control: 5.16 for SG1, 1.84 for SG2, 3.37 for SG3). Similarly, the tumor suppressor

gene ATM was only significantly down-regulated in SG2 and SG3 but not in SG1 (S7 Fig, S4

Table, average log2-fold change for T-PLL vs. control: -0.32 for SG1, -1.06 for SG2, -0.69 for

SG3). Thus, these subgroup-specific expression differences of both genes and their counteract-

ing roles may have an impact on T-PLL subgroup development and progression.

Similarities and differences of signaling and metabolic pathway alterations

of T-PLL subgroups

The observed gene expression differences of the three T-PLL subgroups further motivated us

to characterize similarities and differences between the subgroups at the level of cancer-rele-

vant signaling and metabolic pathways. We therefore performed a pathway enrichment analy-

sis for the down- and up-regulated genes of each subgroup (S4 Table, differentially expressed

genes at q-value cutoff of 5%). In accordance with our differential gene expression analysis,

more down- then up-regulated genes were observed for the individual signaling pathways (Fig

3A–3C). Focusing on significant enrichments, SG1 showed an enrichment of down-regulated

genes for cytokine receptor interaction, apoptosis, and focal adhesion (Fig 3A, q� 0.05). SG2

showed an enrichment of down-regulated genes for nucleotide excision repair and an enrich-

ment of up-regulated genes for MAPK signaling and apoptosis (Fig 3B, q� 0.05). SG3 showed

an enrichment of up-regulated genes for nucleotide excision repair (Fig 3C, q� 0.01). Gener-

ally, signaling pathway alteration profiles were globally very similar between the subgroups,

but each subgroup had still its own characteristic signaling pathway enrichment profile.

Further considering the altered genes of individual signaling pathways, we observed that

the number of overlapping genes between SG2 and SG3 was much greater than between SG1

and these two subgroups (S8A Fig). This is in accordance with the location of the subgroups in

the hierarchical clustering (Fig 1). We illustrated this in Fig 4 for the Jak-Stat signaling pathway

that plays an important role in T-cell related cancers [9, 22]. We focused on up-regulated Jak-

Stat genes, because they could potentially be targeted by existing drugs. Four of the seven up-

regulated genes in SG1 were unique for SG1, one was shared with SG3 (MYC), and two of

these genes were shared with SG2 and SG3 (CSF3R, IFNGR2), whereas SG2 and SG3 had six

other altered genes in common (CREBBP, EP300, IL11, PIAS2, PIK3CA, RAF1) apart from

their own uniquely altered Jak-Stat signaling genes.

Interestingly, the metabolic pathway analysis showed a clearly distinct pattern for SG1 in

comparison to SG2 and SG3, which both showed similar global metabolic alteration patterns

(Fig 3D–3F). In addition, SG1 had more up- than down-regulated metabolic pathway genes,

whereas SG2 and SG3 showed more down- than up-regulated genes. Consequently, SG2 and

SG3 shared also more commonly altered metabolic pathway genes in comparison to SG1 at

the level of individual pathways (S8B Fig). For example, none of the up-regulated glycolysis or

citric acid cycle genes from SG1 was shared with SG2 or SG3. Further, SG2 and SG3 shared

the significant enrichment of up-regulated genes of the pyruvate and purine metabolism,

which was not observed for SG1 (Fig 3E and 3F, q� 0.05). Moreover, the expression behavior

of the oxidative phosphorylation pathway differed. SG1 showed clearly more up-regulated
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genes, whereas SG2 and SG3 showed more down-regulated genes of the oxidative phosphory-

lation pathway (Fig 3E and 3F).

Gene copy number alteration analysis of T-PLL subgroups

Gene copy number data were available for a subset of 53 T-PLL patients (SG1: 11, SG2: 8, SG3:

34) to analyze whether T-PLL subgroup-specific alterations exist. Therefore, we visualized the

gene copy number profiles in a heatmap according to the chromosomal order of genes with

respect to their specific T-PLL subgroup assignments (Fig 5A). The different T-PLL subgroups

showed similar copy number alterations. The majority of T-PLL patients had a characteristic

deletion in combination with a duplication affecting chromosome 8. Deletions on chromo-

some 11 and duplications on chromosome 14 were also frequently observed. The copy number

status of chromosome X was in accordance with the sex of patients.

Fig 3. Signaling and metabolic pathway analysis of differentially expressed genes of each T-PLL subgroup. All down- (lilac) and up-regulated

(brown) genes of a T-PLL subgroup in comparison to the normal control references were considered at the q-value cutoff of 5%. Enriched pathways are

marked by asterisks (Fisher’s exact test: ‘��’: q� 0.01, ‘� ’: q� 0.05). A–C: Cancer signaling pathway analysis for subgroups SG1, SG2, and SG3. D–F:

Metabolic pathway analysis for SG1, SG2, and SG3.

https://doi.org/10.1371/journal.pone.0274463.g003
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A more focused search for subgroup-specific DNA copy number alteration patterns was

done by a systematic comparison of the median gene copy number profiles of the three T-PLL

subgroups (Fig 5B). These profiles highlighted again the previously observed frequent alter-

ations, but also showed that the specific duplication affecting chromosome 8 was mainly pres-

ent in SG1 and SG3, but only rarely observed in SG2. This duplication also recurrently affected

known cancer census genes such as CSMD3, COX6C, EXT1, FAM135B, MYC, and NDRG1 in

SG1 and SG3 in more than 75% of patients. Duplications affecting chromosome 14 were more

frequent in SG1 than in SG2 or SG3. In addition, duplications affecting chromosome 7 and 22

were more frequently observed in SG1 than in the other two subgroups. Chromosome 7 also

showed a focal deletion in SG1 that affected EZH2 in more than 50% of patients. Thus, despite

strong similarities of genome-wide gene copy number alterations, several subgroup-specific

differences were observed.

Network-based analysis reveals potential major regulators that differ in

their expression between the T-PLL subgroups

To identify potential major regulators that distinguish the three T-PLL subgroups, we inte-

grated paired gene copy number and expression data available for 53 T-PLL patients to create

putative gene regulatory networks associated with the 5,858 differentially expressed genes that

differed between the subgroups. This was done using the R package regNet [30] (see Materials

and methods section for details). The general idea of this approach is to predict the expression

behavior of a gene based on its own copy number and the expression levels of other genes that

best explain the observed expression behavior of the specific gene across the three T-PLL sub-

groups. This network inference was repeated 100 times based on randomly chosen subsets of

the 53 T-PLL patients to determine links between genes that were found in the majority of the

different network inference runs. Overall, the 100 learned networks contained relevant infor-

mation to predict the expression behavior of genes in T-PLL significantly better than corre-

sponding random networks of same complexity (S9 Fig, increase of median correlation:

Fig 4. Similarities and differences of up-regulated Jak-Stat signaling genes. Venn diagram representing the overlap

of up-regulated Jak-Stat signaling genes identified for the three T-PLL subgroups in comparison to normal controls.

Colored circles represent the T-PLL subgroups (SG1: blue, SG2: green, SG3: orange).

https://doi.org/10.1371/journal.pone.0274463.g004
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0.4176, paired Wilcoxon signed rank test: p< 2.2 � 10−16). The learned networks were further

used to create a consensus network by focusing on robust links between genes that were pres-

ent in at least 75 of 100 networks (link cutoff: q� 0.01). To focus on genes with increased con-

nectivity, consensus network modules consisting of genes that had at least two links to other

genes in a module of at least three genes were visualized in Fig 6. This module representation

includes 16 gene modules that consist of one up to five highly connected genes. Since these

modules were derived from networks that were learned based on data of all three T-PLL sub-

groups, the module representation in Fig 6 also enables to see how the 41 included genes

behave in their expression across the three subgroups in relation to the normal controls.

Fig 5. Genome-wide gene copy number profiles of T-PLL samples. A: Heatmap of gene copy number profiles of individual T-PLL samples

highlighting deletions (blue), duplications (red), and genes with unchanged copy number (grey) in T-PLL in comparison to normal DNA. The columns

represent the individual T-PLL samples of the three different T-PLL subgroups (SG1: blue, SG2: green, SG3: orange). Corresponding sample names are

shown below the heatmap. The rows represent the genes in chromosomal order along the chromosomes. Chromosomes are highlighted by alternating

grey shades left to the heatmap. B: Median gene copy number profiles of the three T-PLL subgroups. Chromosomes are separated by dotted vertical

lines and the median copy number values of genes are shown by small colored dots. The color of these dots is altered with the chromosome according

to the subgroup-specific base color to enable a better visual separation between chromosomes. Strong deviations of median values from zero indicate

frequently observed deletions (negative log-ratios) and duplications (positive log-ratios) of genes in the corresponding subgroup. Red circles depict

strongly negative median copy number log-ratios that were outside of the plotted range (PRSS1: SG1 and SG3, HLA-DRB5 and LGALS9C: SG2).

https://doi.org/10.1371/journal.pone.0274463.g005
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To better understand the cellular functions of these genes and to further analyze their asso-

ciations with leukemia or other types of cancer, a functional gene annotation analysis based on

[31] in combination with an in-depth literature search was done. Table 1 briefly summarizes

the results of this analysis. More details to cancer-associated functions of individual genes

Fig 6. Network-based visualization of the expression behavior of potential major regulators for each of the three T-PLL subgroups in

comparison to normal control references. The network represents gene modules highlighting genes that had at least two links to other

genes in a module of at least three genes. Only links between genes that were present in at least 75 of the 100 learned networks for a link q-

value cutoff of 0.01 were considered for the module selection. The labels of the nodes represent the corresponding gene names. The node

size is proportional to the node-degree and each node is separated into three areas to represent the average expression difference of the

underlying gene between the patients of the area-specific T-PLL subgroup (SG1, SG2, or SG3) and the control group (blue: down-regulated,

grey: unchanged, red: up-regulated). All shown links between genes are potential activator links. These links can represent direct or indirect

regulatory dependencies or may only show a correlation between expression levels of genes.

https://doi.org/10.1371/journal.pone.0274463.g006
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Table 1. Summary of annotation and literature analysis of predicted potential major regulators.

Mod Gene Chr SG1 SG2 SG3 Cellular function Ref

1 LMOD3 3 = + = organization of actin filaments –

USP49 6 = + = ubiquitin specific peptidase [32]

BLZF1 1 = + = protein transport to cell surface [33]

ALPP 2 = + = alkaline phosphatase, stem cell diff. [34]�

SLC5A8 12 = + = sodium-coupled solute transporter [35]

2 NPIPB5 16 = = + nuclear pore interacting protein –

NPIPB13 16 + + + nuclear pore interacting protein –

NPIPB2 16 = = + nuclear pore interacting protein –

NPIPB15 16 = = + nuclear pore interacting protein –

3 LCN2 9 − = = transporter, apoptosis, immunity [36]�

CAMP 17 − = − chemotaxis, immunity, inflammation –

4 CXCL8 4 = + + chemokine, inflammation [37]�

G0S2 1 = + + promotes apoptosis [38]�

IL1RN 2 = + + immunity, inflammation [39]�

FFAR2 19 + + + G protein receptor, immunity [40]�

SLC25A24 1 = + = solute carrier, protect. oxidative stress [41]

5 IFIT3 10 = + = inhibition, migration and proliferation [42]

IFIT2 10 = + = interferon induced, promotes apoptosis [43]

6 HBD 11 + + + hemoglobin subunit delta –

AHSP 16 = + + chaperone, erythroid cell development [44]�

CA1 8 = + + carbonic anhydrase, hydration of CO2 [45]

7 CMTM2 16 + + + chemokine-like factor [46]

CXCR2 2 = + = G-protein receptor, neutrophil migration [47]�

MMP25 16 = + = matrix proteinase, invasion, metastasis [48]

8 PPP1R15A 19 = + + growth arrest, apoptosis [49]�

IGFBPL1 9 = + + insulin like growth factor binding protein [50]

9 MBTD1 17 = + = polycomb group protein, epigenetic reg. [51]�

LRRFIP1 2 = + = transcriptional repressor [52]

10 ELANE 19 − = = elastase, serine protease, immunity [53]�

DEFA4 8 − = = defensin, immunity –

11 GIMAP1 7 = − − lymphocyte survival, diff. T helper cells [54]

GIMAP2 7 = − − immuno-associated GTP-binding protein [55]�

12 NDUFB5 3 = − − subunit mitoch. NADH dehydrogenase –

CLNS1A 11 = − − involved in splicing –

13 BPI 20 − = = protection, detoxification –

14 S100A12 1 = + = calcium binding protein, immunity, infla. [56]

S100A9 1 = + = immunity, inflammation, apoptosis [57]

15 GP9 3 − − − membr. glycoprotein platelets, adhesion [58]

TUBB1 20 − − − beta tubulin, platelets, megakaryocytes [59]

16 SCO2 22 + + = cytochrome c oxidase [60]

TYMP 22 + + = angiogenic factor, blood vessel integrity [61]

Genes are listed according to the network module (column: Mod) to which they were grouped. The chromosome and the expression behavior (’−’: down-regulated, ‘=’

unchanged, ‘+’: up-regulated) in each of the three T-PLL subgroups (columns: SG1, SG2, SG3) in comparison to normal controls are provided for each gene (S4 Table,

q � 0.05). Cellular functions were obtained from [31]. Cancer-relevant publications of individual genes are listed and those in the context of leukemias are marked by ‘�’

(column: Ref). See S1 Appendix for details to the literature analysis of individual genes.

https://doi.org/10.1371/journal.pone.0274463.t001
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from the literature search are provided in S1 Appendix. Overall, the functional gene annota-

tion analysis allowed to group the majority of genes into five more general categories

(Table 1): (i) genes involved in immune responses (CAMP, CXCL8, CXCR2, DEFA4, ELANE,

FFAR2, IFIT2, IFIT3, IL1RN, LCN2, S100A9, S100A12), (ii) genes involved in angiogenesis or

encoding of blood cell-specific components (AHSP, CA1, ELANE, GIMAP1, GIMAP2, GP9,

HBD, TUBB1, TYMP), (iii) genes involved in cellular respiration or oxidative stress (CA1,

NDUFB5, SCO2, SLC25A24), (iv) genes involved in cell proliferation, apoptosis, migration or

invasion (G0S2, IFIT2, IFIT3, LCN2, MMP25, PPP1R15A, S100A9), and (v) genes interacting

with nuclear pore complexes (NPIPB2, NPIPB5, NPIPB13, NPIPB15). Moreover, 30 of 41

genes in Table 1 have already been reported to play important roles in different types of cancer

(S1 Appendix). Several of them have also been reported in context of different leukemias

(Table 1: AHSP, ALPP, CXCL8, G0S2, LCN2, IL1RN, FFAR2, CXCR2, PPP1R15A, MBTD1,

ELANE, GIMAP2).

Considering the expression behavior of the genes in the modules, most gene modules in

Table 1 consisted of genes that mainly showed the same expression behavior in a specific

T-PLL subgroup. Only two genes were down-regulated (GP9, TUBB1) and only four genes

were up-regulated (NPIPB13, FFAR2, HBD, CMTM2) across all three T-PLL subgroups,

whereas the other genes showed expression patterns that differed at least in one of the three

subgroups. Several genes were unchanged in SG1 but up-regulated in SG2 and SG3 in compar-

ison to normal controls (Table 1 module 4: CXCL8, G0S2, IL1RN; module 6: AHSP, CA1; mod-

ule 8: PPP1R15A, IGFBPL1). Similarly, some genes were unchanged in SG1 but down-

regulated in SG2 and SG3 (Table 1 module 11: GIMAP1, GIMAP2; module 12: NDUFB5,

CLNS1A). Four genes were exclusively down-regulated in SG1 but unchanged in SG2 and SG3

in comparison to normal controls (Table 1 module 3: LCN2; module 10: DEFA4, ELANE;

module 13: BPI). Further, several genes were exclusively up-regulated in SG2 but unchanged

in SG1 and SG3 in comparison to normal controls (Table 1 module 1: ALPP, BLZF1, LMOD3,

SLC5A8, USP49; module 5: IFIT2, IFIT3; module 7: CXCR2, MMP25; module 14: S100A9,

S100A12). Three genes of the family of nuclear pore complex interacting proteins were exclu-

sively up-regulated in SG3 but unchanged in SG1 and SG2 (Table 1 module 2: NPIPB5,

NPIPB2, NPIPB15).

Thus, in relation to the reported functions, several of the predicted genes with increased

network connectivity could potentially contribute to the manifestation of the observed differ-

ences between the three T-PLL subgroups at the level of individual genes, cellular pathways

and regulatory networks to alter cell proliferation and immune responses in a subgroup-spe-

cific manner.

Occurrence of the revealed T-PLL gene expression subgroups in other

smaller patient cohorts

To further validated the existence of the three revealed T-PLL subgroups, RNA-seq data of 41

T-PLL patients from the Herling laboratory were considered. This cohort contained 13

patients that were also included in our microarray data set. Each of these 13 patient-specific

RNA-seq samples always had the strongest correlation with the gene expression profile of its

corresponding patient-specific microarray sample (). Thus, the sample-specific gene expres-

sion patterns were conserved across the different experimental platforms and also the sub-

group assignments of these 13 patients were stable. In addition, the T-PLL subgroup label of

each of the other 28 patients was determined by transferring the subgroup label of the microar-

ray sample that showed the strongest correlation to the corresponding RNA-seq sample. Over-

all, the resulting distribution of the subgroups across the 41 patients was very similar to those
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of our microarray data set (Fig 7) and did not differ significantly (Fisher’s exact test: p = 0.39).

The subgroup distribution was also well preserved when the 13 overlapping patients were

removed (Fig 7, Fisher’s exact test: p = 0.23). This emphasizes the robustness of the finding

and suggests that independent T-PLL patients also reflect the three identified T-PLL

subgroups.

Moreover, also recently published microarray gene expression profiles of 23 T-PLL patients

by Erkeland et al. [25] were considered to analyze how these patients behave in relation to the

three T-PLL subgroups. Most patients were assigned to subgroup SG3 followed by assignments

to SG1, whereas only one patient was assigned to SG2 (Fig 7). Samples of five patients were

assigned to the normal control group, which could potentially be related to a reduced content of

leukemic cells in these samples. This is supported by significantly lower white blood cell counts

for these five samples compared to samples of patients that were assigned to SG1 or SG3 (S11

Fig). Excluding these potentially spurious samples, the distribution of the subgroups among the

remaining 18 patients did again not significantly differ from those of our initial microarray data

set (Fisher’s exact test: p = 0.65). This similarity of the subgroup distributions is further sup-

ported by the additional observation that patients of SG3 tend to survive longer than patients of

SG1 (S12 Fig), which was also found for SG1 and SG3 patients of our cohort (S4A Fig).

All these findings for these two T-PLL validation cohorts suggest that the T-PLL gene

expression subgroups could potentially be relevant to better stratify T-PLL patients in general.

Discussion

We performed an in-depth analysis of one of the largest publicly available gene expression

data sets of T-PLL patients from [17] with the goal to identify potentially existing T-PLL

Fig 7. Occurrences of the three revealed T-PLL subgroups in two other T-PLL cohorts. Barplots represent the

percentages of T-PLL patient samples that were assigned to the three revealed T-PLL gene expression subgroups (SG1,

SG2, SG3) or the normal control group (control). The first group of colored barplots on the left side represents the

subgroup distribution of the T-PLL samples in our microarray-based study, the two groups of colored barplots in the

middle represent the subgroup distribution of T-PLL samples in the RNA-seq data from the Herling lab including

overlapping patients (all patients) or excluding patients that overlap with our microarray-based study (only new

patients), and the fourth group of colored barplots on the right side represents the subgroup distribution for the T-PLL

microarray samples from [25]. The numbers in the colored boxes additionally provide the exact number of samples in

each subgroup.

https://doi.org/10.1371/journal.pone.0274463.g007
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subgroups for this rare leukemia. Hierarchical clustering of the gene expression profiles

enabled us to predict three robust T-PLL gene expression subgroups that have not been

reported so far. Interestingly, the predicted T-PLL subgroup SG1 was co-clustered together

with the normal references in a joint subtree, whereas the other two subgroups SG2 and SG3

were part of a separate subtree (Fig 1). The stability of these subgroups was confirmed by boot-

strapping approaches and a transfer to independent T-PLL patients from two other validation

cohorts also supported the existence of these subgroups.

To systematically characterize similarities and differences between the three revealed T-PLL

subgroups, we performed a comparative analysis of the predicted gene expression alterations.

We generally observed more down- than up-regulated genes in each subgroup in comparison

to the normal controls (Fig 2). Expression alterations of gene sets of essential genes and cancer

census genes were significantly enriched in each subgroup, but many of these and also other

genes were only exclusively altered in a specific subgroup. Thus, subgroup-specific expression

alterations of individual genes were more prevalent than common expression alterations of

genes in all three or between two of three subgroups. Nevertheless, this indicates that a core set

of altered genes, which distinguishes all three T-PLL subgroups from normal controls, exists.

This includes for example the commonly up-regulated potential major regulators CMTM2
[46], FFAR2 [40], and NPIPB13 and the commonly down-regulated potential major regulators

GP9 [58] and TUBB1 [59]. Such commonly altered genes could provide a basis for the develop-

ment of targeted treatment strategies from which all subgroups may profit. However, it is also

important to better understand how additional subgroup-specific gene expression alterations

influence T-PLL development and progression. These alterations may for example contribute

to the observed subgroup-specific expression behavior of the T-PLL drivers TCL1A and ATM
(S7 Fig) and may thereby influence the development of specific subgroups.

Differences between the three T-PLL subgroups were also observed at the level of signaling

and metabolic pathways (Fig 3). Again more down- than up-regulated pathway genes were

observed for each subgroup. In accordance with the initial hierarchical clustering, the pathway

alteration profiles of SG2 and SG3 were more similar to each other than those of SG1. Overall,

each subgroup had its characteristic pathway expression profile. Specific enrichments of

altered pathway genes were exclusively found for each subgroup comprising down-regulated

cytokine receptor interaction, apoptosis, and focal adhesion genes in SG1, up-regulated

MAPK signaling and apoptosis genes and down-regulated nucleotide excision repair genes in

SG2, and up-regulated nucleotide excision repair genes in SG3. The only shared enrichments

were down-regulated pyruvate and the purine metabolism pathway genes in SG2 and SG3.

Such observations can be of importance for the development of targeted treatment strategies.

Therefore, we also performed a detailed analysis of the Jak-Stat signaling pathway (Fig 4),

which is important in T-cell-related cancers and one of the potential promising targets for the

development of novel T-PLL treatment strategies [9, 22]. Several commonalities but also

important differences in the expression of Jak-Stat signaling pathway genes between the three

T-PLL subgroups were revealed. This may influence the efficiency of targeted Jak-Stat treat-

ments in a subgroup-specific manner.

In addition to the gene expression profiles, we also analyzed gene copy number profiles that

were available for 53 of the 68 considered T-PLL patients. Strong similarities of gene copy

number profiles of the three T-PLL subgroups were globally observed (Fig 5). The majority of

T-PLL patients showed recurrent deletions affecting the chromosomal arms 8p and 11q. Also

recurrent duplications affecting the chromosomal arm 8q were frequently observed. These

observations are in good accordance with prior studies [17, 23, 62, 63]. Generally, deletions

affecting the chromosomal arm 11q are usually linked to a monoallelic loss of the tumor sup-

pressor ATM (11q22.3), which contributes to T-PLL development by a deregulation of DNA
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repair [62–64]. The observed subgroup-specific expression of ATM, which was significantly

down-regulated in SG2 and SG3 but not in SG1 in comparison to normal controls (S11 Fig),

could contribute to the development of individual T-PLL subgroups. Further, duplications of

the chromosomal arm 8q can contribute to increased expression levels of the proto-oncogene

MYC (8q24.21), which has been identified as a target of Jak-Stat signaling [65, 66], but also

other genes on chromosome 8q like AGO2 (8q24.3) [17], which is involved in RNA interfer-

ence, could contribute to T-PLL development. Overall, duplications affecting the chromo-

somal arm 8q were mainly observed for T-PLL patients from SG1 and SG3 but only rarely

found in SG2. This could for example influence the expression behavior of the Jak-Stat signal-

ing pathway via the MYC-axis and thereby contribute to the development of T-PLL subgroups.

Further, duplications affecting chromosomes 7 and 22 were more frequently observed in SG1

than in SG2 or SG3. Globally, the observed recurrent DNA copy number alterations affect

hundreds of genes. It is likely that at least several of them may contribute to T-PLL develop-

ment and treatment response. Additional studies are required to predict such genes. A promis-

ing strategy would be the analysis of genome-wide T-PLL-specific gene regulatory networks

with the help of network flow algorithms to identify subgroup-specific driver candidates [5].

The value of such approaches has already been demonstrated for other types of cancer [67–

69]. Additional studies are required to transfer such an approach to T-PLL.

To identify potential major regulators along with their subgroup-specific expression behav-

ior, we learned gene regulatory networks associated with the observed expression changes

between the three T-PLL subgroups (Fig 6). Most of the 41 revealed genes with increased net-

work connectivity have been reported to be involved in different types of cancer and several of

them have been shown to be important in different types of leukemia (Table 1, ALPP [34],

AHSP [44], CXCL8 [37], CXCR2 [47], ELANE [53], FFAR2 [40], G0S2 [38], GIMAP2 [55],

IL1RN [39], LCN2 [36], MBTD1 [51], PPP1R15A [49]). Thus, it is likely that at least some of

these genes may also contribute to T-PLL development and that their subgroup-specific

expression behavior may contribute to the globally observed gene expression differences of the

T-PLL subgroups. Further, considering the functional annotations of these 41 genes (Table 1),

altered immune responses, differences in angiogenesis or the expression of blood cell-specific

components, altered levels of cellular respiration and oxidative stress, differences in cell prolif-

eration, apoptosis, migration and invasion, and alterations of the cellular transport system

between nucleus and cytoplasm may at least in part distinguish the three revealed T-PLL

subgroups.

Interestingly, several of the network gene modules contained putative oncogenes and

tumor suppressors whose expression levels were commonly altered in the same direction. For

example, the putative oncogene IFIT3 [42] and the putative tumor suppressor IFIT2 [43] were

both exclusively up-regulated in SG2, the putative oncogene TYMP [61] and the putative

tumor suppressor SCO2 [60] were both up-regulated in SG1 and SG2, or the putative onco-

gene PPP1R15A [49] and the putative tumor suppressor IGFBPL1 [50] were both up-regulated

in SG2 and SG3. Such an expression behavior of actually counteracting genes has already been

reported for other types of cancer (e.g. [43, 68]). A balance shift of the expression levels of such

counteracting genes could potentially influence the proliferation of T-PLL cells within specific

subgroups. Therefore, especially up-regulated oncogenes could potentially represent promis-

ing targets for drug-based interventions.

Overall, our study demonstrated that T-PLL patients can be stratified into three distinct

gene expression subgroups. These three T-PLL subgroups have the potential to contribute to

an improved molecular stratification of T-PLL patients. Although, differences in survival were

not observed between the subgroups, their specific molecular characteristics that we identified

could potentially be of great relevance for the design and analysis of drug screens and future

PLOS ONE T-cell prolymphocytic leukemia gene expression subgroups

PLOS ONE | https://doi.org/10.1371/journal.pone.0274463 September 21, 2022 16 / 26

https://doi.org/10.1371/journal.pone.0274463


developments of urgently needed targeted treatment strategies and corresponding clinical

studies. The revealed T-PLL subgroups might be associated with different responses to treat-

ments. Such knowledge could provide an important basis for patient-specific treatment deci-

sions. Additional experimental studies are required to analyze the response behavior of the

revealed subgroups in drug screens. Subgroup-specific pathomechanisms could potentially be

revealed by gene perturbation experiments that target some of the predicted potential major

regulators.

Materials and methods

Gene expression data of T-PLL and normal control samples

Normalized microarray gene expression data of tumor T-cells of 70 T-PLL patients and nor-

mal control CD3+ pan T-cells of 10 healthy donors were downloaded from the Gene Expres-

sion Omnibus (GEO) data base (GSE107513) [17]. Purified T-cells obtained from peripheral

blood of T-PLL patients and of healthy donors formed the basis of the gene expression profil-

ing. These T-cells were derived by gradient centrifugation followed by magnetic-bead based

cell enrichment reaching a purity of more than 95% [17]. Technical replicates measured for

four T-PLL patients (TP002, TP003, TP059, TP063) were averaged. For genes with more than

one probe, corresponding average gene-specific probe-based gene expression levels were com-

puted for each sample. The resulting gene expression data set comprised expression levels of

17,970 genes. Recently updated clinical data of the T-PLL patients are available in S1 Table.

Most samples were from untreated T-PLL patients at diagnosis (58 of 70) and 12 samples were

from patients in relapse after a previous treatment (S1 Table). The gene expression data set is

available in S2 Table.

Identification of T-PLL subgroups

Hierarchical clustering of gene expression profiles was performed using R, applying 1−r with r
denoting the Pearson correlation as distance measure in combination with Ward’s linkage cri-

terion (ward.D2) [70]. Hierarchical clustering initially considers each expression profile as a

separate cluster and then iteratively repeats the following two steps until all clusters are merged

together: (i) identification of the two clusters with the smallest distance followed by (ii) merg-

ing of these two clusters into a joint cluster. These iterative merging steps allow to identify

hierarchical relationships between the clusters that are stored in a tree-structure referred to as

dendrogram. The resulting dendrogram was automatically cut into four subtrees after visual

inspection. One of these subtrees consisted of the normal control samples, whereas the other

three subtrees represented the newly revealed T-PLL subgroups (SG1, SG2, SG3). Note that we

excluded the T-PLL samples TP032 and TP033 from the analyses, because they had expression

profiles very similar to those of the normal control cells and a re-evaluation of the immuno-

phenotypic and clinical representation of both samples did not confidently verify them as

T-PLL. Assignments of individual T-PLL patients to the three T-PLL subgroups are provided

in S3 Table. The R package pvclust was used with standard bootstrap settings to assess the

robustness of the obtained hierarchical clustering by bootstrapping of genes [27]. The robust-

ness of individual clusters was quantified by approximately unbiased (AU) p-values averaged

over 10,000 individual runs (S1 Fig). The stability of the subgroup assignments was further val-

idated by repeating the hierarchical clustering for subsets of the initial data set by randomly

removing one up to ten T-PLL patient samples. The four resulting major clusters of each

repeated hierarchical clustering were paired to the four initially obtained clusters (control,

SG1, SG2, SG3) based on the majority of overlapping samples. This allowed to determine the

number of correctly clustered samples for each run (S2 Fig).
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Survival analysis of T-PLL subgroups

Information about time to death for patients with reported status ‘died of disease’ (DOD) or

time to last follow-up for patients with reported status ‘alive with disease’ (AWD) were

updated since the publication of the initial study by [17] and summarized together with other

clinical information for the considered T-PLL patients (S1 Table). The AWD status was con-

sidered as non-informative censoring event. Kaplan-Meier curves were created and log-rank

tests were performed using the R package survival [71] to compare the survival of patients in

the three different T-PLL subgroups and to compare the survival of patients based on sex inde-

pendent of their subgroup assignments.

Identification of differentially expressed genes in T-PLL subgroups

Differential gene expression analysis was done for each of the three revealed T-PLL subgroups

in comparison to the normal control cells following limma’s standard workflow [72]. Differen-

tially expressed genes were selected using an FDR-adjusted p-value (q-value) [73] cutoff of

0.05. The results of the differential gene expression analysis are provided in S4 Table. Volcano

plots and Venn diagrams were used to visualize the results.

Pathway and gene enrichment analysis of T-PLL subgroups

Basic cancer-relevant gene annotation categories were taken from [67]. The underlying signal-

ing and metabolic pathways from KEGG/Reactome were updated by more recent information

from ConsensusPathDB [74]. The set of cancer census genes was updated to a more recent ver-

sion (release March 2020). All utilized pathway and gene annotations are provided in S5 Table.

Pathway and gene annotations were considered to test for an enrichment of differentially

expressed genes in each specific annotation category. For each comparison of one of the three

T-PLL subgroups to the normal control cells, the number of differentially expressed genes in

each annotation category was counted separately for down- and up-regulated genes (S4 Table,

q� 0.05). Significance of enrichment per annotation category was determined using Fisher’s

exact test. Correction for multiple testing was done by computing FDR-adjusted p-values (q-

value) [73] using the R function p.adjust. Bar plots were used to represent the results and to

label significantly enriched categories.

Gene copy number data analysis of T-PLL subgroups

DNA copy number profiles of 53 T-PLL patients that were included in our gene expression

data set had been measured by [17]. We downloaded these data from GEO (GSE107513). The

obtained copy number log2-ratios quantify for each genomic region the copy number in

T-PLL in relation to normal control DNA. We sorted the log2-ratios of each patient by their

chromosomal probe locations and segmented the resulting chromosome-specific copy number

profiles into regions of constant copy number using DNACopy [75]. Based on that, copy num-

ber values of 17,671 genes were determined for each T-PLL sample by mapping the chromo-

somal locations of genes to the obtained chromosomal segments as described in [67]. The gene

copy number data of all T-PLL samples are available in S6 Table. We utilized a heatmap to

visualize the individual gene copy number profiles of samples of the three T-PLL subgroups.

This enabled to identify specific chromosomal regions affected by gene deletions and duplica-

tions in individual samples. Frequent gene deletions and duplications were further determined

for each T-PLL subgroup based on the corresponding median gene copy number alteration

profile.
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Network-based prediction of potential major regulators distinguishing

T-PLL subgroups

All 5,858 differentially expressed genes predicted in the comparison of the three T-PLL sub-

groups to the normal control samples at the q-value cutoff of 0.05 (S4 Table) were used to

learn a gene regulatory network to identify potential major regulators that differ in their

expression behavior between the T-PLL subgroups. The expression of each gene was modeled

as a linear combination of its own gene copy number and the expression values of all other

genes. The parameters of the underlying linear models were computed using the R package

regNet [30], which uses lasso regression [76] in combination with a significance test for lasso

[77], to determine the most relevant predictors for each gene-specific linear model. Depending

on the sign of the learned parameter, a selected predictor can either represent a potential acti-

vator (positive sign) or a potential inhibitor (negative sign) of the considered gene. Since each

gene can be selected as a potential regulator of other genes, a global network is fully deter-

mined by the gene-specific linear models. Additional details to the underlying concept are pro-

vided in [30, 67]. Closely related approaches have successfully been applied to gene expression

signatures of other cancers [78–81]. Following [80], this network inference was repeated 100

times based on randomly created training sets that comprised 35 samples representing two

thirds of the 53 T-PLL samples for which gene expression and copy number data were avail-

able. The remaining one third of T-PLL samples (18 of 53), which were not in the training set,

were considered as independent network-specific test set. The prediction quality of each

learned network was determined based on its corresponding test set by computing the correla-

tion between predicted and originally measured gene expression levels. These computations

were done for each originally learned network including network links at a q-value cutoff of

0.01 and for its corresponding 10 random network instances of same complexity created by

degree-preserving network permutations. The prediction quality of each gene was further

averaged across the networks to compare the prediction quality of the originally learned net-

works to those of the corresponding random networks. The prediction quality of the individ-

ual genes was generally high and significantly shifted into the positive range (S9 Fig, median

correlation of red distribution: 0.426, one-sample Wilcoxon signed rank test: p< 2.2 � 10−16)

and also significantly better than those of corresponding random networks of same complexity

(S9 Fig, median difference of red vs. grey distribution: 0.4176, paired Wilcoxon signed rank

test: p< 2.2 � 10−16). Thus, the learned networks contained relevant information to predict

T-PLL gene expression behavior. Further, to obtain an integrative view of the gene expression

differences between the three T-PLL subgroups, the Fruchterman and Reingold layout algo-

rithm of the R package igraph was used to visualize the links between genes that were present

in at least 75 of 100 networks at a link q-value cutoff of 0.01 (S7 Table) displaying groups of

highly connected genes (gene modules) with at least two links in a module of at least three

genes.

Validation of revealed T-PLL gene expression subgroups in other patient

cohorts

To validate the existence of the three revealed T-PLL subgroups, gene expression data of two

other patient cohorts were considered. The first validation cohort consisted of 41 T-PLL

patients for which transcriptome sequencing (RNA-seq) data were generated in the Herling

lab. The RNA-seq data was processed as described in [82] and the resulting normalized gene

expression levels were made comparable to our initially considered microarray data set from

[17] by a batch correction using the ComBat function of the R package sva with standard set-

tings [83]. The obtained RNA-seq validation data set and the corresponding adjusted
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microarray data set of our main study are provided in S8 Table. Each of the 41 patient-spe-

cific T-PLL gene expression profiles was used to determine its similarity to each sample in

our microarray data set by computing corresponding pairwise Pearson correlation coeffi-

cients. Each new sample was then assigned to the known subgroup (control, SG1, SG2, SG3)

of the microarray sample with the strongest positive correlation. This allowed to analyze the

distribution of the three revealed T-PLL subgroups among the new patients. Since 13 of the

41 T-PLL patients were also part of the microarray data set, this classification also allowed to

analyze if each of this 13 RNA-seq samples was assigned to its corresponding microarray

sample. Similarly, a second validation cohort of 23 T-PLL patients from Erkeland et al. [25]

was prepared to analyze the distribution of the subgroups among the patients. Processed

microarray data was downloaded from GEO (GSE147930). The probe-based expression lev-

els were mapped to the genes followed by a batch correction with ComBat [83] to ensure the

comparability to our microarray data set. The microarray validation data set and the corre-

sponding adjusted microarray data set of our main study are provided in S9 Table. Subgroup

assignments of the 23 new T-PLL patients were made as described for the RNA-seq valida-

tion cohort.
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