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Abstract

The Notch signaling pathway contributes to the pathogenesis of a wide spectrum of human 

cancers, including hematopoietic malignancies. Its functions are highly dependent on the specific 

cellular context. Gain-of-function NOTCH1 mutations are prevalent in human T cell leukemia, 

while loss of Notch signaling is reported in myeloid leukemias. Here, we report a novel oncogenic 

function of Notch signaling in oncogenic Kras-induced myeloproliferative neoplasm (MPN). We 

find that downregulation of Notch signaling in hematopoietic cells via DNMAML expression or 

Pofut1 deletion significantly blocks MPN development in KrasG12D mice in a cell-autonomous 

manner. Further mechanistic studies indicate that inhibition of Notch signaling significantly 

upregulates Dusp1, a dual phosphatase that inactivates p-ERK, and downregulates cytokine-

evoked ERK activation in KrasG12D cells. Moreover, mitochondrial metabolism is greatly 

enhanced in KrasG12D cells but significantly reprogrammed by DNMAML close to that in control 

cells. Consequently, cell proliferation and expanded myeloid compartment in KrasG12D mice are 

significantly reduced. Consistent with these findings, combined inhibition of the MEK/ERK 

pathway and mitochondrial oxidative phosphorylation effectively inhibited the growth of human 

and mouse leukemia cells in vitro. Our study provides a strong rational to target both ERK 

signaling and aberrant metabolism in oncogenic Ras-driven myeloid leukemia.
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Introduction

The Notch receptor was first cloned in Drosophila as its genetic mutations resulted in a 

wing-notching phenotype (1, 2). In mammals, there are four Notch receptors, Notch1-

Notch4. They are translated as a single pro-Notch precursor. After cleavage by a furin-like 

protease in the trans-Golgi network, Notch receptors form a noncovalently linked 

heterodimer with an N-terminal extracellular fragment and a C-terminal transmembrane-

intracellular subunit (reviewed in (3)). The extracellular domain of Notch is modified with 

multiple O-fucose glycans (4). This process is catalyzed by protein O-fucosyltransferase 1 

(Pofut1) (5–7) and is critical for Notch-ligand interactions and Notch signaling (8). The 

Notch pathway is normally activated through interactions with ligands, which are 

transmembrane proteins named Delta-like and Jagged. Upon ligand binding, Notch receptors 

undergo a series of protease cleavage events, leading to the release of their intracellular 

portion (termed ICN). The ICN subsequently translocates into the nucleus and forms a 

ternary complex with the coactivator protein mastermind-1 (MAML1) and transcription 

factor CSL/RBPJ to mediate target gene activation (reviewed in (3)). This canonical Notch 

signaling can be blocked by a dominant-negative MAML1 (DNMAML) (9).
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Notch is a highly conserved signaling pathway that regulates cell-fate specification and 

tissue homeostasis in various contexts (reviewed in (10)). Depending on the context, Notch 

signaling could be oncogenic or tumor suppressive (reviewed in (3)). In the hematopoietic 

system, Notch1 is a master transcription factor that regulates T cell development. Gain-of-

function (GOF) NOTCH1 mutations are identified in 50–70% of human T cell acute 

lymphoblastic leukemia/lymphoma (T-ALL) cases (11). The majority of these mutations 

occur in exons 26 and 27 and render ligand-independent activation of Notch or 

hypersensitivity to Notch ligands. Another class of NOTCH1 mutations occur in its PEST 

domain, which impair FBXW7-mediated proteasomal degradation and increase the cellular 

ICN1 concentrations. Similarly, Notch1 mutations are identified in 100% of oncogenic Ras-

induced T-ALL mice during T-ALL progression (12). These mutations are predominantly 

Rag recombinase-mediated Type 1 deletions (13) conferring ligand-independent activation 

of Notch and PEST domain mutations. Functional studies demonstrate that human T-ALL-

associated NOTCH1 alleles are sufficient to induce leukemia in vivo (14). They contribute to 

the leukemic transformation of CD8+ T cells to leukemia initiating cells in oncogenic Kras 

mice and thus accelerate oncogenic Kras-initiated T-ALL (12, 14). However, it remains 

unclear whether Notch signaling is required for the initiation of oncogenic Ras-induced T-

ALL.

Compared to the oncogenic function of Notch1 GOF mutations in T-ALL, the role of Notch 

signaling in acute myeloid leukemia (AML) is tumor suppressive. In human AML, despite 

the robust expression of Notch receptors, Notch signaling is low or silenced (15, 16). Notch 

activation inhibits AML growth and survival, while Notch inactivation cooperates with loss 

of the myeloid tumor suppressor Tet2 to induce an AML-like disease in mice (16). These 

results indicate a tumor suppressive role of Notch signaling in AML and provide a strong 

rationale to use Notch receptor agonists in AML treatment.

In an independent study, Klinakis et al. reported that downregulation of Notch signaling 

using different genetic approaches, such as deletion of Nicastrin (an essential component for 

Notch processing to generate ICN) or knocking out Notch1/2 mediated by interferon-

inducible Mx1-Cre, leads to a lethal myeloproliferative neoplasm (MPN), closely 

resembling human chronic myelomonocytic leukemia (CMML) (17). Loss-of-function 

mutations in Notch pathway genes were identified in a subset of CMML patients. In a 

similar study, ablation of FX (the homolog of human GDP-L-fucose synthase) or Pofut1 
using the same Mx1-Cre line results in benign myeloid hyperplasia phenotypes in mice (18). 

Together, these studies suggest a tumor suppressive function of Notch signaling in MPN 

development as well. Here we took a genetic approach to investigate the cell-autonomous 

function of Notch signaling in oncogenic Kras-induced T-ALL and MPN.

Materials and Methods

Mice

All mouse lines were maintained in a pure C57BL/6 genetic background (>N10). 

Genotyping of KrasLSL G12D/+, Rosa26LSL DNMAML-GFP/+, Pofut1fl/fl, and Mx1-Cre was 

done as previously described (9, 19, 20). CD45.1-positive congenic C57BL/6 recipient mice 

were purchased from NCI. All animal experiments were conducted in accordance with the 
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Guide for the Care and Use of Laboratory Animals and approved by an Animal Care and 

Use Committee at UW-Madison. The program is accredited by the Association for 

Assessment and Accreditation of Laboratory Animal Care.

Additional methods are described in Supplementary Materials and Methods.

Results

Downregulating Notch signaling inhibits both oncogenic Kras-induced T-ALL and MPN in a 
cell-autonomous manner

To investigate the function of Notch signaling in oncogenic Kras-induced leukemogenesis, 

we took two independent genetic approaches to downregulate Notch signaling. Expression 

of dominant-negative Mastermind-like1 (DNMAML) potently inhibits canonical Notch-

mediated transcriptional activation (9), while knocking out Protein O-fucosyltransferase 1 

(Pofut1) reduces interactions of Notch receptors and their ligands and downregulates Notch 

signaling (18). We generated KrasLSL G12D/+; Mx1-Cre (Kras), KrasLSL G12D/+; 
Rosa26LSL DNMAML-GFP/+; Mx1-Cre (Kras; D/+), and KrasLSL G12D/+; Pofut1fl/fl ; Mx1-Cre 
(Kras; P−/−) mice as previously described (21, 22). Mx1-Cre mice were used as control 

throughout this study.

We first took a bone marrow transplantation approach to study how downregulating Notch 

signaling affects oncogenic Kras-induced leukemogenesis in a cell-autonomous manner. The 

same number of control, Kras, Kras;D/+, or Kras;P−/− bone marrow cells (CD45.2+) were 

transplanted along with congeneic competitor cells (CD45.1+) into lethally irradiated mice 

(CD45.1+). Three weeks after transplantation, recipients were injected with polyinosinic-

polycytidylic acid (pI-pC) to induce expression of oncogenic Kras and DNMAML-GFP and 

deletion of Pofut1. Consistent with previous reports (21, 22), all of the recipients 

transplanted with Kras cells died of T-ALL quickly (Figure 1A and 1B). As expected, 

inhibition of Notch signaling significantly inhibited T-cell development (Figure 1C), reduced 

the penetrance, and delayed onset of T-ALL in recipients with Kras;D/+ or Kras;P−/− cells 

(Figure 1A and 1B). Importantly, the T-ALL that did develop in these recipients, while 

having undergone Cre-mediated activation of the mutant Kras allele (Figure S1A), had not 

expressed DNMAML (as evidenced by the lack of GFP expression – Figure S1B) nor 

deleted Pofut1 (Figure S1C), arguing that Notch signaling is absolutely required for the 

initiation of Kras mediated T-ALL. Consistent with our previous finding (12), all T-ALL 

specimens contained a Notch1 Type 1 deletion (Figure S1D), which renders ligand-

independent activation of Notch1 signaling (13). In addition, we found that ~20% of the 

recipient mice transplanted with Kras cells developed a donor-derived MPN, whereas none 

of Kras; D/+ and Kras; P−/− recipients developed this disease (P=0.02) (Figure 1B). Donor-

derived MPN is defined as previously described (21): donor-derived CD45.2+ cells 

constitute >50% in the peripheral blood of recipients and >20% of donor-derived cells are 

Mac1+ Gr1− monocytes (Figure S2A). This disease often associates with splenomegaly 

(Figure S2B) and extramedullary hematopoiesis in spleen (Figure S2C) (19, 21). Together, 

both genetic approaches yielded essentially identical results (Figure 1 and our unpublished 

observations in primary mice).
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The absence of donor-derived MPN in Kras; D/+ and Kras; P−/− recipients associated with 

significantly lower percentages of total donor-derived cells and donor-derived myeloid cells 

in the peripheral blood (Figure 1C), which could result from significantly lower frequencies 

of hematopoietic stem cell (HSC) in Kras;D/+ and Kras; P−/− bone marrows than those in 

Kras bone marrows (Figure S3). Therefore, it was unclear whether the absence of donor-

derived MPN in Kras;D/+ and Kras; P−/− recipients was due to the reduced HSC 

reconstitution in these animals or the inhibitory functions of downregulating Notch 

signaling. To distinguish between these two possibilities, we next took a splenocyte 

transplant approach because Kras, Kras;D/+, and Kras;P−/− splenocytes contained 

comparable numbers of HSCs mobilized from bone marrow (Figure S3) and because Kras 

splenocyte transplant yielded a robust MPN with a much higher penetrance (~50%) (23). As 

expected, Kras, Kras;D/+, and Kras;P−/− splenocytes reconstituted the recipients at a 

comparable level (Figure 2B). The majority of the recipients died with a donor-derived T-

ALL; T-ALL developed in recipient mice transplanted with Kras;D/+ or Kras;P−/− 

splenocytes were derived from donor cells that expressed oncogenic Kras, preserved intact 

Notch signaling, and carried Notch1 Type 1 deletion (Figure 2C, S4, S5A, and S5B).

Consistent with our previous observation, only 1/21 Kras;D/+ recipient mice and 1/12 

Kras;P−/− recipients developed a donor-derived MPN disease, while 8/16 Kras recipients 

died with donor-derived MPN (Figure 2C). In particular, 3 Kras;D/+ recipients did not 

develop T-ALL. We sacrificed them 160 days after transplantation for analysis (Figure 2A). 

Although their hematopoietic system was infiltrated with Kras;D/+ cells (Figure S5C), no 

sign of an MPN was evident as measured by spleen weights, CBC results, and myeloid 

compartment in peripheral blood (Figure 2D and 2E).

To better assess the role of canonical Notch signaling in oncogenic Kras-induced MPN, we 

took two independent approaches to minimize the prevalence of T-ALL in the Kras model. 

First, we used a more myeloid-restricted Cre, LysM-Cre (24), to drive oncogenic Kras 

expression. Due to the embryonic expression of LysM-Cre, KrasLSL G12D/+; LysM-Cre mice 

died significantly earlier than KrasLSL G12D/+; Mx1-Cre mice without pI-pC injections 

(Figure S6A). Approximately 30% of KrasLSL G12D/+; LysM-Cre mice died without a 

hematopoietic disease (perhaps due to oncogenic Kras expression in non-hematopoietic 

tissues), while the remaining 70% mice died with a significant MPN. Consistent with the 

previous report that LysM-Cre labels ~8% HSCs and subsequently ~8% of T- and B-cells 

(25), ~10% of KrasLSL G12D/+; LysM-Cre mice died with a significant T-ALL, which was 

comparable to that in KrasLSL G12D/+; Mx1-Cre mice without pI-pC injections. We further 

explored the possibility of transplanting KrasLSL G12D/+; LysM-Cre fetal liver cells into 

lethally irradiated recipients (Figure S6B). These recipients survived moderately but 

significantly longer than those with KrasLSL G12D/+; Mx1-Cre splenocytes, but they 

developed donor-derived MPN (~50%) and T-ALL (~90%) at similar frequencies as the 

latter. Our results demonstrated that compared to Mx1-Cre, LysM-Cre-driven Kras 

expression does not significantly reduce T-ALL incidence.

Second, we transplanted GFP+ LSK cells isolated from Kras; D/+ mice into lethally 

irradiated recipients and pI-pC injections were performed to further ensure DNMAML 

expression in these cells (Figure S7). To our surprise, all recipients died of a severe T-ALL, 
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similarly to recipients transplanted with same number of Kras mutant LSK cells. Upon 

immunophenotypic examination, we found that despite predominant DNMAML expressing, 

GFP+ donor cells in the recipient bone marrow and spleen, T-ALL cells shut down 

DNMAML expression and became GFP−. Consistent with our previous result, none of these 

recipients developed a donor-derived MPN (Figure S7B). Together, our results indicate that 

downregualtion of Notch signaling inhibits both T-ALL and MPN development in Kras mice 

in a cell-autonomous manner.

Downregulating Notch signaling reduces Kras myeloid compartment

To investigate the mechanism(s) underlying MPN inhibition induced by downregulation of 

Notch signaling, we analyzed donor derived hematopoiesis in recipients with Kras or 

Kras;D/+ splenocytes 6 weeks after transplantation. In the remaining study, we define Kras 

derived cells as CD45.2+ cells and Kras;D/+ derived cells as CD45.2+ GFP+ cells. At 6 

weeks after transplantation, the recipients had not displayed overt T-ALL or MPN 

phenotypes. We found that donor-derived HSC, multi-potential progenitor (MPP), and 

common lymphoid progenitor (CLP) compartments were comparable in two groups of 

recipient animals, while the myeloid progenitor (MP) compartment in Kras;D/+ recipients 

was significantly reduced compared to that in Kras recipients (Figure 3A). Consistent with 

the prior study of mapping Notch pathway activity in vivo (26), we found that the reduction 

of MP compartment mainly occurred in the common myeloid progenitor (CMP) and 

megakaryocyte-erythroid progenitor (MEP) compartments (Figure 3B). Consequently, in 

various hematopoietic tissues, percentages of donor-derived T cells and myeloid lineage 

cells in Kras;D/+ recipients were significantly decreased, while donor-derived B cells were 

comparable between these two groups of recipients (Figure 3C). We observed similar 

reduction of donor-derived T cell and myeloid compartments in Kras;P−/− recipients as well 

(Figure S8). In the subsequent mechanistic studies, we primarily focused on D/+ mice due to 

its higher breeding efficiency.

DNMAML expression upregulates Dusp1 expression and blocks GM-CSF-stimulated ERK 
hyperactivation in Kras myeloid progenitors

Because expansion of Kras myeloid compartment is driven by hyperproliferation and 

hyperactivation of GM-CSF-evoked ERK1/2 in MP cells (21), we subsequently examined 

whether reduced myeloid compartment in Kras;D/+ recipients associates with reduced cell 

proliferation and/or reduced ERK1/2 activation. Consistent with our previous report (23), 

cell cycle analysis showed that Kras MPs were significantly hyperpoliferative than control 

MPs, while this hyperprolferation phenotype was significantly reduced in Kras;D/+ MPs 

(Figure 4A). Further fractionation of MP compartment revealed that DNMAML expression 

mainly reduced cell proliferation in CMPs and MEPs (Figure 4B). Consistent with our cell 

cycle analysis, Kras;D/+ cells formed significantly less colonies than Kras cells in the 

presence of 0.02 ng/ml of GM-CSF (Figure 5A).

We also investigated GM-CSF-stimulated ERK1/2 activation in Lin−/low c-Kit+ cells 

(enriched for MPs). Consistent with previous reports (21, 27), the ERK1/2 pathway was 

significantly hyperactivated in Kras cells upon GM-CSF stimulation but was restored to the 

level comparable to control cells in Kras;D/+ cells (Figure 5B). Concomitantly, STAT5 
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activation was significantly reduced in Kras;D/+ cells compared to that in Kras cells (Figure 

5B). We further validated that GM-CSF-stimulated ERK activation was restored in Kras;P−/

− cells (Figure S9). These results suggest that reduced myeloid compartment in recipients of 

Kras;D/+ cells could result from decreased cell proliferation and inhibition of ERK1/2 

hyperactivation.

To further understand the molecular mechanism(s) underlying the inhibition of ERK 

hyperactivation in Kras;D/+ and Kras;P−/− cells, we performed RNA-Seq analysis using 

donor-derived MPs isolated from Kras and Kras;D/+ recipients as well as MPs from control 

animals. We reasoned that this signaling phenotype may be caused by upregulation of 

negative regulator(s) of the Ras/MEK/ERK pathway. Indeed, we found that Dusp1, a dual 

phosphatase that inactivates ERK1/2, was one of the top genes upregulated in Kras;D/+ vs 

Kras MPs. This result was further validated in donor-derived Lin− cells using qRT-PCR 

(Figure 5C) and Western blot (Figure 5D).

Hes1 has been reported to mediate the transcriptional repression of Dusp1 in a Kras-driven 

lung cancer model (28). Therefore, we examined Hes1 expression in our multiple data sets. 

Consistent with the previous study of in vivo Notch activity (26), our RNA-Seq data 

detected low level of Hes1 expression in control MEPs but not in control CMPs and GMPs 

(Figure 5E). Hes1 expression in control MEPs was further validated using qRT-PCR (Figure 

S10). Not surprisingly, Hes1 expression was marginally detectable in control MPs (Figure 

5E). In contrast, Hes1 was expressed in Kras MPs at a level significantly higher than that in 

control MPs (Figure 5E) but downregulated in Kras;D/+ MPs (Figure S11A), indicating that 

canonical Notch signaling is activated in Kras cells but downregulated by DNMAML 

expression. Consistent with this idea, we found that Hes1 expression is significantly 

upregulated in NrasG12D; p53−/− AML-MPs (29). Our data suggest that DNMAML 

expression results in upregulation of Dusp1 and inhibition of ERK signaling, likely through 

a Hes1-dependent mechanism.

DNMAML expression alters the transcriptional levels of Notch target genes

To determine whether DNMAML perturbs the expression levels of Notch target genes in 

Kras cells, we first examined the expression of “Notch-Targets” in Kras and Kras;D/+ MPs. 

“Notch-Targets” are comprised of genes previously reported to be transcriptional targets of 

NOTCH1 (30) and are enriched in acute promyelocytic leukemia (APL) cells compared to 

normal promyelocytes (31). This gene signature demonstrated distinct expression patterns in 

Kras vs Kras;D/+ cells (Figure S11A). Next, by using previously published Rbpj chromatin 

immunoprecipitation sequencing data (32) that were collected from Notch-dependent mouse 

T–ALL cells, we identified 1,594 genes with significant Rbpj binding peaks in their 

promoter regions. This gene signature is also enriched in Kras MPs compared to Kras;D/+ 

MPs (Figure S11B). These results provide strong bioinformatics evidence that DNMAML 

regulates Notch target gene expression in Kras cells.
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Loss of canonical Notch signaling targets oxidative phosphorylation in Kras myeloid 
progenitor and precursor cells

We further analyzed the RNA-Seq data obtained from control, Kras, and Kras;D/+ MPs to 

investigate molecular mechanisms underlying MPN inhibition in Kras; D/+ mice. Compared 

to control MPs, 1,820 genes were significantly up- or down-regulated in Kras MPs (fold 

change > 2 and FDR<0.05). Not surprisingly, this aberrant transcriptome was enriched for 

genes involved in small GTPase activity, ERK1/2 signaling cascade, and cell proliferation 

and differentiation (Figure 6A). In addition, RNA-Seq analysis identified a significant 

enrichment of genes regulating cell metabolism. Interestingly, the aberrant expression levels 

of ~430 genes in Kras MPs were restored or partially restored to control levels in Kras;D/+ 

MPs (Figure 6B). These genes are predominantly involved in cell metabolism and 

mitochondria biogenesis/functions (Figure 6C). Consistent with our observation, genome-

wide gene set enrichment analysis revealed that genes involved in oxidative phosphorylation 

(OXPHO) and mitochondria respiration were significantly upregulated in Kras MPs, while 

their aberrant expression was restored to control levels upon expression of DNMAML 

(Figure 6D).

We next sought to functionally validate the impact of DNMAML expression on the 

mitochondrial metabolism. We analyzed mitochondrial aerobic metabolism in intact, viable 

CD45.2+ Lin− cells (donor-derived myeloid progenitors and precursors) using real-time 

measurement of oxygen consumption (Figure 6). Kras cells displayed much higher basal 

oxygen consumption and maximal oxidative capacity as compared with control cells. These 

elevated metabolic parameters were profoundly restored to approximate control levels in 

Kras;D/+ cells (Figure 7A). Using the ATP synthase inhibitor oligomycin, we determined 

that ATP-linked respiration was significantly increased in Kras cells and inhibition of 

canonical Notch signaling significantly lowered it in Kras;D/+ cells (Figure 7B). Consistent 

with this result, the steady state total cellular ATP concentration in Kras;D/+ cells was also 

significantly decreased compared with that of Kras cells (Figure 7C). Measurement of 

extracellular proton flux revealed that Kras cells had significantly increased extracellular 

acidification rates (ECAR) relative to control cells (Figure 7D), while the ECAR in 

Kras;D/+ cells was significantly reduced compared with Kras cells, suggesting that 

downregulation of Notch signaling alleviates enhanced glycolysis in Kras cells. Together, 

our data demonstrated that downregulation of Notch signaling inhibits both oxidative 

phosphorylation and glycolysis in Kras myeloid progenitor and precursor cells in a cell-

autonomous manner.

Combined AZD6244 and oligomycin treatment effectively inhibits the growth of human and 
mouse leukemia cells in vitro

To determine whether inhibition of ERK and/or mitochondria metabolism effectively 

controls Kras cell growth, we isolated bone marrow cells from moribund Kras mice (3 with 

Mx1-Cre and 2 with Vav-Cre) and cultured them in the absence or presence of AZD6244 (a 

MEK inhibitor (33, 34)) and/or oligomycin (a specific inhibitor of mitochondrial ATP 

synthase (35)) (Figure 8A). Although Kras cells demonstrated variable sensitivity to 

AZD6244 alone and oligomycin alone, they were consistently more sensitive to the 

combinatorial treatment. We also tested AZD6244 and oligomycin on human JMML 
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samples, one with unknown mutation (JMML-095) and the other with a germline PTPN11 
mutation (JMML-091) (Figure 8B). In both cases, combinatorial treatment of AZD6244 and 

oligomycin inhibited JMML cell growth more effectively than single drug alone.

Discussion

In this study, we show that Notch signaling is necessary for the initiation of oncogenic Kras-

induced T-ALL; downregulating this pathway in Kras mice completely blocks T-ALL 

formation. Surprisingly, downregulation of Notch signaling in Kras hematopoietic cells also 

inhibits MPN in a cell autonomous manner. Our data suggest that inhibition of Notch 

signaling lowers cytokine-stimulated ERK1/2 hyperactivation and shifts abnormal metabolic 

state of Kras MPs close to that of control MPs, leading to reduced cell proliferation and 

consequently a reduction of myeloid compartment (Figure S12).

It was previously shown that GOF NOTCH1 mutations associated with human T-ALL 

patients are sufficient to drive T-ALL formation (14). In addition, they cooperate with 

oncogenic Ras to transform normal CD8+ T cells into leukemia initiating cells and 

accelerate oncogenic Ras-initiated T-ALL (12, 14). Therefore, 100% of oncogenic Ras-

induced T-ALL carried GOF Notch1 mutations, including Type 1 deletions (100%) and 

PEST domain mutations (~70%) (12, 36). In this study, we further demonstrated that Notch 

signaling is essential for oncogenic Kras-initiated T-ALL. Downregulating Notch signaling 

completely blocked T-ALL development in Kras cells. In the recipients that eventually 

developed T-ALL, the leukemia cells were all derived from rare donor cells that expressed 

oncogenic Kras and did not downregulate Notch (Figure S1 and S5). Moreover, these 

leukemia cells contained Notch1 Type 1 deletions (Figure S1 and S5). Therefore, GOF 

Notch1 mutations are both necessary and sufficient for oncogenic Ras-induced T-ALL.

Our study identified an oncogenic function of Notch signaling in KrasG12D-induced MPN. 

This is consistent with an activated Notch gene signature in human APL (31) but in sharp 

contrast to previous studies reporting a tumor suppressor function of Notch signaling in 

CMML and other types of AML (15, 16), suggesting a highly dynamic, perhaps genetic 

context-dependent role of the Notch pathway in myeloid leukemogenesis. In support of this 

hypothesis, we and others did not detect loss of function mutations in Notch pathway genes 

in CMML patients with mutations in Ras pathway genes (37, 38). Nevertheless, our results 

are highly consistent with a recent study finding that γ–secreatase and RBPJ, two critical 

components of Notch signaling, are essential for the formation of KrasG12V-driven non-

small cell lung carcinomas (28). Moreover, therapeutic effects of inhibiting Notch signaling 

were reported in treating Kras-driven lung cancers (28, 39).

Our results suggest multiple mechanisms underlying how inhibition of Notch signaling 

blocks KrasG12D-induced MPN. First, loss of canonical Notch pathway significantly 

downregulates cytokine-evoked ERK1/2 signaling in Kras MPs (Figure 5B and S9). As in 

KrasG12V-driven lung cancer (28), downregulating Notch-mediated inhibition of ERK 

activation might be attributed to derepression of Dusp1 (Figure 5C and 5D). Second, Kras 

enhances oxidative phosphorylation and glycolysis, while inhibition of canonical Notch 

signaling profoundly restores these aberrant metabolic changes (Figure 7). The involvement 
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of Notch signaling in mitochondrial metabolism is quite surprising to us but indeed reflects a 

novel biological function of this pathway, which was just recently revealed in literature. Xu 

et al. reported that Notch reprograms mitochondrial metabolism for M1 macrophage 

activation (40), while Kishton et al. found that oncogenic Notch signaling in T-ALL 

activates AMPK to balance mitochondrial metabolism and glycolysis (41). Similarly, we 

demonstrated that downregulating Notch signaling reprograms the aberrant mitochondrial 

metabolism and glycolysis in Kras cells, which could contribute to reduced cell proliferation 

and MPN inhibition. Our observation is consistent with previous reports that myeloid 

leukemia cells often stay in an abnormal metabolic state and genetic/pharmacologic 

inhibition of oxidative phosphorylation leads to antileukemic activity (42, 43). In agreement 

with this conclusion, recent studies in Kras-driven solid tumors identified metabolic 

susceptibilities as potential therapeutic targets (44, 45). We believe that the two mechanisms 

proposed above are likely to cooperate and contribute to the in vivo phenotypes we observed 

in Kras;D/+ mice.

In summary, our results show that inhibition of Notch signaling effectively blocks oncogenic 

Kras-induced MPN in vivo in a cell-autonomous manner. We attribute this MPN inhibitory 

effect to inhibition of ERK signaling and reprogramming of mitochondrial metabolism. 

Combined inhibition of the MEK/ERK pathway and mitochondrial oxidative 

phosphorylation effectively inhibited the growth of human and mouse leukemia cells in 

vitro, providing a strong rationale to target both pathways in treating oncogenic Kras-driven 

malignancies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Downregulating Notch signaling inhibits oncogenic Kras-induced T-ALL in a cell-
autonomous manner
Lethally irradiated mice (CD45.1+) were transplanted with 2.5×105 bone marrow cells 

(CD45.2+) from control (Mx1-Cre), KrasLSL G12D/+;Mx1-Cre (Kras), 

KrasLSL G12D/+;Rosa26LSL DNMAML-GFP/+;Mx1-Cre (Kras; D/+) or KrasLSL G12D/+; 

Pofutfl/fl ;Mx1-Cre (Kras; P−/−) mice along with 2.5×105 competitor cells (CD45.1+). Four 

weeks after transplantation, Cre expression was induced using pI-pC injections as described 

in Methods. Moribund recipients transplanted with Kras, Kras; D/+ or Kras; P−/− cells and 

age-matched recipients transplanted with control cells were sacrificed for analysis. (A) 

Kaplan-Meier survival curves of different groups of recipient mice were plotted against days 

after transplantation. P values were determined using the Log-rank test. (B) Disease 

incidence in different groups of recipients. Chi-square analysis was performed. (C) Total 

donor-derived cells and donor-derived myeloid cells, B cells or T cells (CD45.2+) in 

different groups of recipients were evaluated regularly after transplantation. Of note, 4-week 

data were collected right before pI-pC injections. The results are presented as mean ± SD. * 

P<0.05; ** P<0.01; *** P<0.001.
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Figure 2. Downregulating Notch signaling inhibits oncogenic Kras-induced acute MPN in a cell-
autonomous manner
Lethally irradiated mice (CD45.1+) were transplanted with 2 ×106 splenocytes (CD45.2+) 

from control (Mx1-Cre), KrasLSL G12D/+;Mx1-Cre (Kras), 

KrasLSL G12D/+;Rosa26LSL DNMAML-GFP/+;Mx1-Cre (Kras; D/+), or KrasLSL G12D/+; 

Pofutfl/fl ;Mx1-Cre (Kras; P−/−) mice along with 2.5×105 competitor cells (CD45.1+). Four 

weeks after transplantation, Cre expression was induced using pI-pC injections as described 

in Methods. Moribund recipients transplanted with Kras, Kras; D/+ or Kras; P−/− cells and 

age-matched recipients transplanted with control cells were sacrificed for analysis. (A) 

Kaplan-Meier survival curves of different groups of recipient mice were plotted against days 

after transplantation. P values were determined using the Log-rank test. (B) Quantification 

of donor-derived cells (CD45.2+) in the peripheral blood of recipients. Of note, 4-week data 

were collected right before pI-pC injections. The results are presented as mean ± SD. (C) 

Disease incidence in different groups of recipient mice. Chi-square analysis was performed. 

(D, E) Three recipients transplanted with Kras; D/+ cells did not develop T-ALL and were 

sacrificed for analysis 160 days after transplantation with age-matched control recipients. 

(D) Quantification of spleen weight and CBC analysis results. Numbers of WBC (white 

blood cell), RBC (red blood cell), Hb (hemoglobin), HCT (hematocrit), and PLT (platelet) 

are shown. (E) Flow cytometric analysis of peripheral blood (PB) cells using myeloid 

lineage markers. Total (left) or donor-derived (right) live nucleated cells are gated for 

analysis. The results are presented as mean ± SD. * P<0.05; ** P<0.01; *** P<0.001.
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Figure 3. DNMAML expression in Kras hematopoietic system reduces myeloid compartment
Lethally irradiated mice (CD45.1+) were transplanted with 2 ×106 splenocytes (CD45.2+) 

from KrasLSL G12D/+;Mx1-Cre (Kras) or KrasLSL G12D/+;Rosa26LSL DNMAML-GFP/+;Mx1-
Cre (Kras; D/+) mice along with 2.5×105 competitor cells (CD45.1+). Three weeks after 

transplantation, Cre expression was induced using pI-pC injections as described in Methods. 

Recipients transplanted with Kras or Kras; D/+ cells were sacrificed 3 weeks after pI-pC 

injections. Donor-derived cells are defined as CD45.2+ cells in Kras recipients and CD45.2+ 

GFP+ cells in Kras; D/+ recipients. (A) Quantification of donor-derived hematopoietic stem 

cells (HSCs), multi-potential progenitors (MPPs), myeloid progenitors (MPs), and common 

lymphoid progenitors (CLPs) in the bone marrow (BM) and spleen (SP) of recipients. (B) 

Quantification of donor-derived common myeloid progenitors (CMPs), granulocyte-

macrophage progenitors (GMPs), and megakaryocyte-erythroid progenitors (MEPs) in the 

bone marrow of recipients. (C) Quantification of donor-derived differentiated cells in BM, 

SP, and peripheral blood (PB). Data are presented as mean ± SD. * P<0.05, ** P<0.01; *** 

P<0.001.
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Figure 4. DNMAML expression reduces hyperproliferation of Kras myeloid progenitors
Lethally irradiated mice (CD45.1+) were transplanted with 2 ×106 splenocytes (CD45.2+) 

from KrasLSL G12D/+;Mx1-Cre (Kras) or KrasLSL G12D/+;Rosa26LSL DNMAML-GFP/+;Mx1-
Cre (Kras; D/+) mice along with 2.5×105 competitor cells (CD45.1+). The control group was 

transplanted with 1×106 bone marrow cells (CD45.2+) along with 2.5×105 competitor cells 

(CD45.1+). Three weeks after transplantation, Cre expression was induced using pI-pC 

injections as described in Methods. Recipients transplanted with control, Kras or Kras; D/+ 

cells were sacrificed 4–5 weeks after pI-pC injections. Donor-derived cells are defined as 

CD45.2+ cells in control and Kras recipients or CD45.2+ GFP+ cells in Kras; D/+ recipients. 

Cell cycle analysis of bone marrow donor-derived myeloid progenitors (MPs) (A), common 

myeloid progenitors (CMPs), granulocyte-macrophage progenitors (GMPs), and 

megakaryocyte-erythroid progenitors (MEPs) (B) using Ki67 and DAPI.

Kong et al. Page 17

Leukemia. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. DNMAML expression leads to Dusp1 upregulation and downregulation of GM-CSF-
stimulated ERK activation in Kras myeloid progenitors
Lethally irradiated mice (CD45.1+) were transplanted with 2 ×106 splenocytes (CD45.2+) 

from KrasLSL G12D/+;Mx1-Cre (Kras) or KrasLSL G12D/+;Rosa26LSL DNMAML-GFP/+;Mx1-
Cre (Kras; D/+) mice along with 2.5×105 competitor cells (CD45.1+). The control group was 

transplanted with 1×106 bone marrow cells (CD45.2+) along with 2.5×105 competitor cells 

(CD45.1+). Three weeks after transplantation, Cre expression was induced using pI-pC 

injections as described in Methods. Recipients transplanted with control, Kras or Kras; D/+ 

cells were sacrificed 4–5 weeks after pI-pC injections. Donor-derived cells are defined as 

CD45.2+ cells in control and Kras recipients or CD45.2+ GFP+ cells in Kras; D/+ recipients. 

(A) 5X104 donor-derived bone marrow cells from recipients were plated in duplicate in 

semi-solid medium with or without GM-CSF. (B) Donor-derived whole bone marrow cells 

were sorted using flow cytometry and serum- and cytokine-starved for 2 hours at 37°C. Cells 

were then stimulated with different concentrations of mGM-CSF for 10 minutes at 37°C. 

Levels of p-ERK1/2 and pSTAT5 were measured using phospho-flow cytometry. Lin−/low c-

Kit+ cells, which are enriched for myeloid progenitors, were gated for analysis. (C, D) 

Dusp1 expression was quantified in donor-derived Lin− bone marrow cells using qRT-PCR 

(C) or Western blot (D). (E) Quantification of Hes1 expression in different populations of 

progenitor cells using RNA-Seq. Data are presented as mean ± SD. * P<0.05, ** P<0.01; 

*** P<0.001.
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Figure 6. DNMAML expression restores transcription levels of metabolic genes in Kras myeloid 
progenitors
Lethally irradiated mice (CD45.1+) were transplanted with 2 ×106 splenocytes (CD45.2+) 

from KrasLSL G12D/+;Mx1-Cre (Kras) or KrasLSL G12D/+;Rosa26LSL DNMAML-GFP/+;Mx1-
Cre (Kras; D/+) mice along with 2.5×105 competitor cells (CD45.1+). Three weeks after 

transplantation, Cre expression was induced using pI-pC injections as described in Methods. 

Recipients transplanted with Kras or Kras; D/+ cells were sacrificed 3 weeks after pI-pC 

injections. Donor-derived myeloid progenitors (MPs) and MPs from control mice (Ctrl) 

were sorted for RNA-Seq analysis. Donor-derived cells are defined as CD45.2+ cells in 

control and Kras recipients or CD45.2+ GFP+ cells in Kras; D/+ recipients. (A) Gene 

Ontology (GO) analysis of differentially expressed genes in Kras MPs using DAVID 

bioinformatics program. The representative biological processes are shown with numbers of 

genes in each category (represented by the bar lengths) and corresponding P values. (B) 
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Heatmap analysis of gene expression signature perturbed in Kras MPs but restored in 

Kras;D/+ MPs. (C) Go analysis of genes that were perturbed in Kras MPs but restored in 

Kras;D/+ MPs. The representative biological processes are shown with corresponding P 

values. (D) Gene Set Enrichment Analysis (GSEA) identified that oxidative phosphorylation 

and respiratory chain complex were upregulated in Kras MPs but restored to control levels in 

Kras;D/+ MPs. Data are presented as mean ± SD. * P<0.05, ** P<0.01; *** P<0.001.

Kong et al. Page 20

Leukemia. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Downregulating Notch signaling targets mitochondrial metabolism in Kras myeloid 
progenitor and precursor cells
Lethally irradiated mice (CD45.1+) were transplanted with 2 ×106 splenocytes (CD45.2+) 

from KrasLSL G12D/+;Mx1-Cre (Kras) or KrasLSL G12D/+;Rosa26LSL DNMAML-GFP/+;Mx1-
Cre (Kras; D/+) mice along with 2.5×105 competitor cells (CD45.1+). The control group was 

transplanted with with 1×106 bone marrow cells (CD45.2+) along with 2.5×105 competitor 

cells (CD45.1+). Three weeks after transplantation, Cre expression was induced using pI-pC 

injections as described in Methods. Recipients transplanted with control, Kras or Kras; D/+ 

cells were sacrificed 5 weeks after pI-pC injections. Donor-derived Lin− bone marrow cells 

were sorted using flow cytometry. Donor-derived cells are defined as CD45.2+ cells in 

control and Kras recipients or CD45.2+ GFP+ cells in Kras; D/+ recipients. (A) Oxygen 

consumption rates (OCR) were measured in the presence of the mitochondrial inhibitor 

(oligomycin, 1μM), the uncoupling agent (FCCP, 2.5 μM), and the respiratory chain 

inhibitor (rotenone, 1 μM). (B) Quantification of ATP-linked OCR, which is the calculated 

difference between the basal OCR level and the OCR level after oligomycin treatment. (C) 

Total cellular ATP concentrations were measured using the CellTiter Glo assay. (D) 

Quantification of extracellular acidification rates (ECAR). Data are presented as mean ± SD. 

* P<0.05, ** P<0.01; *** P<0.001.
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Figure 8. Combined AZD6244 and oligomycin treatment effectively inhibits the growth of human 
and mouse leukemia cells in vitro
Leukemia cells from moribund Kras G12D/+ mice (carrying Mx1-Cre or Vav-Cre) with 

advanced JMML-like phenotypes (n=5) (A) or from human JMML patients (n=2) (B) were 

cultured in triplicate in 96-well plates in the presence of vehicle or various concentrations of 

AZD6244 and/or oligomycin for 5 days (A) or 14 days (B). Cell number was quantified 

using the CellTiter-Glo assay. Data are presented as mean ± s.d.

Kong et al. Page 22

Leukemia. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and Methods
	Mice

	Results
	Downregulating Notch signaling inhibits both oncogenic Kras-induced T-ALL and MPN in a cell-autonomous manner
	Downregulating Notch signaling reduces Kras myeloid compartment
	DNMAML expression upregulates Dusp1 expression and blocks GM-CSF-stimulated ERK hyperactivation in Kras myeloid progenitors
	DNMAML expression alters the transcriptional levels of Notch target genes
	Loss of canonical Notch signaling targets oxidative phosphorylation in Kras myeloid progenitor and precursor cells
	Combined AZD6244 and oligomycin treatment effectively inhibits the growth of human and mouse leukemia cells in vitro

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

