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A B S T R A C T

We examined the influence of dysfunctional, non-lesional white matter on cognitive performance in multiple
sclerosis (MS). Forty-six MS subjects were assessed using MRI-based myelin water imaging (MWI), and average
myelin water fraction (MWF) values across 20 white matter regions of interest (ROIs) were determined. A data-
fusion method, multiset canonical correlation analysis (MCCA), was used to investigate the multivariate, de-
terministic joint relations between MWF, executive function, and demographic and clinical characteristics.
MCCA revealed one significant component (p= 0.009) which consisted of three linked profiles, with a pairwise
correlation between the MWF and cognitive profiles of r=0.37, a correlation between MWF and demographics
profiles of r=0.31, and between cognitive and demographics profiles r=0.64. White matter ROIs representing
long-range intra-hemispheric tracts and ROIs connecting the two hemispheres were positively related through
their individual profiles to overall cognitive performance, education and female gender, while age, EDSS, and
disease duration were related negatively. Surprisingly, lesions within the ROIs had a negligible effect on overall
relations between imaging, cognitive, and demographic variables. These findings indicate that there is a strong
association between a pattern of MWF values and cognitive performance in MS, which is modulated by age,
education, and disease severity. Moreover, this consistent relation involves multiple white matter regions and is
separate from the influence of lesions.

1. Introduction

Multiple sclerosis (MS) is an autoimmune disease of the central
nervous system with a wide spectrum of motor and non-motor im-
pairments such as fatigue, vision impairments, balance issues, and
cognitive impairments that greatly affect quality of life. A hallmark of
MS is the deterioration of the white matter (WM) microstructural in-
tegrity, due to inflammation, edema, axonal loss, and demyelination.
Lesions, or focal plaques, typically seen as hyperintensities on proton
density or T2 weighted magnetic resonance images, are often char-
acterised by a high degree of demyelination. In addition to focal loss of
myelin in lesions, a general decrease in overall myelin can be observed
in non-lesional tissue, both in diffusely abnormal white matter (DAWM)
and normal-appearing white matter (NAWM) (MacKay and Laule,

2016).
MS disease manifestations are highly variable in both symptom

presentation and radiological MRI markers (Chard and Trip, 2017).
Lesions appearing similar to each other on conventional MRI may not
correspond to consistent patterns of clinical symptoms. Besides lesion
location, the extent of lesioned tissue also provides limited information
about behavioural consequences. This mismatch between radiological
markers and disease manifestation has been termed the ‘clinical-radi-
ological paradox’ and has hampered the ability to robustly infer disease
status and course based on MRI lesion characteristics alone (Chard and
Trip, 2017).

Despite much research, there is still limited understanding of the
relations between cognitive impairments and WM lesions in MS, likely
because higher cognitive functioning requires a distributed network of
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multiple brain regions acting in concert (McIntosh, 2000; McIntosh and
Korostil, 2008), as opposed to independent activity in discrete loci. A
crucial aspect of effective communication between distinct brain re-
gions is the myelination of axons in the WM, as speed and coherence of
signal transmission is a critical factor in complex motor and cognitive
function. In previous in vivo research inferring relations between MRI
white matter integrity measures and cognition, most relied on measures
only partially associated with myelin content such as the diffusion
tensor imaging (DTI) measures of fractional anisotropy (FA) and radial
diffusivity (Kerchner et al., 2012; Rizio and Diaz, 2016; Roberts et al.,
2013). Other studies have also utilized the magnetic transfer ratio
(MTR) as a measure of WM integrity in disease (Faiss et al., 2014) and
healthy aging (Seiler et al., 2014) While there is some degree of cor-
respondence between these measures and myelination of underlying
tissue, they do not directly quantify myelin content nor are they specific
to it (Mädler et al., 2008; Vavasour et al., 2011). External factors such
as direct axonal damage, or underlying architecture of WM fibre bun-
dles can affect DTI measures (Bouhrara et al., 2018). Similarly, a
change in myelination may not be quantitatively reflected in these
measures, rendering them non-specific to myelin. In contrast, the
myelin water fraction (MWF) gained from in vivo T2 relaxation studies
has a very good correspondence to stained myelin content examined
histopathologically, the gold standard of assessing myelination (Laule
et al., 2006, 2008). While MWF has been extensively utilized in MS
research, a direct link to cognitive performance is still lacking.

Previous studies exploring the association between WM micro-
structure and cognitive performance have also largely attempted to
relate performance on a particular cognitive test to a measure in a
specific WM region; however, it is far more likely that several brain
regions jointly engage in a given task. Moreover, since it is difficult to
design cognitive tests that selectively probe one particular aspect of
cognition in isolation, changes in myelin markers will probably have
widespread downstream effects across multiple cognitive tests and
domains. Thus, methods that accommodate multivariate clinical and
imaging data, to assess the joint relations between two or more sets of
variables may be more advantageous.

In this study we have tried to address the aforementioned limita-
tions by 1) using a myelin specific measure of WM integrity 2) using a
data-driven multivariate approach suitable for fusion of cognitive per-
formance, demographic and clinical data in a cohort of MS subjects. We
use the multivariate, data-driven method of multiset canonical corre-
lation analysis (MCCA) to examine the associations between overall
myelin content and cognitive profiles, and clinical variables such as
age, gender, years of education, and disease severity. We hypothesized
that a significant association would exist between overall cognitive
performance across multiple tests, overall MWF values, and demo-
graphic variables.

2. Materials & methods

This study received ethical approval from the University of British
Columbia Clinical Research Ethics Board, and all subjects provided
written, informed consent. We enrolled a total of 46 subjects (35F/
11M) diagnosed with relapsing-remitting multiple sclerosis (RRMS)
based on the McDonald 2005 criteria (Polman et al., 2011), with an
average (± standard deviation) age of 42.9 ± 10.9 years (Table 1). All
imaging data were acquired on a Philips (Netherlands) Achieva 3 T MRI
scanner with an 8 channel head coil. We acquired a full brain 3DT1-
weighted scan for structural references with an inversion recovery
MPRAGE sequence TI= 808ms, TR=1800ms and an isotropic voxel
size of 1mm3. T2 relaxation data were collected using a modified GRASE
sequence with 32 echoes with 10ms echo spacing and TR=1000ms.
Twenty slices were acquired at 5mm slice thickness and reconstructed
to 40 slices at 2.5mm. The in-plane voxel size was 1x1mm. A dual echo
PDw/T2w scan with TE1= 8.4ms, TE2=80ms, TR=2800ms and
voxel size of 0.97× 0.97x5mm3 was used for lesion identification.

The multi-echo GRASE sequence was analyzed using in-house
MATLAB code which uses an NNLS fitting methods to approximate the
multi-exponential decay curve with a number of basis functions, re-
sulting in one whole cerebrum MWF map per subject. The algorithm
includes correction for stimulated echoes as well as a regulariser to
make the fit more robust against noise in the time domain (Prasloski
et al., 2012). The calculation of MWF was performed as described in
(Prasloski et al., 2012).

WM lesions were delineated semi-automatically utilizing the PDw/
T2w images. A radiologist with extensive experience in MS lesion
identification digitally marked all lesions with seed points using a
custom-built software interface. T2 lesions were then segmented using a
previously validated method (McAusland et al., 2010) that auto-
matically computes the extent of each marked lesion using a customized
Parzen window classifier to estimate the intensity distribution of the
lesions.

We used 20 WM ROIs, part of the FSL (FMRIB, Oxford) package,
which cover the majority of the WM and delineate major WM tracts
(Fig. 1). A full list of ROI names can be found in supplementary table
T1. In order to extract the average MWF per ROI, the ROIs were non-
linearly registered to each subjects' native space using the registration
parameters obtained from registering the MNI template to the first echo
of the multi-echo T2 data, and the FNIRT program of FSL (Jenkinson
et al., 2012). All registrations were visually checked for accuracy and if

Table 1
Demographics, clinical, and cognitive measures. Displayed are averages and
standard deviations. For clinical measures (EDSS and disease duration) the
median and their respective ranges are shown.

Demographics & clinical measures Mean ± SD

Age (years) 42.8 ± 10.8
Gender 36 F, 10M
Education (years) 14.8 ± 2.4

Median, [range]
EDSS 2, [0, 6]
Disease duration (years) 10, [0.3, 36]

Neuropsychological scores Mean ± SD

Working Memory Index (WMI) 93.73 ± 12.42
Processing Speed Index (PSI) 101.88 ± 16.01
Verbal Letter Fluency Test (FAS) 41.03 ± 10.74
Trail Making Test A (TMT A) 30.73 ± 12.25
Trail Making Test B (TMT B) 74.18 ± 61.03

Fig. 1. Visualisation of the WM ROIs used in this study. The ROIs were taken
from the John's Hopkins University atlas provided in FSL. A complete list of ROI
names is listed in supplementary Table T1.

T.R. Baumeister, et al. NeuroImage: Clinical 24 (2019) 101926

2



necessary, registrations were re-performed with adjusted parameters to
ensure an appropriate alignment between images. Once the ROIs were
registered, a white matter mask (obtained from the 3DT1 image with
FAST (Jenkinson et al., 2012) and registered to the multi-echo data
with FLIRT (Jenkinson et al., 2012)), was applied to ensure only WM
voxels were being considered for analysis. The MWF averages of all WM
ROIs comprised the imaging set Xnxk with n=46 subjects and k=20
WM ROIs (features).

All subjects were assessed with a cognitive battery evaluating per-
formance in processing speed, working memory, executive function and
attention domain. We administered the subtests of the Wechsler Adult
Intelligence Scale-IV (WAIS IV) (Wechsler, 1939) that included digit
span, arithmetic, letter number sequencing, symbol search, and coding.
Composite index scores from the WAIS-IV were obtained for use in the
analysis including Working Memory Index (WMI), which utilized scores
from digit span, arithmetic, and letter number sequencing subtests. The
WAIS-IV Processing Speed Index (PSI) was based on the symbol search
and coding subtests. In addition to WAIS IV, we further assessed Verbal
Letter Fluency Test (FAS) (Lezak, 2012), and Trail-Making Test, (TMT A
and B) (Arnett and Labovitz, 1995) to evaluate executive function and
attention. Detailed explanations of the evaluated abilities of each test
can be found in our previous study (Lin et al., 2017). In the end, WMI,
PSI, FAS, and the TMT A/B raw scores formed the cognitive set Ynxl

with n=46 subjects and l=5 cognitive features.
The subjects age, gender, years of education, Kurtzke Expanded

Disability Status Scale (EDSS), and disease duration (DD) in years were
collated to form the demographic set Znxo with n=46 subjects and
o=5 demographic and disease severity features.

2.1. Statistical analysis

2.1.1. Multivariate correlation analysis
One method to relate two sets of multivariate data is canonical

correlation analysis (CCA) (Hotelling, 1936), with the goal of finding
linear combinations of the original variables that are maximally cor-
related. In other words, CCA finds linear transformations (canonical
vectors) for each set, such that the correlation between the projections
of the original data (canonical variates) onto these canonical vectors are
maximised. In the case of more than two groups of datasets, an exten-
sion of CCA, multiset CCA (MCCA) (Kettenring, 1971) can be employed.
MCCA identifies a correlation structure among canonical variates of
multiple datasets by a series of linear transformations so that they are
maximally correlated. The projections are called canonical variates (Pi),
with i=X, Y, Z for each respective set, and can be viewed as condensed
representations, or profiles of each set, while sharing commonalities
across sets. Further profiles/canonical variates can be extracted with
new sets of canonical vectors such that they have maximum correlation
among them but are uncorrelated to the prior canonical variates. Ca-
nonical loadings are often used to assess the contribution of the original
variables to the canonical variates in a set, and are defined as the
correlation between each variable and the canonical variate.

2.1.2. Methodological considerations
All three sets, X (MWF), Y (cognitive scores), and Z (demographics)

served as the input to the MCCA model. To avoid overfitting, we uti-
lized principal component analysis (PCA) to reduce the dimensions of
each data set to a common dimensionality of five components prior to
the MCCA step. The significance of MCCA components was assessed
with a nonparametric permutation test in which the order of subjects
was permuted and MCCA was performed again. This procedure was
done 1000 times to generate a null distribution of pairwise correlation
values and the original correlations were assessed against this dis-
tribution to define significance. To estimate the robustness of the
loadings, we performed a leave-one-out cross validation.

2.1.3. Effect of lesions
In order to investigate the effects of lesion tissue in this metho-

dology, we computed two measures of ‘lesion contribution’ per ROI.
The first measure, ‘lesion percentage’ is the ratio of lesional voxels to
total number of voxels for a given ROI. The second measure, ‘subject
lesions’ is the count of subjects that had at least one lesion in a parti-
cular ROI. We performed multiple linear regression with the two lesion
contribution measures as predictors and MCCA loadings on ROIs as
outcome variables. As a second test, MCCA was performed twice. Once
as described above, and repeated, but specifically excluding voxels that
were contained within the lesions, by subtracting the lesion mask from
the ROI mask prior to calculating the average MWF per ROI. We then
compared the results from the MCCA when lesion tissue was included
and when it was excluded.

2.1.4. Post-hoc tests
In order to determine the biological significance of the significant

canonical variate, we performed different post-hoc analyses. First, we
employed k-means clustering on the weighted values from the X, Y, Z
(i.e. MWF, cognition and demographic) data sets constituting the sig-
nificant canonical variate. As per design, these combinations were ones
that resulted in the largest correlation between data sets. In the clus-
tering we were looking for a differentiation between mildly and mod-
erately affected subjects, thus we limited the number of clusters to two.
We used the non-parametric Kruskal-Wallis test to compare the two
groups with regards to their disease state.

For further validation of the clusters, and to demonstrate that the
canonical variate had biological meaning, we used an independent
measure, the average whole brain cortical thickness based on the high
resolution 3DT1 sequence and obtained from Freesurfer (Fischl, 2012),
to test for differences between the two clusters.

3. Results

3.1. Multiset canonical correlation analysis

We found one significant MCCA component relating imaging, cog-
nitive, and demographic variables (permutation test p= 0.009). The
pairwise correlations between the profiles were rxy=0.37, rxz=0.31,
and ryz=0.64, with rij and i,j being the imaging, cognitive, or demo-
graphic profile (Fig. 2). Fig. 3 shows the canonical loadings, which are
Pearson's correlations between the profiles and the original features in
their respective set and reflect the shared variance between the original
features and its profile. Error bars are 95% confidence intervals, de-
termined with a leave-one-out cross validation.

All features across all three sets contributed significantly to their
respective profiles, as suggested by the confidence intervals not span-
ning zero. At the same time, there was considerable variability among
the loadings, indicating a distinct hierarchy of contributions between
features towards each profile. Three WM ROIs display a negative
loading, while the remaining 17 ROIs showed a positive loading on the
WM profile. In the cognitive profile, WMI, PSI, and FAS showed positive
loadings whereas TMT A and B exhibited a negative loading. This op-
posite contribution of cognitive tests to the cognitive profile was ex-
pected since higher scores of the WMI, PSI, and FAS indicate better
performance, while the opposite is true for the TMT A/B tests as higher
scores signify worse performance. The variables of the demographic set
demonstrated a mix of positive and negative loadings, with gender and
education showing positive contributions to this profile. In contrast,
age, EDSS, and disease duration loaded negatively onto this profile.

Fig. 4 illustrates the opposing contributions to their respective
profiles from some of the variables showing some of the highest load-
ings from the cognitive and demographic sets. The figure displays the
profiles with subjects color-coded according to their EDSS score (Fig. 4
left), their PSI score (Fig. 4 middle), and their TMT A score (Fig. 4
right).
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Fig. 2. Correlations of the canonical variates or
profiles. Top: A 3D representation of the correlation
between canonical variates. Bottom: The pairwise
correlations between canonical variates P are: 0.38
between set X (MWF) and Y (cognitive), 0.31 be-
tween set X and set Z (demographics and disease
severity), and 0.64 between set Y and set Z. The
overall significance of the component was
p= 0.009, assessed with a permutation test.

Fig. 3. Loadings of individual features per set when lesions were included in the analysis. Top: displays loadings of the imaging set, lower left: shows the loadings of
cognitive set, lower right: shows the loadings of demographic set.
ant. Thal. radiation= anterior thalamic radiation, cingulum hipp. = cingulum hippocampus, IFOF= inferior fronto-occipital fasciculus, ILF= inferior longitudinal
fasciculus, SLF= superior longitudinal fasciculus; DD=disease duration
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3.2. Effect of lesions on MCCA

A multiple regression model estimating the profile loadings of WM
ROIs, as the dependent variable, with ‘lesion percentage’ and ‘subject
lesions’, as the independent variables, was not significant (F
(17,20)= 2.47, p=0.114).

The repeat MCCA analysis with lesion tissue removed resulted in a
very similar correlation pattern among the three profiles with one
significant component (p=0.005) and pairwise correlations of
rxy=0.37, rxz=0.31, and ryz=0.64. Visualisations and tables with
more details about the two MCCA runs can be found in the
Supplementary Figs. F1-F4 and Tables T2-T4. Fig. 5 shows the WM ROIs
with a substantial lesion contribution (in this case measured by how
many subjects presented a lesion in an ROI), that also had a significant
loading on the WM profile.

3.3. Post hoc results

After a k-means clustering looking for two clusters, cluster one was
comprised of 36 subjects and cluster two included 10 subjects (Fig. 6).
The clustering separated subjects into a mildly affected (average
EDSS= 2.09, average DD=9.32 years) and a moderately affected

(average EDSS=3.80, average DD=19.10 years) group with
p=0.0065 for EDSS and p=0.0093 for DD (Table 2). As expected,
cluster 2, with greater EDSS and higher DD, exhibited greater cortical
thinning (2.61 mm vs 2.51mm p=0.0143, for cluster 1 and cluster 2,
respectively).

Fig. 4. Scatter plots of canonical variates with color coding of different variables from set Y and set Z. Left: shows subjects with higher EDSS are clustered along the
negative axes. Middle: color coding according to PSI scores where strongly performing subjects are clustered along the positive axes displaying an inverse pattern
than plot on the left. Right: performance in TMT A scores color coded where poorly performing subjects cluster along the negative axes, showing a similar pattern to
that of left figure which means that subjects with higher EDSS perform worse on TMT A. Size of markers reflects the distance from the point furthest back in Px-Py
plane

Fig. 5. Color coded ROIs that showed lesions in at least 50% of subjects (red)
and 33% of subjects (orange) with some of the largest loadings onto the WM
profile. The bilateral thalamic radiation in blue showed lesions in at least 50%
of subjects but did not show large loadings. Even though there was a substantial
lesion contribution in those ROIs, it had minimal effects on the loadings.

Fig. 6. Using k-means on canonical variates of significant component looking
for two clusters (one mildly (average EDSS= 2.09, average DD=9.32 years)
and one moderately (average EDSS=3.80, average DD=19.10 years) affected
subgroup). The number of subjects per cluster are 36, and 10, respectively.

Table 2
Comparison of clinical and cognitive variables between cluster. Clinical, cog-
nitive and cortical thickness measures with boldface p-values are significant at
the 0.05 significant level.

Cluster 1
mean ± SD

Cluster 2
mean ± SD

Kruskal-Wallis
p-value

Age (years) 41.5 ± 10.97 47.9 ± 9.36 0.1126
Gender 30f/6m 5f/5m
Education (years) 14.94 ± 2.45 14.30 ± 2.58 0.2419
Disease duration

(years)
9.32 ± 6.80 19.10 ± 10.90 0.0093

EDSS 2.09 ± 1.62 3.80 ± 1.60 0.0065
WMI 94.11 ± 13.46 83.50 ± 8.51 0.0230
PSI 102.31 ± 13.39 85.30 ± 14.91 0.0044
FAS 40.78 ± 11.40 37.10 ± 12.35 0.5938
TMT A 28.42 ± 7.29 54.00 ± 11.46 <0.0001
TMT B 67.42 ± 38.092 144.40 ± 83.84 <0.0001
Cortical thickness

(mm)
2.61 ± 0.10 2.51 ± 0.09 0.0143
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4. Discussion

We utilized a multivariate, data-driven approach, in order to reveal
a joint pattern of covarying features consisting of profiles of WM myelin
integrity, cognitive performance, and demographic and disease factors
in a cohort of RRMS subjects. The data fusion performed here is com-
pletely data-driven and uses simple linear weights in order to decom-
pose the data sets into latent, maximally cross-correlated profiles. The
data-driven nature of the analysis minimises a priori assumptions about
potential interactions within and across data domains, while its multi-
variate nature allows the modeling of shared features across data sets.
This is in contrast to univariate approaches where only local or distinct
features can be examined. The power of MCCA analysis approach lies in
its ability to naturally reveal cross-modality relationships and it sug-
gests some interesting conclusions: 1) factors such as disease duration,
gender and age predict cognitive performance in early MS more than
myelin features (correlation between profiles of cognition and demo-
graphics r=0.64, MWF vs cognition r=0.37, and MWF vs demo-
graphics r=0.31), 2) relative independent of lesion presence and exact
lesion location, there is a robust association between myelin content in
long-range intrahemispheric connections and the corpus callosum and
cognitive performance.

Many cognitive domains can be profoundly affected by altered mi-
crostructural integrity as seen in MS. Processing speed and tasks re-
quiring the ability to focus attention, scan quickly, discriminate and
order information in order to process it, and working memory, are all
commonly impaired in MS (Chiaravalloti and DeLuca, 2008; Guimarães
and Sá, 2012; Pujol et al., 2001). Complex attention involving alertness,
selective/focused/divided attention, and vigilance rather than “simple”
attention (e.g. repeating a series of digits) is also impaired
(Chiaravalloti and DeLuca, 2008; Guimarães and Sá, 2012). Impair-
ments in executive function, a set of abilities which facilitate goal-or-
iented behavior as well as adaption to environmental changes such as
planning, shifting, and fluency, appears to impact the quality-of-life the
most among the cognitive deficits seen in MS (Foong et al., 1997;
Holland et al., 2014; Preston et al., 2013). Early research proposed that
memory deficits in MS were caused by an inability to sustain or support
effective information retrieval (Beatty, 1993), however difficulty in
acquiring new knowledge (i.e. memory encoding) might be a greater
problem than information retrieval (i.e. memory retrieval)
(Chiaravalloti and DeLuca, 2008).

Several studies have attempted to establish the links between white
matter changes and cognitive decline in MS. Demyelination, inferred by
lesions in conventional MRI images in the medial frontal region, is as-
sociated with slow responses in an attention task (Pujol et al., 2001).
Studies utilizing DTI have suggested that processing speed deficits were
related to reduced FA in the corpus callosum and superior longitudinal
fasciculus, two major tracts connecting the two hemispheres and
frontal, temporal, and parietal lobes (Genova et al., 2013). Compared to
cognitively-preserved MS patients, cognitively-impaired patients eval-
uated in spatial and verbal memory, information processing speed,
working memory, and verbal fluency spheres exhibited reduced FA in
the corpus callosum, superior and inferior longitudinal fasciculus, cor-
ticospinal tracts, forceps major, cingulum, and fornices (Hulst et al.,
2013).

While here we have shown a significant relation between cognition
and MWF measures in RRMS, relations between MWF imaging and
cognition have also been explored in the non-MS literature. In children
(n=108 children ages: 2.5 months - 5.5 years), a significant positive
association between myelination and cognitive and motor abilities can
be shown (Dean et al., 2015; Deoni et al., 2016). Further, a relation was
found between highly myelinated axons in the corpus callosum and the
Wechsler Intelligence Scale for Children in five male children aged
between 8 and 12 (Whitaker et al., 2008). A myelin water imaging
study found positive relations between frontal lobe myelination and
both age and years of education in controls (n=27) but not in subjects

with schizophrenia (n=30) (Flynn et al., 2003). A more recent study of
young adults with ages ranging from 15 to 38 years found a positive
relation between frontal lobe myelination and age, North American
Adult Reading Test (NAART) IQ, and years of education (Lang et al.,
2014). In older patients with mild cognitive impairments (MCI), sub-
stantial decreased myelin integrity has been observed; however, asso-
ciations between decreased myelination and poor cognitive perfor-
mance were not documented (Bouhrara et al., 2018). Finally, a study of
myelination in 61 healthy volunteers aged 18 to 84 years found a
quadratic relation between MWF and age (Arshad et al., 2016) em-
phasizing that age affects myelin differently across lifespan. Overall,
these studies highlight the importance of often widely spatially dis-
tributed myelin profile integrity to cognitive function. However, the
link between myelin integrity and cognitive abilities in MS is lacking.
This study potentially overcomes the research gap of myelin-cognition
relations in MS as we discovered multivariate relations between myelin
and cognitive performance. Perhaps, the multivariate approach used in
this study is a key factor to study human brain and behaviour.

As executive function profoundly affects the quality-of-life of people
with MS, the original study design was to investigate the relations be-
tween imaging features, clinical variables, and primarily executive
performance in MS. Therefore, the test battery for this study was based
on widely-used tasks in assessing executive functioning and processing
speed rather than commonly-used cognition screening tests such as the
Brief International Cognitive Assessment for Multiple Sclerosis
(BICAMS) (Langdon et al., 2012). Another neuropsychological battery
that targets specific domains affected in MS is the Minimal Neu-
ropsychological Assessment of MS Patients (MACFIMS) (Benedict et al.,
2002), which provides comprehensive evaluation of cognitive function
in MS. In fact, our test battery evaluates some domains that are also
examined in MACFIMS such as working memory, processing speed, and
executive function. Due to the fact that executive function and pro-
cessing speed were our primary and secondary targets to evaluate, we
specifically chose tests tailored to assess these domains, rather than the
standardized test used in MS. Therefore, we decided to use sub-tests of
WAIS IV to evaluate working memory and processing speed and ex-
ecutive function was also examined with TMT A/B and FAS. We note
that the loadings across specific cognitive tests in the significant MCCA
component were relatively uniform (note that for TMT A/B, longer
times represent worsening performance, so the loadings in Fig. 3, lower
left are reasonable since higher scores on TMT A/B are anticorrelated to
the remaining cognitive tests where higher scores indicate better per-
formance). We therefore do not believe that differing cognitive tests
would alter our overall conclusions substantially.

We used MCCA to create profiles of WM myelin integrity, cognitive
performance, and demographic and disease factors which were closely
related to one another. Since WMI, PSI, and FAS together with gender
and education all loaded positively on their respective profiles, it is
implied that subjects with higher education and being female (females
were coded 1, males were coded 0 in analysis) performed better in these
cognitive tests. Most WM ROIs loaded positively on its profile, and the
aforementioned cognitive tests loaded positively on their profile. This
implies a positive relation between MWF and cognitive performance,
education, and female gender. In contrast, the negative loadings of age,
EDSS, and disease duration on the demographics profile, and the po-
sitive loadings of WMI, PSI, and FAS on the cognitive profile, suggest
that age and disease progression have adverse effects on cognitive
performance. Similarly, age, EDSS, and disease duration showed op-
posite loadings to that of WM ROIs on their respective profiles, in-
dicating an inverse relation between MWF and age, and disease dura-
tion.

The cognitive tests TMT A/B loaded negatively on the cognitive
profile, while in the demographics profile, age, EDSS (disease severity),
and disease duration had negative loadings, and years of education had
a positive loading. This indicates that age and a more severe disease
state were associated with higher TMT A/B scores (i.e., slower times to

T.R. Baumeister, et al. NeuroImage: Clinical 24 (2019) 101926

6



complete the task, reflecting a worse performance), but years of edu-
cation was not. Similarly, the mostly positive loadings of most WM ROIs
in the myelin profile, suggest a worse performance in TMT A/B with
low MWF, an imaging feature associated with more severe disease in-
volvement.

Our results further support the notion that higher-order functions
require multiple brain regions to coordinate together, especially the
longitudinal fasciculus which connect frontal/parietal/occipital areas
(i.e. long-range intrahemispheric connections) and the corpus callosum
which links the two hemispheres (i.e. interhemispheric connections)
(Schulte and Müller-Oehring, 2010). In the present study, white matter
ROIs associated most with the imaging profile included the bilateral
corticospinal tract, forceps major, forceps minor, bilateral inferior
fronto-occipital fasciculus, bilateral inferior longitudinal fasciculus,
bilateral superior longitudinal fasciculus, and left arcuate. These WM
tracts connect geographically remote brain regions, as well as cortical
and subcortical areas connecting regions for processing speed ability,
higher-order cognitive functions, and motor function (Roberts et al.,
2013). The forceps minor, forceps major, superior and inferior long-
itudinal fasciculus, and inferior fronto-occipital fasciculus have been
reported to be involved in processing speed function, and influencing
TMT performance in both older adults and MS subjects (Genova et al.,
2013; Kerchner et al., 2012). The inferior and superior longitudinal
fasciculi have been shown to play a role in higher-order cognitive
function as they connect association cortices – key regions for higher-
order functions (Jung et al., 2016). Indeed, the cognitive tests that are
positively expressed in the cognitive profile are WMI, PSI, and FAS,
tests that assess working memory, processing speed, and verbal fluency
and are all impaired in MS (Chiaravalloti and DeLuca, 2008; Guimarães
and Sá, 2012; Pujol et al., 2001). On the other hand, the timed TMT A/B
tests, where higher scores signify worse performance, are negatively
associated with the cognitive profile, indicating an inverse relation
between the imaging features and these particular tests.

The fact that the corticospinal tract WM ROI was also loading po-
sitively on the imaging profile is perhaps surprising. A DTI study sug-
gested that the corticospinal tract has been related to motor perfor-
mance but not higher-order cognitive functions (Lövdén et al., 2014), as
would be expected. While the quantitative measure of myelin and joint
multivariate data analysis utilized here may be more sensitive, there
may be other explanations. For example, the corticospinal tract is re-
quired to execute the processed information required in different cogni-
tive tasks. One model parcellates executive function into three com-
ponents – input (require long-range connections), core process (in the
prefrontal cortex), and output (require coordination of motor and
subcortical connections for taking actions) (Miller and Cohen, 2001).
This model implies that the corticospinal tract might be involved in the
output component to execute actions based on processed information.
Therefore, as a resource to execute the information, it is reasonable that
WM integrity in the corticospinal tract is involved in executive function.
Further, there may be a correlative as opposed to a causal relation
between corticospinal tract integrity and cognitive function: pre-
sumably people with worsening disease, and reduced WM integrity
would be more likely to also have impairments in their motor system.

Some of our results describing factors preserving executive function
in MS are perhaps unsurprising. We found positive loadings of WMI,
PSI, FAS, as well as a positive loading of education onto their respective
profiles, suggesting a positive relation between these features. In the
theory of cognitive reserve (Stern, 2002; Sumowski and Leavitt, 2013;
Tucker-Drob et al., 2011), higher levels of education may alter synaptic
organization and/or neuronal networks so individuals can still sustain
damage and maintain adequate cognitive function (Stern, 2002). Also,
we found that age, EDSS and disease duration loaded negatively on the
demographic profile indicating a negative association with cognitive
tests that loaded positively on the cognitive profile. Of note, EDSS and
disease duration had the highest loadings in the demographics profile,
indicating a central role of these measures' influence on both imaging

and cognition sets. We also observed that better cognitive performance
was associated with female gender. Although we speculate that such a
pattern may support the purported neuroprotective effects of estrogen
(Jacobs and D'Esposito, 2011; Miller and Cronin-Golomb, 2010), more
evidence is needed to draw such conclusion.

The cluster analysis produced a reasonable separation of mildly- and
moderately-affected sub-groups across all three sets, further supporting
a strong relation between MWF, cognitive abilities, and demographics.
The additional comparison of an unrelated measure, namely cortical
thickness, reinforces the utility of MCCA as well as strengthens our
results of finding an association between MWF, cognitive performance,
demographics and clinical variables. The groupings based on the MCCA
results show a similar pattern of cortical thinning with the moderately
affected sub-group having a decreased overall cortical thickness and are
in line with previous research (Steenwijk et al., 2016).

Importantly, our results were largely independent of exact lesion
location. A multiple linear regression model was unable to detect a
relation between lesion contribution per ROI and the MWF loadings we
found suggesting that MWF loadings are independent of lesion con-
tribution. Furthermore, when the MCCA analysis was performed with
and without lesion tissue included in WM ROIs the results were largely
unchanged. There has been a long-standing debate on local vs dis-
tributed representation of brain function (Kaas, 1987). In MS there can
be a very close association between lesion location and clinical effects,
with optic neuritis being a prime example. However, with higher cog-
nitive functions, such clinicopathological correlation between lesion
location and behavioural effect is less clear, as distributed brain regions
must be recruited to facilitate complex tasks. While we have shown a
relationship between NAWM and some cognitive functions, we cannot
discern, with the current analysis, whether or not this related to pri-
mary dysfunction in the NAWM, or secondary changes from focal le-
sions.

There are a number of limitations to our study. Since none of the MS
subjects demonstrated overt cognitive impairment at the time of ex-
amination based on our previous report which investigated the same
cohort (Lin et al., 2017), the results of this study reflect brain-behaviour
associations at early stages of the disease. Further, the analyzed cohort
was comprised solely from early stages of the RRMS subtype which was
owed to the study design, extrapolations to different subtypes of MS
should be taken with care. Due to the fact the analysis was based on a
set of WM ROIs from a template, not all of the WM is necessarily cov-
ered, although we note that most major WM fibre bundles were in-
cluded. This may have led to individual lesions not being accounted for
in this analysis in case they did not overlap with any of the standard
ROIs. In addition, the investigated cohort was in the relatively early
stages of MS with low to moderate lesion burden such that the impact of
focal demyelination of lesions within the ROIs was limited. Thus, the
minor change in results of the MCCA when including and excluding
lesions may be partly due to the fact that not all lesion had been con-
sidered. Finally, a complicating factor is that myelin as a function of age
may follow a quadratic function (Arshad et al., 2016), so extrapolating
to broader age ranges may pose a risk – our results may therefore only
be interpretable for the age range of our cohort.

To conclude, with quantitative WM myelin measures and a joint
multivariate analysis, we found individual profiles of myelin integrity,
cognition, and demographical features in MS that where highly similar.
Higher myelin integrity supported better cognitive function and was
positively related to education as well as female gender; while disease
severity and aging were associated with worsening cognitive perfor-
mance. In the future, a multimodal approach including functional
measures gained from fMRI may be used to study the interplay between
structure and function and use their complementary information to
further prognosticate cognitive deficits in MS.
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