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L-glutamate is the major excitatory amino acid in the mammalian central nervous system

(CNS). This neurotransmitter is essential for higher brain functions such as learning,

cognition and memory. A tight regulation of extra-synaptic glutamate levels is needed

to prevent a neurotoxic insult. Glutamate removal from the synaptic cleft is carried

out by a family of sodium-dependent high-affinity transporters, collectively known as

excitatory amino acid transporters. Dysfunction of glutamate transporters is generally

involved in acute neuronal injury and neurodegenerative diseases, so characterizing

and understanding the mechanisms that lead to the development of these disorders

is an important goal in the design of novel treatments for the neurodegenerative

diseases. Increasing evidence indicates glutamate transporters are controlled by the

circadian system in direct and indirect manners, so in this contribution we focus on the

mechanisms of circadian regulation (transcriptional, translational, post-translational and

post-transcriptional regulation) of glutamate transport in neuronal and glial cells, and their

consequence in brain function.
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CIRCADIAN BIOLOGICAL CLOCK

Life has adapted to 24-h rhythms, better known as circadian rhythms (1). Consequently, a large
number of organisms have circadian clocks that anticipate daytime and establish endogenous 24-
h rhythms, which organize their physiology and behavior (2, 3). These endogenous rhythms are
synchronized with the environment through external signals, the so-called zeitgebers (“time giver”
in German), being the light the principal time cue (4).

Intracellularly, the mechanisms involved in circadian regulation are transcription-translation
feedback loops of a group of genes denominated clock genes (5–7). In mammals, Brain muscle
arnt-like 1 (BMAL1) and Circadian locomotor output cycles kaput (CLOCK) complexes control
the periodic expression of Cryptochrome 1 and 2 (Cry1 and 2), and Period 1 and 2 (Per1 and
2), whose protein products inhibit BMAL1 and CLOCK, as well as their own transcription (5–
8). These circadian transcription factors regulate thousands of clock-controlled genes, which
orchestrate diverse physiological, metabolic and behavioral functions, resulting in a synchronized
organism (3). Most tissues and cell types in the body possess a molecular clock (peripheral clocks)
synchronized by the principal pacemaker located in the suprachiasmatic nucleus (SCN) of the
anterior hypothalamus (2, 3, 9). Approximately, around 2–30% of each tissue’s transcriptome is
rhythmically synthesized (10, 11).

In mammals, the SCN receives direct photic input from photosensitive retinal ganglion cells
via the retinohypothalamic tract (RTH) (12, 13). This tract mainly uses glutamate (Glu) as its
neurotransmitter; however, pituitary adenylate cyclase-activating peptide (PACAP) and substance
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P are two peptide co-transmitters that also participate in
retino-hypothalamic transmission (14–16). Interestingly, it has
been shown that both of these co-transmitters regulate Glu
neurotransmission, although the mechanism by which it is
carried out remains unknown (15, 17–19). In vivo and in vitro
studies have identified both metabotropic and ionotropic Glu
receptors in the SCN (20–22), although it has been demonstrated
that specific distribution and abundance of each Glu receptor
subunit differs in this structure resulting in different effects of Glu
on SCN neurons (21).

GLUTAMATE

Glutamate (Glu), the main excitatory neurotransmitter in
the mammalian central nervous system (CNS), activates
two subtypes of Glu receptors: ionotropic (iGluRs) and
metabotropic (mGluRs) (23–25). The first group refers
to a family of ligand-gated ion channels that have been
classified by means of their pharmacological properties into:
N-methyl-D-aspartate (NMDA), and α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionate (AMPA) and kainate (KA)
receptors (24). The second subtype of Glu receptors belongs to
class C of G-protein-coupled receptors, and its classification is
based on the homology of their sequences, pharmacology, and
signal transduction mechanisms (23, 25). It includes group I
(mGluR1 and mGluR5), group II (mGluR2 and mGluR3) and
group III (mGluR4, mGluR6, mGluR7, and mGluR8) (23, 25).
Both subtypes of Glu receptors are widely expressed on pre- and
post-synaptic terminals as well as on astrocytes that surround
synapses (23, 26, 27).

Glu concentration in the synaptic cleft is in the lowmillimolar
range (28, 29). However, after periods of intense glutamatergic
activity, an excessive extracellular Glu concentration leads to an
overstimulation of Glu receptors resulting in neuronal death,
a phenomenon known as excitotoxicity, which is involved
in neurodegenerative diseases (26, 30). In this context, Glu
uptake from the extracellular space plays an essential role in
the prevention of excitotoxic insults (28). A family of Na+-
dependent high affinity Glu transporters carries out the Glu
removal from the synaptic space. The excitatory amino acid
transporters (EAATs) comprise five different Glu transporters:
Glu/aspartate transporter (GLAST), Glu transporter 1 (GLT1),
excitatory amino acid carrier 1 (EAAC1), excitatory amino acid
transporter 4 (EAAT4), and excitatory amino acid transporter
5 (EAAT5) or EAAT 1-5 according to rodent and human
nomenclature, respectively (28, 31–36). These transporters
display a 50–60% amino acid sequence similarity, although
different pharmacological and molecular properties, structure,
and expression patterns are present for each subtype (28, 37).
Within the CNS, Glu transporters have differential cell expression
(glial or neuronal) (31, 36, 38–40). GLAST and GLT1 are
found predominantly in the astrocytic plasma membrane (38–
40), whereas EAAC1/EAAT4/EAAT5 are neuronal transporters
mainly localized in hippocampal neurons, Purkinje cells, and rod
photoreceptor and bipolar cells of the retina, respectively (31, 35,
36, 38, 41). However, GLT1 expression in neurons (28, 42–44),

as well as EAAC1 and EAAT4 immunoreactivity in cortical and
spinal cord astrocytes have also been reported (45, 46). GLAST
and GLT1 carry out ∼80–90% of the Glu uptake in the brain
(28), and decreased expression and/or malfunction of these Glu
transporters are related to several neurodegenerative disorders
like Parkinson’s, Huntington’s and Alzheimer’s diseases (47–49).

GENERAL CHARACTERISTICS OF
GLUTAMATE TRANSPORTERS IN
NEURODEGENERATIVE DISEASES

Through an antisense approach, it has been demonstrated that
Glu transporters malfunction is involved in neurodegeneration
in normal animals (47). Subsequently, Tanaka and colleagues
reported, in mice lacking GLT1, a decrease of transport activity,
lethal seizures and increased susceptibility to neurotoxicity (48).
Years later, several research groups have demonstrated the
role of Glu transporters in various neurodegenerative diseases.
For example, Alzheimer’s disease (AD) patients and animal
models display a dramatic decrease in Glu transporters protein
expression and in Glu uptake that is not correlated to its mRNA
levels, demonstrating that other levels of regulation are present
(50–54). In addition, Scott and coworkers described that GLT1
mRNA alternative splicing controls Glu uptake both in disease
and in normal conditions (55). Moreover, glial Glu transporters
have aberrant expression in distinct types of neurons (56, 57).

In the case of Parkinson’s disease (PD), as with AD, there is
also a decrease in Glu uptake; in PD, Glu transporters have an
unusual trafficking between membrane and cytoplasm leading
a decrease in Glu transporters at the plasma membrane (58).
This phenomena relies in Glu transporters’ ubiquitination by the
E3 ubiquitin ligase Nedd4-2 (neuronal precursor cell expressed
developmentally down-regulated 4–2) (58).

Likewise, Glu transporters have a critical role in Huntington’s
disease (HD), in which the expression of these transporters is
diminished, the symptoms of HD worsen (59). In this sense, it
has been demonstrated that aberrant huntingtin reduces GLT1
activity, either by dysfunction of the transporter itself or a
transcriptional down-regulation, aggravating excitotoxicity (59,
60).

It is well-known that Glu transporters are regulated at
different levels, at the transcriptional translational and post
translational levels through modifications of transporter protein,
as well as by the transporter targeting and trafficking (61–64).
Nevertheless, there is compelling evidence demonstrating that
Glu transporters are regulated in a circadian fashion.

CIRCADIAN REGULATION OF GLUTAMATE
TRANSPORTERS

Transcriptional, Translational, and
Post-translational Regulation
Until today, it has been demonstrated that in SCN both Glast
mRNA and protein levels present a diurnal rhythm in 12/12 h
light-dark conditions (65). According to these results, it has
been proven that in the Per2 mutant mice, GLAST protein is
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arrhythmic, highlighting the presence of a circadian regulation
(65). Subsequently, using a cortical astrocytes culture fromNpas2
andClockmutantmice, it was reported a decrease inGlastmRNA
and protein levels, implying that glial Glu uptake is modulated
via clock genes expression: Per2, Clock, and Npas2 (66, 67).
CLOCK and NPAS2 proteins are involved in Glast transcription
or in Glast mRNA translation and/or stability (28), while PER2
modulates GLAST and by these means Glu uptake. In this sense,
modifications in NPAS2 and/or CLOCK diminish PER2 levels
and Glu uptake (66). More recently, it has been reported that
glial Glu uptake within the SCN is modulated in a diurnal fashion
(high levels of uptake during the light phase) but it does not
exhibit circadian fluctuations (68). Leone and colleagues also
report that Glu uptake activity does not change in constant
darkness (68). It is important to mention that the possibility
that Glu uptake is regulated by circadian clock in vivo cannot be
ruled out. In line with these results, another research group also
reported that Glu uptake in SCN is increased during the circadian
day (22). Brancaccio and coworkers demonstrated that astrocytes
modulate circadian timekeeping in SCN through glutamatergic
signaling, and identified the presence of self-sustained circadian
oscillations of Glu extracellular levels (22). The authors suggest
that, in the light phase, Glu uptake is mediated by EAATs,
including GLAST, GLT-1, and EAAC1 (22). These results could
indicate that both Glu release and uptake are regulated in a
circadian fashion.

It is reasonable to suggest that when there is a lack of
GLAST transporter, compensation via upregulation of GLT1
is favored (65). For instance, in the Per2 mutant mice it has
been determined a shift in GLT1 protein maximal expression,
from zeitgeber time 6 (ZT6, in control mice) to ZT18 (65),
indicating that GLT1 protein is regulated by circadian clock.
It is important to mention that shift in maximal expression of
the GLT1 transporter correlates with ZT in which there is a
downregulation of GLAST (65), suggesting that total uptake of
Glu could be modulated by clock.

Through the use of in situ hybridization techniques in SCN,
supraoptic nuclei, cingulate cortex and reticular thalamus of rats
in constant darkness, it was found that Eaac1 mRNA expression
was rhythmic only in the SCN (69). Circadian expression of
this transporter is associated with GABAergic activity regulation
in the SCN, due an increased demand of GABA synthesis and
release, immediately preceded by an increase in Eaac1 mRNA
expression (69). Increase in the expression of this transporter
contributes to the neuronal clearance of Glu, which in fact is
a precursor of GABA. Within the SCN, 95% of neurons are
GABAergic (70), and together with astrocytes regulate circadian
timekeeping through glutamatergic signaling (22), suggesting an
important role of Glu transporters in the internal timekeeping
system. In contrast, Kinoshita and colleagues could not find any
a circadian-mediated Eaac1mRNA expression neither in serum-
shocked SH-SY5Y cells and mouse mesencephalon by qRT-
PCR (71). Taking together, these results suggest that temporal
changes in Eaac1 mRNA might be controlled by circadian
clock in a tissue-dependent fashion. In addition, Kinoshita and
collaborators also described that EAAC1 protein expression
exhibits a diurnal variation in a 12/12 h light/dark cycle in mouse
mesencephalon (71).

Post-transcriptional Regulation (Circadian
MicroRNAs)
In recent years, the proposal for a novel circadian regulatory
system has been gaining ground. MicroRNAs (miRNAs) are a
good example of a system that can rapidly respond to external
stimuli since it is activated without changes in transcription
and/or translation (71). In this context, miRNAs have revealed to
be a key factor in the regulation of several circadian components
(72–75). It has also been proved that peripheral oscillators exert
circadian regulation overmiRNAs expression (73–78). Increasing
evidence indicates that miRNAs controlled by the circadian
clock, regulate Glu transporters. Thus, miRNA-124 increases
GLAST expression (79), while miRNA-142-3p and miRNA-155-
5p decrease it (80, 81). Moreover, it has been demonstrated
that miRNA-124 and miRNA-181a positively regulate GLT1
(82, 83), while miRNA-107 inhibits GLT1 expression (84).
Specifically, EAAC1 rhythm is negatively controlled by miRNA-
96-5p (71), miRNA-26a-5p (85) and miRNA-101b (86). This
former miRNA also negatively regulates to EAAC1 protein (86).
However, no evidence shows that miRNAs can target EAAT4 and
EAAT5.

FUTURE DIRECTIONS

In the last two decades, several research groups have examined
the different signaling pathways that modulate glial Glu
transporters expression (GLAST and GLT1). Scarce information
about EAAC1, EAAT4, and EAAT5 transporters is available.
Particularly, EAAC1 has a much less evolutionarily conserved

sequence in the 5
′

noncoding region compared to GLAST
and GLT-1, hindering the identification of cis- and trans-
elements involved in its transcriptional regulation. Specifically,
the circadian regulation of Glu transporters is an emerging
theme that promises to be an indispensable tool in the
preventing and/or treatment of diseases related to alterations in
glutamatergic system. Future research should be directed to study
of molecular mechanisms involved in circadian modulation of
these transporters.

CONCLUSION

Optimal functioning and precise regulation of Glu removal
from the synaptic cleft is critical to prevent an excitotoxic
insult and thus avoid several neurodegenerative pathologies.
To date, compelling evidence suggests that Glu transporters
could be regulated in a circadian fashion (Figure 1). It
is clear that desynchronization or aberrant functioning of
circadian system results in significant health consequences.
In this sense, disruptions in the circadian regulation of
Glu transporters is likely to be involved in neurological
disorders like Parkinson, Huntington and Alzheimer diseases.
Therefore, a better understanding of the molecular mechanisms
that participate in the circadian regulation of EAATs might
prove important for the proper development of therapeutic
strategies aimed to prevent and/or treat pathologies related to
excitotoxicity.
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FIGURE 1 | Direct and indirect circadian regulation of EAATs. Glutamatergic synapse which is composed of presynaptic neuron, postsynaptic neuron and glial cell

compartment are represented. Some clock genes indirectly up-regulate GLAST; while several miRNAs directly down- or up-regulate GLAST, GLT-1, and EAAC1.

Green arrows represent up-regulation, red arrows indicate down-regulation, and orange arrow denotes inhibition. The illustration of day/night indicates that transporter

present a circadian rhythm in 12/12 h light/dark conditions. Numbers in parentheses refer to cited publications. CLOCK, circadian locomotor output cycles kaput;

EAAC1, excitatory amino acid carrier 1; GLAST, glutamate aspartate transporter; Gln, glutamine; GLT-1, glutamate transporter 1; Glu, glutamate; NPAS2, neuronal

PAS domain-containing protein 2; PER2, period 2; SNATs, sodium-coupled neutral amino acid transporters; VGluT, vesicular glutamate transporter.
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