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Abstract

A medical specialty indicates the skills needed by health care providers to conduct key

procedures or make critical judgments. However, documentation about specialties

may be lacking or inaccurately specified in a health care institution. Thus, we propose

to leverage diagnosis histories to recognize medical specialties that exist in practice.

Such specialties that are highly recognizable through diagnosis histories are de facto

diagnosis specialties. We aim to recognize de facto diagnosis specialties that are listed

in the Health Care Provider Taxonomy Code Set (HPTCS) and discover those that are

unlisted. First, to recognize the former, we use similarity and supervised learning

models. Next, to discover de facto diagnosis specialties unlisted in the HPTCS, we

introduce a general discovery‐evaluation framework. In this framework, we use a

semi‐supervised learning model and an unsupervised learning model, from which

the discovered specialties are subsequently evaluated by the similarity and supervised

learning models used in recognition. To illustrate the potential for these approaches,

we collect 2 data sets of 1 year of diagnosis histories from a large academic medical

center: One is a subset of the other except for additional information useful for

network analysis. The results indicate that 12 core de facto diagnosis specialties listed

in the HPTCS are highly recognizable. Additionally, the semi‐supervised learning

model discovers a specialty for breast cancer on the smaller data set based on

network analysis, while the unsupervised learning model confirms this discovery and

suggests an additional specialty for Obesity on the larger data set. The potential

correctness of these 2 specialties is reinforced by the evaluation results that they

are highly recognizable by similarity and supervised learning models in comparison

with 12 core de facto diagnosis specialties listed in the HPTCS.
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1 | INTRODUCTION

Medical specialties provide information about which health care pro-

viders (hereinafter referred to as “providers”) have the skills needed
- - - - - - - - - - - - - - - - - - - - - - - - - - -

e Creative Commons Attribution‐N
ed and is not used for commercial

blished by Wiley Periodicals, Inc. o
to conduct key procedures or make critical judgments. They are useful

for training and staffing, as well as providing confidence to patients

that their providers have the expertise required to address their

problems.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Health care institutions have many ways to express and take

advantage of staff specialties, including organizing them into depart-

ments. However, such an organization has its limitations. For instance,

at a large medical center, some specialties may be lacking or inaccu-

rately described (eg, they are not always entered for new hire docu-

ments), employees can change roles, and encoded departments do

not always align with specialties. As a result, there could be a gap

between the diagnosis histories of certain providers and their special-

ties. There is thus an opportunity to design and apply data‐driven

techniques that assist in the management of health care operations

in various settings, such as staffing by providing accurate specialty

information about current staff and building patient confidence by

ensuring that patients are treated by specialists.1

In the United States, providers select from the Health Care

Provider Taxonomy Code Set (HPTCS)2 when they apply for their

National Provider Identifiers (NPIs).3 NPIs are required by the Health

Insurance Portability and Accountability Act of 1996 and are used in

health care–related transactions. Providers usually choose taxonomy

codes according to the certifications they hold. Ideally, this mechanism

would identify each provider with the taxonomy codes that most

accurately describe their specialties. However, this is not always the

case for several reasons.

First, the National Plan & Provider Enumeration System does not

verify that the taxonomy code selections made by providers in NPI

applications are accurate.2 Second, certain taxonomy codes do not

correspond to any nationwide certifications that are approved by a

professional board. For example, the specialty for Men and Masculinity

is a well‐recognized area of interest, study, and activity in the field of

psychology; however, there is no certification or credential available to

identify psychologists who might work in this area.4 Third, not all

national certifications are reflected by the taxonomy code list. Since

the taxonomy codes do not correspond to certifications within the

field, providers may interpret these codes inconsistently.

In view of the limitations of purely relying on the taxonomy codes,

we introduce methods to leverage real‐world diagnosis histories to

infer and recognize actual specialties. We refer to such inferred

knowledge as de facto specialties, which we define as medical special-

ties that exist in practice regardless of the taxonomy codes that are

selected from the HPTCS.

Recognizing de facto specialties can be useful. This would enable

administrative teams to verify the taxonomy codes of the providers in

a health care institution. If certain providers' declared specialties failed

to match their activity‐based specialties, a possible redesignation of

their codes or investigation might be warranted.

Moreover, there is benefit in discovering de facto specialties that

are unlisted in the HPTCS. As the medical profession evolves, the

HPTCS may not be comprehensive enough.5-7 Inefficiencies and mis-

management could arise if the specialty codes are not sufficiently

expressive to convey providers' specialties. For instance, if there is

no official taxonomy code to express certain specialties, since no pro-

vider could declare such unlisted de facto specialties, false alarms of

suspicious electronic health record (EHR) access detection might be

raised. Other concerns have been voiced by the American Psycholog-

ical Association: “... several national certifications that do exist are not

reflected on the specialty code list. Since the specialty codes do not
correspond to certifications within the field, psychologists will

interpret these codes in different ways. Use of the specialty codes

by psychologists therefore will not be uniform and will not provide

meaningful information about a psychologist's practice.”4

However, as shown in this paper, not all specialties can be accu-

rately recognized through diagnosis histories. Thus, the focus of this

study is on “de facto diagnosis specialties” of providers that exist in

practice and are highly recognizable by the diagnoses documented in

the EHRs of the patients. Our goal is to recognize de facto diagnosis

specialties and discover those that do not have official taxonomy

codes in the HPTCS.

To demonstrate the feasibility of our methods, we study 1 year of

diagnosis histories from Northwestern Memorial Hospital with 2 data

sets. One is attributable and the other is full. The attributable data set

is a subset of the full data set except for additional information useful

for network analysis. We make the following major contributions.
• We introduce methods to leverage real‐world EHRs of patients to

recognize de facto diagnosis specialties. We use similarity and

supervised learning models for recognition.

• We show that 12 core de facto diagnosis specialties listed in the

HPTCS are highly recognizable. For instance, multilayer

perceptrons achieve an F1 score of 90.90% for the mean of these

12 specialties on the full data set.

• We propose a novel de facto diagnosis specialty discovery prob-

lem. To solve it, we introduce a general discovery‐evaluation

framework. Specifically, the framework begins by using a semi‐

supervised learning model based on heterogeneous information

network analysis or an unsupervised learning model based on

topic modeling for discovery. The discovered results are then

evaluated by similarity and supervised learning models used in

recognition. As a result, the discovery problem enriches the appli-

cations of the recognition problem by resorting to recognition

models for evaluating the discovery results.

• We show that the semi‐supervised model discovers a de facto

diagnosis specialty for breast cancer on the attributable data set.

The unsupervised learning method confirms this discovery and

suggests a new de facto diagnosis specialty for Obesity on the

larger full data set. The potential correctness of these 2 specialties

is reinforced by the evaluation results that they are highly recog-

nizable by similarity and supervised learning models in comparison

with 12 core de facto diagnosis specialties listed in the HPTCS.

A preliminary version of the de facto diagnosis specialty discovery

portion of this work was reported at the 6th ACM Conference on

Bioinformatics, Computational Biology, and Health Informatics.8 The

research reported in the current paper extends the prior work and

includes comprehensive studies of both recognizing and discovering

de facto diagnosis specialties. Specifically, the empirical findings of

recognizing the 12 core de facto diagnosis specialties on the data set

that excludes discovered specialties are new. The current paper also

expands the scope of recognition and evaluation of the results with

a new similarity model and a multilayer perceptron model. The results

of their recognition and evaluation of discovery are only reported in



TABLE 1 Attributes of the attributable and full data sets

Attributable Full
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the current paper. In addition, we describe and discuss results of using

procedure codes for recognition exclusively in the current paper.
Accesses 35,869 4 829 376

Patients 41,603 291 562

Users (providers) 2,504 3269

Patient encounters 62,390 890 812

Taxonomy codes 161 165
2 | BACKGROUND

This section describes related work and introduces the data sets and

performance measures that are used in this study.
Diagnoses 4,172 13 566

Procedures 740 2165
2.1 | Related work

A driver behind inferring medical specialties is the analysis of audit

logs for security and privacy purposes.9-12 This is feasible because

patient records and audit logs encode valuable interactions between

users and patients.13 Users have roles in the health care institutions.

If these roles are not respected by the online activities of the users,

there may be an evidence of a security or privacy violation. An early

study on this theme investigated the idea of examining accesses to

patient records to determine the position of an employee.14 This work

used a Näıve Bayes classifier and had generally poor performance on

many positions, often because such positions could not easily be char-

acterized in terms of the chosen attributes. Moreover, experience‐

based access management envisioned such studies as part of a general

effort to understand roles by exploiting information about institutional

activities through the study of audit logs.15 Another study in this

direction sought to infer new roles from ways in which employees

acted in their positions by iteratively revising existing positions based

on experiences.16

The problem of determining which departments are responsible

for treating a given diagnosis was addressed by studies on Explana-

tion‐Based Auditing System (EBAS).17,18 They are similar to our prob-

lem of identifying a user's specialty. In these studies, the auditing

system uses the access patterns of departments to determine diagno-

sis responsibility information in 2 ways: by analyzing (1) how fre-

quently a department accesses patients with the diagnosis and (2)

how focused the department is at treating the given diagnosis. For

instance, EBAS could use this approach to determine that the Oncol-

ogy Department is responsible for chemotherapy patients, while the

Central Staffing Nursing Department is not. The random topic access

model1 went beyond approaches based on conditional probabilities

to work with topic models that characterize the common activities

of employees in certain positions in the hospital. The evaluation of

our work can be seen as merging ideas from EBAS and random topic

access model to explore when a de facto diagnosis specialty can be

described with a classifier. An advantage of our work comparing with

the other recent work on inappropriate patient record access detec-

tion19-21 is that our work outputs de facto diagnosis specialty informa-

tion even for those that lack codes in the HPTCS. It has been shown

that the de facto diagnosis specialty information is useful in convinc-

ing patients into trusting a provider for using their EHRs.22,23
*The percentage is not reported due to the proprietary nature of the data.
2.2 | Data sets

We collect access log data from a hospital and combine it with the

diagnosis lists in patient discharge records. For each encounter (visit

to the hospital by a patient), there is a set of diagnoses, and for each
provider, there is a record of whether the provider accesses the EHR

of that patient during that encounter. We use the term users (as in

EHR users) rather than providers.

The data for this study come from the Cerner Powerchart EHR

system in use at Northwestern Memorial Hospital. The data contain

all user accesses (in the form of audit logs) made over a 1‐year period,

as well as insurance billing code lists, in the form of International Clas-

sification of Diseases–Ninth Revision (ICD‐9), for patient encounters

during this period. All data are de‐identified for this study in accor-

dance with the Health Insurance Portability and Accountability Act Pri-

vacy Rule and conducted under Institutional Review Board approval.

Since specialties are mainly focused on physicians, we filter out users

with other positions (e.g., nurses and dieticians) from the data.

A small portion of the collected data has an explicit mapping

between users and the diagnoses documented in the EHRs they

access. In other words, such diagnoses can be attributed to the users

who access them. We refer to this portion of the data as the attribut-

able data set. However, the majority of the data lacks such an explicit

relationship. In fact, patients may have multiple diagnoses and their

EHRs may be accessed by different users without documentations

about which specific diagnoses are associated with the actions of

which user. Although an attributable data set is more desirable with

attributable access information, it may not always be available in prac-

tice. To this end, we also expand to a more general data set that is

more representative of the challenging scenarios encountered in prac-

tice. Hence, we also use all of the data after removing attributable

information, which we refer to as the full data set. The attributes of

the data sets used in this study are summarized in Table 1.

We use the Clinical Classifications Software to cluster diagnosis

and procedure codes into a manageable number of clinically meaning-

ful categories.24 This is because ICD‐9 codes are not completely indic-

ative of patients' clinical phenotypes25 and the sheer number of codes

makes it too challenging to characterize patterns of diagnoses or pro-

cedures. The ICD‐9 codes for diagnoses and the ICD‐9‐CM codes for

procedures are aggregated into 603 and 346 Clinical Classifications

Software codes, respectively. In practice, due to a lack of documenta-

tion or multiple specialties, a user can have zero or many taxonomy

codes. In this study, only the primary taxonomy code, if any, is consid-

ered hereinafter. For either the attributable or the full data set, the

majority of users are known to have accurate taxonomy codes as their

labels.* The taxonomy codes for the remainder of the users are either

inaccurate or missing and are labeled as NA. Newly discovered de
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facto diagnosis specialties will be assigned to NA‐labeled users. In dif-

ferent sets of experiments, recognition models are trained on access

logs whose users have accurate taxonomy codes, or together with

access logs whose users are assigned with newly discovered de facto

diagnosis specialties. To ensure there is a sufficient amount of data

to train models, taxonomy codes with fewer than 20 associated users

in either data set are filtered out.26
2.3 | Performance measures

We use precision, recall, and the F1 score as the performance

measures. The precision P for a specialty s is the faction of correctly

classified users among those who are classified as s. The recall R for

a specialty s is the fraction of users with specialty s who have been

recognized over all available users with s. The precision of a recogni-

tion model is the weighted average of precision for each specialty;

the weight for a specialty s is the ratio of the number of users with s

to the total number of users. The recall of a recognition model is

defined similarly. The F1 score is the harmonic mean of the precision

(P) and recall (R): F1 = 2 · P · R/(P + R). In general, a higher F1 score

indicates a better performance.
3 | RECOGNIZING DE FACTO DIAGNOSIS
SPECIALTIES

Here, we illustrate the concept and recognition models in greater

detail.
3.1 | De facto diagnosis specialty

Intuitively, it should be easier to characterize a urologist with medical

diagnoses for conditions of the kidney, ureter, and bladder, as opposed

to an anesthesiologist, whose duties are more crosscutting with

respect to diagnoses, concerning essentially all conditions related to

surgeries.

To orient the reader using a concrete example, let us test this

hypothesis with a simple similarity recognition model based on diag-

nosis codes. To gain intuition into the general idea, let us delay the

technical discussions of the recognition model in Section 3.2 and con-

sider the following steps. First, we begin with a data set that indicates

which EHRs have been accessed by urologists and anesthesiologists

and view each patient as a document whose words are diagnoses in

their EHRs. Next, we create a weighting for how many of each diagno-

sis is accessed by each user, with some adjustment for its frequency.

This technique is typified by term frequency‐inverse document fre-

quency (TF‐IDF).27 Then based on TF‐IDF, we represent each diagno-

sis specialty by its most relevant diagnoses and represent each user by

the diagnoses in the most frequently accessed EHRs. Finally, the sim-

ilarity model can classify users according to the specialties with which

they share the diagnoses in the EHRs that are frequently accessed.

Using the full data set as described in Section 2.2, we observe that

urologists tend to access EHRs with diagnoses such as “retention of

urine” and “urinary tract infection,” whereas anesthesiologists tend

to access EHRs with diagnoses such as “hemorrhage of rectum and

anus” and “nausea with vomiting.” When using the diagnoses in
frequently accessed EHRs by either of the 2 specialists as the features

for the similarity model, the results are decent for recognizing the

urologists, yielding an F1 score of 70.35%. However, the results for

recognizing anesthesiologists are much poorer, yielding an F1 score

of 11.30%. If we use a supervised learning model, such as support vec-

tor machines, we can achieve substantially better results: recognizing

anesthesiologists with an F1 score of 48.98%. However, this perfor-

mance is still weaker than that of recognizing urologists, which

achieves an F1 score of 97.44%. The experimental results show that

urology is more recognizable than anesthesiology by the diagnoses

inherent in EHRs. Thus, urology is more likely a diagnosis specialty

than anesthesiology.

Based on the guidance of several clinicians and hospital adminis-

trators, we identify 12 taxonomy codes from the HPTCS as diagnosis

specialties: cardiovascular disease, dermatology, gastroenterology,

infectious disease, neonatal‐perinatal medicine, neurological surgery,

neurology, obstetrics and gynecology, ophthalmology, orthopaedic

surgery, pulmonary disease, and urology. We refer to this group as

the 12 core diagnosis specialties or simply 12 core classes. Recall that

de facto diagnosis specialties are specialties that exist and are highly

recognizable through diagnosis histories. In our experiments, we aim

to recognize these specialties from the data sets as described in

Section 2.2. If a de facto diagnosis specialty that is unlisted in the

HPTCS is discovered, then its recognition performance will be com-

pared with those of such 12 core de facto diagnosis specialties listed

in the HPTCS.
3.2 | Recognition models

Ideally, a de facto diagnosis specialty can be recognized accurately

through diagnosis histories. To illustrate how this is possible, consider

an analogy with respect to the classification of documents, an area

that has inspired many of the techniques we use. The users can be

likened to readers of an archive of documents. The words in each

document correspond to diagnoses. Users with specialties are groups

of readers who presumably have a common de facto diagnosis

specialty and interest in the same group. To solve the de facto

diagnosis specialty recognition problem, we aim to develop a classifier

that characterizes this common interest with respect to the

documents that they have read, or the EHRs that they have accessed.

For instance, if there are a group of readers who are ophthalmologists

and they are inordinately interested in documents on disorders of the

eyes, then we can use this proclivity to serve as a discriminatory

feature.

In the rest of this section, we describe the similarity and super-

vised learning models for recognition. Essentially, all of these models

are classifiers. They require feature vectors as the inputs of classifica-

tion, which are described as follows.

3.2.1 | Feature vector

Suppose that u is a user in the set of users U whose cardinality is ∣U∣

and d is a diagnosis in the set of diagnoses D whose cardinality is ∣D∣.

Let nu,d be the number of times that the user u accesses EHRs with the

documented diagnosis d. We use md to represent the number of users

who access EHRs with the documented diagnosis d. To apply
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recognition models to the data sets, each user u ∈ U is mapped to the

following TF‐IDF weighted diagnosis vector

vu ¼ vu;d1…vu;d∣D∣
� �⊤

∈R∣D∣; (1)

where each element of the vector is the relevance score of its

corresponding diagnosis d ∈ D to u and is computed according to

TF‐IDF,

vu;d ¼ log nu;d þ 1
� �

log
∣U∣
md

� �
: (2)

Note that (2) applies logarithms to penalize higher frequencies

with a pseudo count of one to mitigate bias from lower frequencies,

especially zero frequencies. The feature vector vu in (1) serves as the

input to the recognition models, which we now describe.

3.2.2 | Similarity model

The similarity model proceeds by finding the most relevant diagnoses

of each diagnosis specialty and the diagnoses in the most frequently

accessed EHRs by each user. Users are classified according to the

specialties with which they share the most common diagnoses.

Let s be a diagnosis specialty that takes the form of a taxonomy

code. The set of diagnosis specialties is denoted by S. For the user u,

we define V lð Þ
u as the set of diagnoses whose corresponding relevance

scores in (2) are the largest l elements in (1). Thus, V lð Þ
u can be consid-

ered as the l most representative diagnoses for the user u that are fre-

quently accessed by u and have high distinctions as reflected by the

idea of TF‐IDF.

We go on to find the l most representative diagnoses for each

diagnosis specialty in a similar way. We use U(s) to represent the set

of users whose taxonomy code is s. Then, the TF‐IDF weighted

diagnosis vector of a diagnosis specialty s is

vs ¼ ∑u∈Us
vu

∣Us∣
; (3)

where vu is theTF‐IDF weighted diagnosis vector of u as defined in (1).

Similarly, for the specialty s, we define V lð Þ
s as the set of diagnoses

whose corresponding relevance scores are the largest l elements in

vs as given by (3). Likewise, V lð Þ
s can be thought of as the most repre-

sentative diagnoses for the diagnosis specialty s.

The similarity between a user u and a diagnosis specialty s is

characterized by the Jaccard similarity coefficient of V lð Þ
u and V lð Þ

s . In this

way, the similaritymodel will recognize a user u's diagnosis specialty s as

argmaxs∈S
∣V lð Þ

u ∩V lð Þ
s ∣

∣V lð Þ
u ∪V lð Þ

s ∣
; (4)

where l is a parameter that will be tuned experimentally.

3.2.3 | Supervised learning models

We further use 5 recognition models based on supervised learning:

decision trees (J48), random forests, k nearest neighbors with principal

component analysis (PCA‐KNN), support vector machines, and multi-

layer perceptrons. Specifically, to mitigate the curse of dimensionality

problem by k nearest neighbors, we use principal component analysis
by selecting a small number of the principal components to perform

dimension reduction. For support vector machines, a Gaussian kernel

is used.
4 | RECOGNITION EXPERIMENTS

This section describes the experimental setting for recognizing de

facto diagnosis specialties and the results of the experiments.
4.1 | Experimental setting

To recognize the 12 core classes as listed in Section 3.1, users whose

taxonomy codes are not in the 12 core classes are excluded from the

full data set. For the decision trees, random forests, support vector

machines, and multilayer perceptrons, we use the default parameter

values in Weka.28 We split the data instances in the full data set so

that 20% is used for parameter tuning and the remaining 80% is for

performance evaluation. Within the 20% portion of the data set, we

use one half for model training and the other half for validation to

select the parameter values that achieve the highest F1 scores for

the mean of the 12 core classes. The number of nearest neighbors K

and the number of principal components are set to 9 and 50, respec-

tively, for KNN‐PCA. The parameter l of the similarity model in (4) is

set to 100. We use 10 × 2 cross‐validation for recognition with classi-

fiers on the 80% portion of the data set. In each of the 10 rounds, the

data instances are randomly split into 2 equal‐sized sets. Then a model

is trained on one set and tested on the other set and vice versa. After

these 10 rounds, the average of the 20 testing results is reported.
4.2 | Feature study

Since both diagnosis and procedure codes are used separately in EHRs,

we devise 2 preliminary experiments using features from diagnoses only

and procedures only. As discussed in Section 3.2.1, features from diagnoses

means that TF‐IDF vectors (1) of diagnosis codes are used as input fea-

tures for recognitionmodels. The experiments for procedures take input

features from the procedure codes in a similar manner.

We evaluate the F1 scores of the mean of 12 core classes with

multilayer perceptrons under the 10 × 2 cross‐validation using a

paired t test with P < 0.05. The results indicate that diagnoses

(F1 score = 90.90%) yield statistically significantly better results than

procedures (F1 score = 85.48%). Similar results are obtained for the

other recognition models. Such findings indicate that it is easier to

characterize and classify users with respect to medical diagnoses than

procedures. Hence, we use the diagnosis features in the remainder of

our experiments.
4.3 | Recognition results

The results of the experiments for recognizing 12 core de facto diag-

nosis specialties are presented in Table 2. It is important to highlight

that multi‐class classification (12 classes in our case) is generally more

challenging than binary classification. Table 2 shows that, in general,

the 12 core de facto diagnosis specialties listed in the HPTCS are

highly recognizable. Despite its simplicity, the similarity model is



TABLE 2 De facto diagnosis specialty recognition performance on the full data set (in percent)

Specialty

Similarity Decision Trees Random Forests

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

Mean of 12 Core classes 67.63 66.53 67.07 71.47 67.98 69.68 73.54 73.55 73.55

Cardiovascular disease 80.00 69.84 74.58 72.31 74.60 73.44 66.67 53.97 59.65

Dermatology 53.66 57.89 55.70 72.41 55.26 62.69 76.19 84.21 80.00

Gastroenterology 75.00 71.05 72.97 62.50 78.95 69.77 55.88 50.00 52.78

Infectious Disease 50.00 57.69 53.57 65.71 88.46 75.41 77.42 92.31 84.21

Neonatal‐Perinatal Medicine 50.00 53.57 51.72 90.91 35.71 51.28 95.83 82.14 88.46

Neurological Surgery 48.00 60.00 53.33 100.00 45.00 62.07 81.82 45.00 58.06

Neurology 66.67 55.32 60.47 60.53 48.94 54.12 67.44 61.70 64.44

Obstetrics & Gynecology 75.24 72.48 73.83 75.22 77.98 76.58 69.05 79.82 74.04

Ophthalmology 73.81 73.81 73.81 44.74 80.95 57.63 78.72 88.10 83.15

Orthopaedic Surgery 51.35 65.52 57.58 72.73 55.17 62.75 86.21 86.21 86.21

Pulmonary Disease 70.37 79.17 74.51 89.47 70.83 79.07 80.00 83.33 81.63

Urology 76.47 65.00 70.27 73.68 70.00 71.79 80.95 85.00 82.93

Specialty

PCA‐KNN Support Vector Machines Multilayer Perceptrons

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

Mean of 12 core classes 79.29 78.10 78.69 91.27 90.29 90.78 91.31 90.50 90.90

Cardiovascular disease 78.87 88.89 83.58 93.44 90.48 91.94 95.31 96.83 96.06

Dermatology 64.86 63.16 64.00 72.34 89.47 80.00 77.08 97.37 86.05

Gastroenterology 86.49 84.21 85.33 85.00 89.47 87.18 90.48 100.00 95.00

Infectious Disease 57.14 61.54 59.26 92.31 92.31 92.31 83.33 96.15 89.29

Neonatal‐Perinatal Medicine 100.00 67.86 80.85 96.43 96.43 96.43 92.86 92.86 92.86

Neurological Surgery 56.25 45.00 50.00 100.00 50.00 66.67 100.00 50.00 66.67

Neurology 74.00 78.72 76.29 79.66 100.00 88.68 87.76 91.49 89.58

Obstetrics & Gynecology 90.11 75.23 82.00 96.00 88.07 91.87 100.00 88.99 94.17

Ophthalmology 88.10 88.10 88.10 100.00 97.62 98.80 88.64 92.86 90.70

Orthopaedic Surgery 61.90 89.66 73.24 89.66 89.66 89.66 83.87 89.66 86.67

Pulmonary Disease 78.57 91.67 84.62 91.67 91.67 91.67 78.26 75.00 76.60

Urology 78.26 90.00 83.72 100.00 95.00 97.44 100.00 90.00 94.74
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effective. It attains an F1 score of 67.07% for the mean of the 12 core

classes. Under the 10 × 2 cross‐validation, according to a paired t test

with p < 0.05 for the F1 score of the mean of the 12 core classes, all of

the supervised learning models perform statistically significantly better

than the similarity model. For instance, multilayer perceptrons achieve

an F1 score of 90.90% for the mean of these 12 specialties.
5 | DISCOVERING DE FACTO DIAGNOSIS
SPECIALTIES

Next, we aim to discover de facto diagnosis specialties that lack offi-

cial taxonomy codes in the HPTCS. The recognition results of the de

facto diagnosis specialties in Section 4.3 suggest that an unlisted de

facto diagnosis specialty, if discovered, may be evaluated by those

recognition models.
5.1 | Discovery‐evaluation

It is important to emphasize that there is no ground truth for the de

facto diagnosis specialty discovery problem. Hence, we solve it under

a general discovery‐evaluation framework.
5.1.1 | Discovery

We first use a semi‐supervised learning model to leverage the map-

ping between users and their specifically accessed diagnoses of EHRs

in the attributable data set. Next, we consider a more challenging

scenario where such attributable access information is unavailable. In

this case, we use an unsupervised learning model for discovery in

the larger full data set. Since the attributable data set is a subset of

the full data set except for the attributable access information, the

discovery results can be reinforced if they exhibit common findings

on both data sets.
5.1.2 | Evaluation

To interpret the discovery results, we rely on expert opinions.

However, we acknowledge that in practice, such opinions may not

be available. Hence, we also use similarity and supervised learning

models to evaluate the recognition performance of the discovered

de facto diagnosis specialties by comparing them with the recognition

performance of the listed de facto diagnosis specialties, such as the 12

core classes as described in Section 3.1. Ideally, their recognition per-

formance should be similar. We evaluate such recognition perfor-

mance using the same recognition models as described in Section 3.2.
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5.2 | PathSelClus for discovery

Intuitively, discovering de facto diagnosis specialties through diagnosis

histories may rely upon effective clustering techniques. Such tech-

niques may divide a pool of users into groups that have high

intragroup similarities but low intergroup similarities. We anticipate

that new de facto diagnosis specialties may emerge from these clus-

ters. As noted in Section 2.2, the attributable data set has an explicit

mapping between users and the diagnoses documented in the EHRs

they access. In fact, the structure of the attributable data set can be

represented as heterogeneous information networks.29-31 Given the

heterogeneous information network setting and partially labeled

ground truth, we use PathSelClus, a semi‐supervised learning model

based on such a network setting.30 For context, we briefly introduce

heterogeneous information networks.
5.2.1 | Heterogeneous information networks

An information network consists of objects and links. There are multi-

ple types of objects or links in a heterogeneous information network.

This type of network explicitly distinguishes between object and link

types. For instance, there exist 3 types of objects in the attributable

data set: users, patients, and diagnoses. Links exist between users

and patients through the relations of “access EHRs of” and “whose

EHRs are accessed by”; links exist between users and diagnoses

through the relations of “access” and “accessed by.” Note that such

links between users and diagnoses are only available in the attribut-

able data set where there exists the attributable access information

on users and their accessed diagnoses in the EHRs.

In heterogeneous information networks, link‐based clustering

groups objects based on their relations to other objects in the

networks. The relations derived from a heterogeneous information

network between 2 objects are called meta‐paths.32 In our case, the

target object type for clustering is the user object. To cluster users,

there are 2 meta‐paths that capture relations between users: User

(access EHRs of) Patient (whose EHRs are accessed by) User and User

(access) Diagnosis (accessed by) User.
5.2.2 | Semi‐supervised learning

During clustering, a decision has to be made about the weighted com-

bination of different meta‐paths to use. Such a decision can be guided

by the seeded target objects in different clusters. For guided clustering

on heterogeneous information networks, we use the semi‐supervised

learning model PathSelClus.

In PathSelClus, the guidance of clustering takes the form of object

seeds in each cluster. For example, to cluster users based on the pat-

tern of their accessed diagnosis histories, one can provide representa-

tive users who have similar access patterns as seeds in each individual

cluster. These seeds provide guidance for clustering similar target

objects in the heterogeneous information networks and help adjust

combination weights of meta‐paths during the clustering process. It

is important to note that PathSelClus can handle input clusters that

are unseeded. This is the exact feature that makes it possible to use

PathSelClus to discover new de facto diagnosis specialties. The dis-

covering process is illustrated as follows.
5.2.3 | Clustering users

Recall Section 2.2 that the majority of users have accurate taxonomy

codes while the rest are labeled as NA. For the majority of users

who have accurate taxonomy codes, we create a cluster for each spe-

cialty. Each cluster is initialized by being assigned users of the same

specialty as the seeds of the cluster. We also create additional empty

clusters. Each empty cluster is expected to be populated with NA‐

labeled users who have similar access patterns as guided by the other

seeded clusters. As an output, each NA‐labeled user is assigned to the

cluster with the highest assignment likelihood. The clusters that are

assigned to NA‐labeled users can be either seeded or unseeded ones.

We can analyze the semantics of the unseeded clusters via their

assigned users.We treat a cluster as a taxonomy code and find themost

relevant diagnoses for each cluster. Specifically, the semantics of an

unseeded cluster may be exhibited via a list of the most frequently

accessed diagnoses by the users in the cluster. Note that information

on user accessed diagnoses is only available in the attributable data

set. Based on the semantics, themedical expert can label each unseeded

cluster, which we use to interpret the discovery results.

5.3 | Latent Dirichlet allocation for discovery

In practice, attributable data sets are not always available for using

PathSelClus. Hence, we also consider an unsupervised learning

method based on topic modeling.

5.3.1 | Unsupervised learning based on topic
modeling

Latent Dirichlet allocation (LDA) is an unsupervised learning method

based on topic modeling.33 In the language of text analysis, a corpus

is a collection of documents, where each document is composed of

words. With the output of LDA, on the corpus level a topic can be rep-

resented by a ranked list of words ordered by their generative likeli-

hoods given the topic. Here, topics can be thought of as summaries

of the different themes pervasive in the corpus. A topic may be

interpreted from the semantics exhibited in the words most likely to

be generated by the topic. Meanwhile, with the output each document

can be characterized with respect to these topics in the form of a distri-

bution over the topics, which is also known as topic allocations.

5.3.2 | Clustering users

The intuition behind our employment of LDA is from the possible exis-

tence of diagnosis topics with coherent themes in a hospital. In other

words, if diagnoses documented in EHRs are considered as words, the

de facto diagnosis specialties may correspond to topics. As in text

analysis, if a new de facto diagnosis specialty is discovered, it may

be interpreted via the semantics of the diagnoses most likely to be

generated by the specialty.

To represent a document of the corpus in the hospital setting, we

extract diagnoses of all the EHRs of a patient to form the words in a

document. In this way, each document may be indexed by a patient

p ∈ P where P is the set of the patients in the data set. With LDA, each

patient p can be characterized by a topic distribution πp . As an output

of LDA, each diagnosis topic can be represented by a ranked list of

diagnoses ordered by their generative likelihoods given the topic.
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Recall that in the de facto diagnosis specialty recognition problem,

models recognize de facto diagnosis specialties of users based on the

diagnoses documented in their accessed EHRs. Similarly, the output

diagnosis topics by LDA correspond to de facto diagnosis specialties

of users. Now, we can characterize users with respect to de facto

diagnosis specialties from their accessed EHRs of patients. Denote

by Pu the set of patients whose EHRs are accessed by the user u.

Let |Pu | be the cardinality of the set Pu. Given the topic distribution

πp of each patient p, the topic distribution of the user u can be

computed as

πu ¼ ∑p∈Pu
πp

∣Pu∣
: (5)

With the topic distribution in (5), each user is now characterized

with respect to de facto diagnosis specialties. Let s ∈ S′ be a de facto

diagnosis specialty whose topic distribution value for a user u is

indexed by πu [s]. Here, S′ is the set of diagnosis specialties whose

cardinality ∣S′∣ is equal to the predefined number of topics. Note that

∣S′∣ is also equal to the dimension of any topic distribution vector,

such as πu . To cluster NA‐labeled users based on the same de facto

diagnosis specialty, a user u is assigned with a de facto diagnosis

specialty

s ¼ argmaxs∈S0 πu s½ �;

where the assigned specialty s indexes the largest element value in the

vector πu .

5.4 | Evaluation

As discussed in Sections 5.2 and 5.3, we can manually interpret the de

facto diagnosis specialties via their representative diagnoses. In

PathSelClus, a de facto diagnosis specialty is represented by the

diagnoses that are most frequently accessed by all the users in the

same cluster. Such user accessed diagnosis information is only

available in the attributable data set. For LDA on the full data set, a

de facto diagnosis specialty is represented by the diagnoses most likely

to be generated by the specialty as a diagnosis topic. To interpret the

discovered de facto diagnosis specialties, we rely on physicians

(authors) with medical expertise. The experts reviewed the diagnosis

summaries of the specialty and labeled each with one or a few medical

themes that are pervasive in the specialty. After labeling, we compare
TABLE 3 Top diagnoses of 3 specialties as discovered by PathSelClus fr

Other bacterial infections Chronic kidney dise

Other non‐traumatic joint disorders Essential hypertensi

Convulsions Other cardiac dysrhyth

Other upper respiratory disease Abdominal pain

Phlebitis and thrombophlebitis Phlebitis and thromboph

Malaise and fatigue Other fluid and electrolyte

Other skin disorders Anemia; unspecifie

Fever of unknown origin Pleurisy; pleural effu

Cardiomyopathy Acute renal failure

Substance‐related disorders Hyperpotassemia

aNone of the clusters shows a consistent theme with respect to a de facto diag
without attributable access information.
the labeled specialties with the HPTCS to see if there are specialties

that have pervasive themes but are not listed in the code set. If such

unlisted specialties exist, they are considered to be potential newly

discovered de facto diagnosis specialties.

It is important to highlight that there is no ground truth for the

discovery results and such expert opinions are not always available

in practice. We use recognition models in Section 3.2 to evaluate

the recognition performance of the discovered de facto diagnosis spe-

cialties. Ideally, their recognition performance should be similar to that

of the 12 core diagnosis specialties listed in the HPTCS.
6 | DISCOVERY EXPERIMENTS

This section reports on the de facto diagnosis specialties discovered

by PathSelClus and LDA. When evaluating recognition performance

for the discovered specialties, we use the same experimental setting

as in Section 4.1. The recognition models used for evaluation are

described in Section 3.2.

6.1 | Discovery results for PathSelClus

To illustrate that the user accessed diagnosis information in the attrib-

utable data set is useful for discovery with PathSelClus, we start by

using PathSelClus on the full data set where such attributable access

information is unavailable. The meta‐paths remain the same except

that in the User (access) Diagnosis (accessed by) User meta‐path, 2 dif-

ferent users are related if the same diagnosis is documented in both

of their accessed EHRs. The semantics of an unseeded cluster is given

by a list of diagnoses from the most frequently accessed EHRs by the

assigned users to the cluster.

We observe that a patient can have multiple diagnoses related

to different specialties in the same EHR, such as “retention of urine”

and “benign neoplasm of skin of upper limb, including shoulder”.

Suppose that a urologist accesses the diagnosis “retention of urine”

and a dermatologist accesses the diagnosis “benign neoplasm of skin

of upper limb, including shoulder” in the EHR. Such attributable

access information is available in the attributable data set. However,

PathSelClus considers that both specialists access both diagnoses

in the same EHR. The inaccurate access mapping makes it difficult

for PathSelClus to discover de facto diagnosis specialties on the full
om the full data seta

ase Abdominal pain

on Other and unspecified lower respiratory disease

mias Nonspecific chest pain

Urinary tract infection; site not specified

lebitis Diabetes mellitus without complication

disorders Essential hypertension

d Other nervous system symptoms and disorders

sion Pneumonia; organism unspecified

Phlebitis and thrombophlebitis

Other and unspecified circulatory disease

nosis specialty. PathSelClus fails to discover de facto diagnosis specialties



TABLE 4 PathSelClus discovers a de facto diagnosis specialty for
breast cancer on the attributable data seta

Lump or mass in breast

Diffuse cystic mastopathy

Galactorrhea not associated with childbirth

Benign neoplasm of breast

Unspecified breast disorder

Abnormal mammogram, unspecified

Malignant neoplasm of upper‐inner quadrant of female breast

Benign neoplasm of lymph nodes

Personal history of malignant neoplasm of breast

Other sign and symptom in breast

aThis specialty is represented by 10 most frequently accessed diagnoses by
the users who are assigned with the breast cancer specialty.
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data set. For example, Table 3 shows the top diagnoses of 3 special-

ties as discovered by PathSelClus (the unseeded cluster count is 3).

None of the clusters exhibits a consistent theme with respect to a

specialty, even when the unseeded cluster count is set to other

values.

With respect to the attributable data set, PathSelClus discovers a

de facto diagnosis specialty for breast cancer that does not have an

official taxonomy code in the HPTCS. Table 4 lists the most

frequently accessed diagnoses by the 35 users who are assigned

with the breast cancer specialty when the unseeded cluster count

is set to 3.

Figure 1 shows the average of the performance measures of

multiclass classification on the attributable data set under 10 × 2
TABLE 5 Latent Dirichlet allocation discovers de facto diagnosis specialt

Personal history of malignant neoplasm of breast

Lump or mass in breast

Abnormal mammogram, unspecified

Other specified aftercare following surgery

Other sign and symptom in breast

Carcinoma in situ of breast

Family history of malignant neoplasm of breast

Other specified disorder of breast

Benign neoplasm of breast

Acquired absence of breast and nipple

aThese specialties are represented by 10 diagnoses most likely to be generated
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FIGURE 1 De facto diagnosis specialty recognition performance for multi

breast cancer specialty discovered by PathSelClus are in one class; users w
are in 12 distinct classes
cross‐validation. Users with the de facto breast cancer specialty dis-

covered by PathSelClus are in one class, while users whose taxonomy

codes belong to the core de facto diagnosis specialties as listed in

Section 3.1 are in 12 distinct core classes. According to a paired t test

with P < 0.05, the F1 score of the breast cancer specialty discovered

by PathSelClus is statistically significantly higher than that of the mean

of 12 core classes under the 6 recognition models.
6.2 | Discovery results for LDA

We set the number of topics for LDA to 30 by minimizing the perplex-

ity measure.33 In the larger full data set, LDA confirms the discovery of

breast cancer by PathSelClus and suggests another de facto diagnosis

specialty for obesity as shown in Table 5. These specialties are repre-

sented by 10 diagnoses most likely to be generated by these 2 diagno-

sis topics. The breast cancer and obesity specialties are assigned to 68

and 20 users, respectively.

Figures 2 and 3 summarize the average of the performance mea-

sures of multiclass classification on the full data set under 10 × 2

cross‐validation for the 2 discovered de facto diagnosis specialties.

According to a paired t test with P < 0.05, the F1 score of the discov-

ered de facto breast cancer specialty by LDA is also statistically signif-

icantly higher than that of the mean of 12 core classes under all the

recognition models. It reaffirms the finding by PathSelClus. The result

for obesity is similar, except for PCA‐KNN. Overall, both the breast

cancer and obesity specialties discovered by LDA are highly recogniz-

able on the full data set.
ies for breast cancer (left) and obesity (right) on the full data seta

Obesity, unspecified

Morbid obesity

Obstructive sleep apnea

Unspecified sleep apnea

Hypersomnia with sleep apnea, unspecified

Paralysis agitans

Hip joint replacement by other means

Edema

Other dyspnea and respiratory abnormality

Body Mass Index 4

by these 2 diagnosis topics.
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0%
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Mean of 12 Core Classes

(D) PCA-KNN
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(E) Support Vector Mach.
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80%

100%

Breast Cancer
Mean of 12 Core Classes

(F) Multilayer Perceptrons

class classification on the attributable data set. Users with the de facto

hose taxonomy codes belong to the core de facto diagnosis specialties
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FIGURE 2 De facto diagnosis specialty recognition performance for multiclass classification on the full data set. Users with the de facto breast
cancer specialty discovered by latent Dirichlet allocation are in one class; users whose taxonomy codes belong to the core de facto diagnosis
specialties are in 12 distinct classes
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FIGURE 3 De facto diagnosis specialty recognition performance for multiclass classification on the full data set. Users with the de facto obesity
specialty discovered by latent Dirichlet allocation are in one class; users whose taxonomy codes belong to the core de facto diagnosis specialties
are in 12 distinct classes
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7 | DISCUSSIONS

The recognition and discovery of de facto diagnosis specialties may

assist in managing health care institutions. For instance, recognizing

a new de facto specialty for a group of providers may lead to new care

center's creation or enable existing operational management to better

coordinate services and communication to support the providers

within the group. It should be pointed out that whether the HPTCS

needs to be updated or what is the most proper vocabulary for med-

ical specialties are beyond the scope of our work. This work shows

that there are ways to reuse and refine an existing vocabulary within

a health care institution. Besides, this work does not suggest that we

can recognize or discover every specialty. Planned future work

includes exploration of other information that may be more indicative

of specialties. For instance, instead of the ICD‐9‐CM codes used in

this work, CPT codes may be worth exploring for procedures on EHRs.
8 | CONCLUSIONS

We introduced methods to leverage real‐world diagnosis histories to

recognize de facto diagnosis specialties. Using similarity and super-

vised learning models, we experimentally showed that 12 core de

facto diagnosis specialties listed in the HPTCS are highly recognizable.

We then proposed a de facto diagnosis specialty discovery problem

under a general discovery‐evaluation framework. In this framework,

we used the semi‐supervised learning model PathSelClus on the

attributable data set and the unsupervised learning model LDA on a

larger full data set for discovery. We further used the recognition

models for evaluating the discovered specialties. PathSelClus
discovered a de facto diagnosis specialty for breast cancer on the

attributable data set. Latent Dirichlet allocation confirmed this discov-

ery and suggested a new de facto diagnosis specialty for Obesity on

the larger full data set. The potential correctness of these 2 specialties

was reinforced by the evaluation results that they are highly recogniz-

able by similarity and supervised learning models in comparison with

12 core de facto diagnosis specialties listed in the HPTCS.
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