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An improved method, called Alternative Spectral Rotation (ASR) measure, for
predicting protein coding regions in rice DNA has been developed. The method is
based on the Spectral Rotation (SR) measure proposed by Kotlar and Lavner, and
its accuracy is higher than that of the SR measure and the Spectral Content (SC)
measure proposed by Tiwari et al. In order to increase the identifying accuracy,
we chose three different coding characters, namely the asymmetric, purine, and
stop-codon variables as parameters, and an approving result was presented by the
method of Linear Discriminant Analysis (LDA).
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Introduction

Although improvements in computer gene-finding
programs have made it relatively easy to detect genes
in uncharacterized genomic DNA sequences, it re-
mains difficult to determine how many exons and in-
trons there are in a given sequence and what are the
exact boundaries between them. As we know, gene
identification methods may be classified as recogni-
tion of protein coding regions and recognition of func-
tional sites of genes. In the past two decades, many
new methods for finding distinctive features of pro-
tein coding regions have been presented, including the
algorithms based on codon usage (1 ), dicodon usage
(2 ), 3-base periodicity (3–5), and the fifth-order phase
Markov chain model (6 ). Although great progress
has been made, the situation is still far from being
perfect. Undoubtedly, the fifth-order Markov chain
model has a better identification accuracy, since this
method makes full use of the local statistical charac-
teristics of base distribution in three frames of cod-
ing sequences. However, it still has its shortcomings;
the parameters determined based on previously dis-
covered sequences cannot be applied to identify genes
on different sequences with the same accuracy (7 ).
Moreover, it needs a large data set to train the bulky
parameters, whose number is nearly five thousand. In
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recent years, several new algorithms have been pro-
posed, such as MZEF (8 ), GLIMMER (9 ), MOR-
GAN (10 ), GeneMark.hmm (11 ), GENESCAN (12 ),
FGENESH (13 ), and so on (14 , 15 ). An up-to-
date list of references is maintained by Wentian
Li (http://www.nslij-genetics.org/gene/; ref. 16 ).
And a powerful gene finding program, BGF (Bei-
jing Gene Finder), is proposed by Beijing Genomics
Institute (http://bgf.genomics.org.cn/). These algo-
rithms, which use both coding information and splic-
ing signals, perform better than those using only splic-
ing signals (17 ). However, there is still the need of
new methods for gene prediction, which utilize fea-
tures of gene structure that have so far not been in-
corporated into programs already available (7 ).

In this paper, we propose a new Alternative Spec-
tral Rotation (ASR) measure derived by inverting the
Spectral Rotation (SR) measure (5 ). Our method is
based on the arguments of the Discrete Fourier Trans-
form (DFT). After the DFT procedure for the four
nucletides A, C, G and T, we found that the dis-
tributions of arguments C and T seem to have two
central values. A cutoff value is decided after the
nonparametric fitting and the arguments for all ex-
perimental genes are separated into two parts in the
cases C and T. So we could select the corresponding
central value to rotate clockwise according to the cut-
off. This method performs better than the SR mea-
sure and the Spectral Content (SC) measure (3 ). In
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order to increase the identifying accuracy, especially
in short exons, we selected three different features of
coding regions, namely the asymmetric, purine, and
stop-codon variables, which are simple but effective as
variables in discriminant. A satisfied prediction result
was obtained by the method of Linear Discriminant
Analysis (LDA).

Despite the extensive research in the area of gene
prediction, current predictors do not provide a com-
plete solution to the problem of gene identification.
Short exons are difficult to locate, because discrimi-
native statistical characteristics are less likely to ap-
pear in short strands (5 ). The method proposed in
this paper is shown to be a potential candidate for
locating short genes and exons. We hope that this
measure could be incorporated into the gene-finding
programs already available and the gene prediction
accuracy could be increased.

Databases

We have two data sets used in this paper. One data
set with 5,047 sequences was used to train the argu-
ment distributions both for coding and noncoding re-
gions. The other consisting of 704 sequences was used
for selecting the subsets, which were used to test the
identifying accuracy by means of ASR and LDA. The
first data set was selected from the KOME full-length
rice cDNA. After seeking the best open reading frame
(ORF) by dynamic programming, mapping the cD-
NAs with ORF fixed to BAC sequence in GeneBank,
removing redundancy and discarding the sequences
that have in-frame stop codons or non-canonical sites,
there were 5,047 sequences remained (19 ). The sec-
ond data set was from GenBank R132. All the rice
sequences we chose were marked with “CDS” and
“mRNA”. After removing redundancy and making
full length, there were 704 sequences remained. The
two data sets have few redundance, so we chose the
first as the training set and the second as the test set.

From the 704 sequences, we extracted all exons
and concatenated them to single strands (complemen-
tary strand had been changed to forward strand al-
ready), thus obtained 704 coding sequences. We also
extracted all introns from the 581 multiple-exon genes
(there were 123 single genes in the 704 sequences) and
got 581 noncoding sequences. The data sets includ-
ing coding sequences or noncoding fragments were ob-
tained by sliding windows of sizes 90, 120, 180, 240,
300, and 351 bp.

Alternative Spectral Rotation

Measure

DFT and SR measure

It is well known that the DFT of a given numeric
sequence x(n) of length N is defined by

X(k) = DFT{x(n)}N−1
n=0 =

N−1∑
n=0

x(n)e−i 2π
N nk,

0 ≤ k ≤ N − 1 (1)

where n is the sequence index (5 ). The DFT itself
is another sequence X(k) of the same length N . The
sequence X(k) provides a measure of the period at K,
which corresponds to a period of N/K samples (18 ).

Because the DNA sequence is a character string,
we must assign proper numerical values to each char-
acter: A, C, G and T. We assign a binary sequence
to each of the four bases (4 ). For example, we have
a DNA sequence x(n) = {AACGCTAT · · · }, the re-
sulting numeric sequences are

x(n) = {AACGCTAT · · · } →





uA(n) = 11000010 · · ·
uC(n) = 00101000 · · ·
uG(n) = 00010000 · · ·
uT (n) = 00000101 · · ·

Here, ub(n) (b = A, C, G, or T) is the binary se-
quence, which takes the value of 1 or 0 at position n,
depending on whether or not the character b exists at
location n.

So we could define the DFT of the binary sequence
ub(n) of length N as

Ub(k) =
N−1∑
n=0

ub(n)e−i 2π
N nk, 0 ≤ k ≤ N − 1 (2)

The total frequency spectrum of the given DNA
character string is described as

S(k) =
∣∣∣UA(k)

∣∣∣
2

+
∣∣∣UC(k)

∣∣∣
2

+
∣∣∣UG(k)

∣∣∣
2

+
∣∣∣UT (k)

∣∣∣
2

As we know, the protein coding regions have a
feature of 3-base periodicity (3 ), so the total Fourier
spectrum of protein coding DNA typically has a peak
at frequency k = N/3. It is very important for us
to get the (N/3)th element of the DFT of the binary
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sequence ub(n) of length N associated with base b (b
= A, C, G, or T):

Ub(
N

3
) =

N−1∑
n=0

ub(n)e−i 2π
3 n

Let s be a DNA strand, denote b[s] = Ub(N
3 ). We

calculate the values of arg(A[s]), arg(C[s]), arg(G[s]),
and arg(T [s]) in coding and noncoding regions, where
arg(b[s]) denotes the argument of b[s]. Kotlar and
Lavner’s analysis of all the experimental genes of S.
cerevisiae revealed that the distributions of the argu-
ments in all four nucleotides for coding regions were in
bell-like curves around a central value, while the cor-
responding histograms for noncoding regions seemed
to be close to uniform (5 ).

Kotlar and Lavner introduced the Spectral Rota-
tion (SR) Measure. Let µb be the sample mean of
arg(b[s]) (b = A, C, G, or T) in coding regions. It
is expected that arg(b[s]) ≈ µb for a typical coding
sequence s. Rotating the vectors A[s], C[s], G[s], and
T [s] clockwise by the corresponding argument µA, µC ,
µG, and µT (multiplication by e−iµb) respectively will
yield four vectors pointing roughly in the same direc-
tion. Hence, the vector sum

∑
b e−iµbb[s] will be of

large magnitude compared to the case where the vec-
tors point in different directions, as is most likely the
case for a noncoding sequence. Considering the shape
of the argument distributions, more weight should be
given to narrower distributions, so each term can be
divided in equation of

∑
b e−iµbb[s] by the correspond-

ing angular deviation, and the SR measure is devel-
oped:

|V |2 =

∣∣∣∣∣
e−iµA

σA
A[s] +

e−iµC

σC
C[s]

+
e−iµG

σG
G[s] +

e−iµT

σT
T [s]

∣∣∣∣∣

2

(3)

ASR measure

We drew the histograms of arg(A[s]), arg(C[s]),
arg(G[s]) and arg(T [s]) values in coding and noncod-
ing regions in rice DNA (Figure 1). To get a reliable
result, we used the trainning set, from which all exons
and introns were extracted and joined as coding and
noncoding sequence in each gene.

As Figure 1 shows, for coding regions, the distri-
butions of arguments for A and G are bell-like curves,
whereas the histograms of arg(C[s]) and arg(T [s])
values seem to have two central values, just like two

distributions are joined together. For noncoding re-
gions, the distributions seem to be close to uniform.
The distributions for coding regions and noncoding
regions are very different, which is accordant with the
statement of Kotlar and Lavner (5 ). However, as the
figure reveals, not all the distributions of the argu-
ments in all four nucleotides taper around a central
value as Kotlar and Lavner claimed. Why the his-
tograms of arguments C and T are two-center shapes
is a question to be answered, but it is beyond the
scope of this paper. In this case, we could also use the
SR measure assuming there be only one center value
for all four nucleotides. Calculate the sample mean of
arg(b[s]) (b = A, C, G, or T), and rotate the vectors
b[s] clockwise (multiplication by e−iµb) respectively.
However, a not perfect result would be obtained.

We did the non-parametric fitting for the his-
tograms of arguments C and T (Figure 2). Take
arg(C) for example, as the figure shows, we could as-
sume there are two peaks in the histogram. Looking
for the lowest value between the two peaks as a cutoff
value (−2.689), the arguments for nucleotide C could
be separated into two subsets. For each part, a sam-
ple mean and a deviation (µ1, σ1 in the subset whose
value is less than the cutoff value, and µ2, σ2 in the
other subset) are calculated. Therefore, in the proce-
dure of identifying whether a DNA strand s is coding
regions or not, before the vector C[s] is rotated, the
parameters µC , σC could be selected as (µ1, σ1) or
(µ2, σ2 ) according to whether or not arg(C[s]) is less
than the cutoff value. The same will be done for the
T [s], so an Alternative Spectral Rotation measure is
presented.

Result

Table 1 compares the performance of the ASR mea-
sure with the SR and SC measures. All measures were
tested on coding and noncoding regions from the test
data set, and results were obtained by sliding win-
dows of sizes 90, 120, 180, 240, 300, and 351 bp. In
order to compare with the SR measure, we also chose
the threshold that insured the FP is 10% as Kotlar
and Lavner did. As Table 1 shows, the ASR measure
performs better than other measures in all window
sizes.

Though the ASR measure has made improvements
in identification in rice DNA, the accuracy is still
far away from being perfect, especially in short frag-
ments. It is somewhat different from the result of
Kotlar and Lavner. Maybe it is because of the dis-
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Fig. 1 Argument distributions of A, C, G, T for coding and noncoding regions. A. Histograms of arg(A[s]), arg(C[s]),

arg(G[s]), and arg(T [s]) values for 5,047 coding sequences. B. Histograms of arg(A[s]), arg(C[s]), arg(G[s]), and

arg(T [s]) values for 5,047 noncoding sequences. A 2π shift was applied to part of the data when necessary.
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Fig. 2 Nonparametric fit for the histograms of arguments C and T.
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Table 1 Performance of Fourier Spectrum Measures Using Different Window Sizes

Measure Percentage of exons detected for 10% false positive (%)

90 bp 120 bp 180 bp 240 bp 300 bp 351 bp

SC 50.33 59.78 73.83 86.65 91.04 93.60

SR 48.88 59.17 71.86 82.66 88.78 92.19

ASR 61.07 71.56 83.86 90.50 94.07 96.01

tinctness of different species. One method also based on

DFT was used by Wang et al (16 ). Its accuracy of identi-

fying coding regions is apt to show that the methods based

on DFT do not have as high performance as Kotlar and

Lavner’s description.

Linear Discriminant Analysis

Recognition Variables

In order to increase the identification accuracy in rice cod-

ing regions, we chose three different variables as discrimi-

nant parameters besides the ASR variable, and performed

the Linear Discriminant Analysis.

The asymmetric variable

We calculated the distribution of A, C, G, T bases at three

codon positions on the test set (Table 2). As Table 2 re-

veals, the contents of T, G, and A are poor at the first,

second and third codon positions, whereas for the noncod-

ing sequences, the contents of A, C, G, and T are nearly a

constant no matter which position the nucleotide locates.

Considering all the three alternative phases in coding se-

quences, we assumed that the first inframe codon started

at position i (i = 1, 2, or 3) in the sequence, and let y1(i),

y2(i), y3(i) represent the contents of T, G, and A at the

first, second, and third codon positions, respectively. We

denoted Ri as Ri =
∏3

j=1 yj(i) (i = 1, 2, or 3) and defined

the asymmetric variable as X1 = mini(Ri).

Table 2 Contents of A, C, G, T bases

at Three Codon Positions

Codon position A C G T

1st 0.2611 0.2130 0.3559 0.1700

2nd 0.2982 0.2420 0.1862 0.2737

3rd 0.1472 0.3388 0.3071 0.2069

The purine variable

As we know, the predominant bases at the first codon po-

sition are purines (nucleotides A and G ) and this rule is

independent of species. Table 2 could also prove this fact.

We defined Pi (i = 1, 2, or 3) as the occurrence frequency

of purines in the three phases. The purine variable was

defined as X2 = maxi(Pi).

The stop-codon variable

The stop codon is one of the triplets TAA, TAG, and TGA.

As Wang et al described, the distribution of the triplets in

coding regions is apparently different from those in non-

coding regions (16 ). The total number of the triplets con-

tained in all three frames in a sequence was denoted by n.

The number of the frames containing the three triplets in

a sequence was denoted by K (K = 0, 1, 2, or 3). The

stop-codon variable was defined as X3 = (1 + K2)n.

Result

The LDA algorithm was applied by using the three vari-

ables mentioned above with the ASR variable. To eval-

uate the accuracy of prediction, sixfold cross-validation

tests were adopted. We selected 1,600 coding and 1,600

noncoding sequences with length of 351 bp randomly from

the test set. From these fragments we obtained the data

sets by sliding windows of sizes 90, 120, 180, 240, and

300 bp, with the corresponding numbers of the coding

and noncoding sequences as 4800, 3200, 1600, 1600, and

1600, respectively. Take the data set with window size

351 bp for example, the database was randomly divided

into two parts for three times (400+1200, 800+800, and

1200+400). For each time, Part 1 was taken as a training

set and Part 2 as a test set at first, then the procedure

was applied by reversing the roles of the two parts. The

sensitivity, specificity and accuracy of the algorithm were

based on the test set according to the discriminant rules

trained from the sequences with different window lengths

90, 120, 180, 240, 300, and 351 bp, respectively (Table 3).

We also calculated the prediction results using only one

variable each time (Table 4). The procedure was quite

like the case of four variables.

The relation between the prediction accuracy of the

algorithm and sequence length is shown in Figure 3. As

it reveals, we could see that the prediction accuracy of

the ASR variable is better than that of the asymmetric

and purine variables, while the stop-codon variable per-

forms the best among the four. However, we could see that

when sequence length decreases, the accuracy of the stop-

codon variable reduces drastically (this phenomenon was

also narrated by Wang et al ; ref. 16 ), while the accuracy

of ASR reduces relatively slower. Though ASR does not

perform better than the stop-codon variable, compared

with the asymmetric and purine variables, it is relatively
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Fig. 3 The relation between the prediction accuracy of the algorithm and sequence length. X1: the asymmetric value;

X2: the purine value; X3: the stop-codon value; X4: the ASR value.

Table 3 The Average Prediction Results Using Four Variables

Performance 90 bp 120 bp 180 bp 240 bp 300 bp 351 bp

Sensitivity (training) 90.73 94.54 97.79 98.69 99.35 99.65

Specificity (training) 88.04 90.28 94.35 96.64 97.85 97.97

Accuracy (training) 89.38 92.68 96.07 97.67 98.60 98.81

Sensitivity (test) 90.68 94.49 97.55 98.76 99.32 99.60

Specificity (test) 88.03 90.81 94.31 96.64 97.74 98.15

Accuracy (test) 89.35 92.65 95.93 97.70 98.53 98.88

Table 4 The Average Prediction Accuracy Using One Individual Variable

Variable 90 bp 120 bp 180 bp 240 bp 300 bp 351 bp

asymmetric 75.21 77.67 80.79 84.11 87.37 88.19

purine 72.42 73.84 76.67 80.65 83.74 86.46

stop-codon 82.00 85.90 91.60 94.06 96.49 97.07

ASR 81.34 83.62 87.93 89.88 91.84 93.33

better in recognizing coding sequences, especially in

shorter fragments. Meanwhile, the prediction accuracy of

coding regions using LDA with the four values increases

about 8%–9% compared to the accuracy only using the

ASR value in all window lengths.

Discussion

We could predict exons in a gene sequence using a slid-

ing window of 351 bp with the ASR measure. Moreover,

the plot of arg(ASR) can be a tool for finding the read-

ing frame (5 ). Figure 4 depicts the graphs of the ASR

measure and the arg(ASR) value on gene AB037371.

What’s more, we could use the discriminant value ob-

tained by LDA with the four variables to detect exons. As

Wang et al mentioned, the stop-codon value could help to

detect the correct reading frame of coding regions (16 ).

Now with the help of arg(ASR) and stop-codon values,

we could make our decision that on what phase the exon

is. It will make the recognition of coding sequences easier.

By defining the prediction score for each gene as:

score =
E(Vcoding)− E(Vnoncoding)

std(Vcoding) + std(Vnoncoding)

(Vcoding and Vnoncoding are LDA discriminant values that

are limited to ASR values), we could give a roughly cri-

terion by which the prediction quality of the whole genes

could be scored.
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Fig. 4 Graphs of the ASR measure (A) and the arg(ASR) value (B) on the Rice Gene AB037371 using a sliding

window of 351 bp.
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