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Abstract
The dentate gyrus is considered to function as an inhibitory gate limiting excitatory input to

the hippocampus. Following status epilepticus (SE), this gating function is reduced and

granule cells become hyper-excitable. Dentate spikes (DS) are large amplitude potentials

observed in the dentate gyrus (DG) of normal animals. DS are associated with membrane

depolarization of granule cells, increased activity of hilar interneurons and suppression of

CA3 and CA1 pyramidal cell firing. Therefore, DS could act as an anti-excitatory mecha-

nism. Because of the altered gating function of the dentate gyrus following SE, we sought to

investigate how DS are affected following pilocarpine-induced SE. Two weeks following lith-

ium-pilocarpine SE induction, hippocampal EEG was recorded in male Sprague-Dawley

rats with 16-channel silicon probes under urethane anesthesia. Probes were placed dorso-

ventrally to encompass either CA1-CA3 or CA1-DG layers. Large amplitude spikes were

detected from EEG recordings and subject to current source density analysis. Probe place-

ment was verified histologically to evaluate the anatomical localization of current sinks and

the origin of DS. In 9 of 11 pilocarpine-treated animals and two controls, DS were confirmed

with large current sinks in the molecular layer of the dentate gyrus. DS frequency was signif-

icantly increased in pilocarpine-treated animals compared to controls. Additionally, in pilo-

carpine-treated animals, DS displayed current sinks in the outer, middle and/or inner

molecular layers. However, there was no difference in the frequency of events when com-

paring between layers. This suggests that following SE, DS can be generated by input from

medial and lateral entorhinal cortex, or within the dentate gyrus. DS were associated with

an increase in multiunit activity in the granule cell layer, but no change in CA1. These results

suggest that following SE there is an increase in DS activity, potentially arising from hyper-

excitability along the hippocampal-entorhinal pathway or within the dentate gyrus itself.
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Introduction
Mesial temporal lobe epilepsy is characterized by profound changes in hippocampal and para-
hippocampal network circuitry resulting in spontaneous recurrent seizures and interictal activ-
ity in humans and animal models [1–3]. Under normal conditions granule cells within the
dentate gyrus demonstrate low levels of excitability, which effectively gates the flow of informa-
tion within the hippocampus and limits pyramidal cell excitation [4,5]. Disruption of the gating
function of the dentate gyrus has been proposed as a potential mechanism for the generation of
ictal and interictal events in humans and animal models [5–7]. Indeed, the dentate gyrus has
been shown to be critical in seizure progression facilitating the transition from irregular spiking
to bursting [8].

Following status epilepticus (SE), induced either chemically or electrically, dentate granule
cells become hyperexcitable [9–11], reducing their ability to properly gate excitatory input
from cortical structures. Such hyperexcitability may result from a reduction in hilar mossy cell
input onto inhibitory basket cells as well as hilar inhibitory interneuron cell death [12–15].
Synaptic reorganization in the form of mossy fiber sprouting from granule cells and CA3 back-
propagating axon collaterals has also been suggested to modify granule cell excitability [16–
18]. In addition to modification of local hippocampal networks, SE-induced insults also modify
parahippocampal structures. The entorhinal cortex displays considerable cell death following
SE in layers III and V [19,20]. Similar to dentate granule cells, layer II entorhinal neurons are
hyperexcitable following SE, likely resulting from disinhibition caused by cell death in sur-
rounding layers III and V [21,22]. Since layer II neurons form the main excitatory input to the
dentate granule cells [23], it is likely that the entorhinal-hippocampal pathway is critical in the
initiation of epileptiform activity following SE.

In the normal brain, the dentate granule cells have been shown to display large amplitude
population events, termed DS that act to limit pyramidal cell activity in CA3 and CA1 [24,25].
Current source density (CSD) analysis of these events revealed current sinks in both the outer
and middle molecular layers of the dentate gyrus corresponding to input from layer II of the
lateral and medial entorhinal cortex [25]. Following kainic acid-induced seizures, there is an
increase in inhibition in dentate granule cells observed in vivo. This effect is weak and is easily
overcome by pathological activity from parahippocampal structures, such as entorhinal cortex,
resulting in granule cell population spikes or high amplitude DS not seen under normal condi-
tions [26,27]. It is possible that there are multiple mechanisms through which spontaneous epi-
leptiform activity can be generated within the hippocampus. Indeed, stimulation of the
perforant path or commissural system demonstrate that seizure-like activity can be generated
in the CA3-CA1 or entorhinal cortex-dentate gyrus circuits independently [28]. In this study,
we characterized the initiation of spikes in the dentate gyrus and CA fields following pilocar-
pine-induced SE. Modification of the physiological properties or initiation site of events like
the DS can provide novel insights on SE-induced changes to normal physiological events that
are important in the entorhinal-hippocampal pathway.

Materials and Methods

Animals
Male Sprague-Dawley (180–200 g) rats were obtained from Charles-River (Saint Constant,
QC). All procedures were carried out in accordance with recommendations in the Guide for
the Care and Use of Laboratory Animals of the National Institutes of Health. The protocols
were approved by the IACUC of the University of Vermont (Protocol Number: 13–054). Rats
were housed on a regular 12/12 light cycle and given food and water ad libitum.
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Pilocarpine-Induced Status Epileptics
Status epilepticus was induced as previously described [29,30]. Rats were administered lithium
chloride (127 mg/kg, i.p.) 18 hrs before SE induction. Thirty minutes before SE induction,
rats were separated into individual cages and administered scopolamine methyl bromide
(1 mg/kg, i.p.). SE was induced with pilocarpine hydrochloride (12.5 mg/kg, i.p). Doses of pilo-
carpine were administered every 30 minutes until continuous stage 4/5 seizure activity was
observed. Seizure score was determined based on the Racine scale [31]; briefly, stage 4 seizures
were defined by bilateral forelimb clonus and rearing; stage 5 seizures were defined as the
occurrence of stage 4 behavior plus loss of posture or falling. Stage 5 seizure activity repre-
sented a generalized seizure where seizure activity has spread to the whole brain. Animals were
maintained in SE for 90 minutes, after which lorazepam (2 mg/kg, i.p) was administered to ter-
minate seizure activity.

Urethane-Anesthesia Recoding
At least two weeks after SE induction, animals were anesthetized with urethane (1.5 g/kg, i.p)
for electrophysiological recording. A craniotomy was prepared over the hippocampal forma-
tion (AP: -3.2; ML: -2 to -4) to remove the skull and dura. After craniotomy, silicon probes
were placed over the brain at 2.5 mm lateral to bregma to record from the dorsal-ventral axis
containing CA1-DG or 3.4 mm lateral to bregma to record from the CA1-CA3 axis. Continu-
ously sampled EEG was recorded across all 16 channels between 1 to 9000Hz (sampling fre-
quency of 30 kHz). All recordings were conducted for at least 20 minutes. DS data were
converted to frequency for statistical analysis to allow for comparison of recordings of different
lengths of time. In addition, channels on which single unit activity was observed were spliced
and single unit activity was recorded in a separate file (30 kHz, 600–6000 Hz). Evaluation of
unit activity in concert with stereotaxic positioning of the silicon probe allowed for reliable
placement of the probes within the hippocampal formation covering the appropriate cellular
layers. All electrodes were coated with DiI prior to placement in the brain to allow for histologi-
cal verification of probe placement. In some rats, additional recording electrodes, consisting of
bundled EEG wires, were placed in the entorhinal cortex (AP: -8.5; ML: -5.3; DV: -5.2) and
recorded simultaneously with hippocampal EEG. To further confirm probe placement, stimu-
lating electrodes were placed in the angular bundle (AP: -7.2; ML: -4; DV: -3.2) and the ventral
hippocampal commissure (AP: -1.3; ML: 0.1; DV: -5.2).

Event Detection and CSD Analysis
Spontaneous interictal events were detected from EEG recordings based on threshold values
set for each individual recording. All recordings were acquired with the Cheetah32 analog sig-
nal recording system interfaced with Cheetah 5 data acquisition software (NeuraLynx, Boze-
man, Montana). EEG was reviewed offline utilizing NeuroExplorer software (Nex
Technologies, Madison, AL). CSD plots were generated using custom software in MATLAB to
localize current sinks and sources across the recoded regions. All recordings across the
16-channels of the silicon probe were processed utilizing the same parameters. EEG traces
were filtered with a 1 Hz high pass and 1 kHz low pass filter. Location of the recording channels
within the hippocampus was determined based on a combination of three different approaches:
1) the presence of action potentials in recording sites located at the vicinity of a cell layer; 2)
histological verification of the probe track identified by the DiI trace under fluorescent micros-
copy; 3) CSDs induced by the stimulation of the angular bundle in some animals (Fig 1B).

All spike events were defined as a transient EEG event that was sharply contoured, crossing
a threshold set as six times the standard deviation of the EEG signal for a given channel and
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lasting< 50 ms in duration (Fig 1A). DS were defined as having a large amplitude positive
going potential with the peak amplitude occurring in the dentate gyrus. In addition, all DS dis-
played a phase reversal and current sink in the molecular layer or outer molecular layer of the
dentate gyrus. These criteria are consistent with previous work [24,25] that defined and charac-
terized these types of events. Interictal spikes were defined as spikes that crossed our threshold,

Fig 1. Simultaneous recoding of field activity in the CA1-dentate gyrus axis of dorsal hippocampus.
For simplicity, every other trace is shown (16 total recording sites, 100 μm contact intervals). A) A typical
dentate spike was depicted in the traces shown, characterized by a large amplitude, highly contoured event
with a positive going waveform in the dentate gyrus. The CA1 pyramidal cell layer was located near trace 3
and the dentate granule cell layer was located near trace 9. B) An example recording depicting a
characteristic response to a angular bundle stimulation. The silicon probe was located in a similar orientation
to the recording shown in panel A. The CA1 pyramidal cell layer was located near trace 3 and the dentate
granule cell layer was located between traces 9 and 11.

doi:10.1371/journal.pone.0132630.g001
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but did not meet the criteria established for DS. For each recording, at least two channels were
evaluated for spike activity corresponding to channels in CA1, the dentate gyrus, and CA3.
Events did not have to cross the threshold on all channels to be considered an event. All poten-
tial events were further evaluated individually and electrical artifacts were removed. Events
were then classified based on their width, waveform amplitude and shape, and the recording
channel where reversal of the signal was observed. Detection of interictal spikes was verified by
manual detection. For individual recordings from both control and pilocarpine-treated ani-
mals, EEG across all 16 channels was further reviewed utilizing NeuroExplorer software to ver-
ify threshold detected events (Nex Technologies, Madison, AL). CSD plots were generated
using custom software in MATLAB. Although some differences in resistance were present in
different hippocampal layers, these differences were minimal and were unlikely to modify spa-
tial distribution of current sinks and sources. As such, we assumed isotropy of the extracellular
space in CSD analysis.

Multiunit Activity
To identify and extract single unit activity in cell layers, we filtered recorded EEG traces
between 300–6000 Hz and set a threshold of at least 3 times the standard deviation of the fil-
tered signal isolating multiunit activity from the background signal. EEG traces to be analyzed
were selected based on two criteria: 1) the presence of single unit activity on filtered EEG traces;
2) histological verification of electrode contact placement near either the CA1 pyramidal cell
layer or the granule cell layer in the dentate gyrus. Isolated multiunit activity for CA1 and the
dentate gyrus were plotted in perievent time histograms where the peak amplitude of the DS
was fixed to time zero. Multiunit activity was plotted in 5 ms bins beginning 100 ms before and
ending 100 ms after the peak amplitude of the dentate spike. To assess the significance of
event-related activity, a z-score for each 5 ms bin was calculated as previously described [32].
The z-score represents the raw multiunit activity in each bin minus the population mean
divided by the standard deviation of the population over the plotted 200 ms. If more than two
successive bins show a z-score�3 during the analyzed time period the activity was considered
to be related to the dentate spike.

Histology
Following recording, animals were transcardially perfused with PSB followed by 4% parafor-
maldehyde. Brains were removed and post-fixed in 4% PFA for 24 hrs, then moved to 30%
sucrose solution until saturated and then frozen and sectioned at 30 μm on a cryostat. Sections
were counterstained with DAPI (1:1000) to verify cell layers in relationship to DiI probe tracks
(Fig 2A). Additional animals were processed for Timm staining following completion of EEG
recording. Timm staining was performed as follows [33]: Rats were perfused with normal
saline followed by 200 ml of sodium sulfide, and 200 ml of 4% paraformaldehyde. Brains were
removed, post-fixed in 4% PFA for 24 hrs, and placed in 30% sucrose until the brains sank.
Coronal sections were taken along the extent of the hippocampus at 40 μm on a freezing cryo-
stat. For Timm staining, sections were developed in a solution of 50% gum arabic (120 ml),
51% citric acid (10 ml), 47% sodium citrate (10 ml), hydroquinone, and silver nitrate for 45 min.
After washing slides containing DiI labeling from electrode placements were washed in dH20
and then coverslip with Fluromount G. The remaining slides were dehydrated in alcohol, cleared
in methyl salicylate and coversliped with Permount.
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Results

Pilocarpine-Induced Morphological Changes
Pilocarpine-induced SE has been documented to cause cell death and damage to the hippocam-
pus with a high degree of variability depending on dosing protocols and the duration of SE.
Since the anatomical morphology of hippocampal layers in SE rats may influence interpreta-
tion of CSD profiles we measured the distance between anatomically defined layers across the
dorsal-ventral axis of the hippocampus in both control and SE groups (Fig 2). We observed a
significant decrease in the dorsal-ventral distance in the CA1 region in pilocarpine-treated ani-
mals (pilocarpine: 610±19.2 μm; control: 783±36.2 μm, p = 0.001, Fig 2C).Further analysis
revealed the reduction in CA1 region distance resulted from a specific reduction in size the of
CA1 stratum oriens (pilocarpine: 133±7.0 μm; control: 181.6±35.9 μm, p = 0.034) and CA1
stratum radiatum (pilocarpine: 279.4±14.0 μm; control: 398.0±26.4 μm, p = 0.002) in the pilo-
carpine-treated animals (Fig 2D). Despite the differences in the CA1 region, there was no dif-
ference between groups in the total dorsal ventral distance stretching from CA1 stratum oriens
to the inferior molecular layer of the dentate gyrus (pilocarpine: 1836±30.4 μm, n = 11; control:
1861±46.2 μm, n = 3, p = 0.74, Fig 2B). Overall, pilocarpine-induced SE decreased the size of

Fig 2. Pilocarpine-inducedmorphological changes. A) Reconstruction of silicon probe placement within a coronal section of the hippocampus. Scaled
silicon probe outlines were superimposed on sections counterstained with DAPI. DiI tracks and multiunit activity guided probe alignment. B) No differences in
the distance from stratum oriens in CA1 to the outer molecular layer of the inferior blade of the dentate gyrus were seen between control and pilocarpine
animals. C) There was a significant decrease in the distance taken up by area CA1 in pilocarpine-treated animals measured from stratum oriens to the
hippocampal fissure. D) Further analysis of CA1 demonstrated a significant decrease in stratum oriens and stratum radiatum in pilocarpine-treated animals,
with no change to the pyramidal cell layer or stratum lacunosum-moleculare.

doi:10.1371/journal.pone.0132630.g002

CSD of Status Epileptics Induced Dentate Spikes

PLOS ONE | DOI:10.1371/journal.pone.0132630 July 6, 2015 6 / 15



CA1 likely due to cell death, and an associated expansion of the molecular layer potentially due
to axonal sprouting.

A subset of pilocarpine-treated brains (n = 2) used in our recordings was processed for
Timm staining to evaluate changes in the mossy fiber organization. In control animal’s, normal
mossy fiber projections were observed arising from granule cells in the dentate gyrus and pro-
jecting to the stratum lucidum of CA3. In contrast, in the dentate gyrus of pilocarpine-treated
animals, mossy fibers were observed in the granule cell layer and the inner molecular layer.
They were also observed in the CA3 pyramidal cell layer. Those changes were indicative of
mossy fiber sprouting, where dentate granule cells formed recurrent synaptic contacts onto
other dentate granule cells and aberrant excitatory connections to CA3 pyramidal layer [33–
35]

Identification and Classification of Spike Events
Recordings in the hippocampal formation with 16-channel silicon probes were performed in
control (n = 3) and pilocarpine-treated (n = 11) animals and analyzed for large amplitude pop-
ulation events. Events were classified based on 1) the orientation of the probe within the hippo-
campus; and 2) the anatomical location of the major current sink. In control animals, large
amplitude (1343.9 ± 88.3 μV) spikes were observed when probes were placed along the dorsal-
ventral axis containing CA1 and the dentate gyrus. These events were identical to previously
described DS with a positive going potential within the dentate gyrus as well as a phase reversal
and current sink in the molecular layer of the dentate gyrus (Fig 3A).

Recording in the same orientation, DS were observed in 9 of the 11 pilocarpine-treated ani-
mals. A total of 1,350 events were recorded. The maximum amplitude for DS in both pilocar-
pine-treated and control animals was observed in the granule cell layer. Similar to control
events, pilocarpine DS were characterized by a large amplitude (1497 ± 132.1 μV) positive
going population event and a phase reversal and current sink in the molecular layer of the den-
tate gyrus (Fig 3B). A subset of DS (n = 24) with a current sink in the outer molecular layer dis-
played an additional, although weaker, current sink in the stratum radiatum of CA1,
suggesting the event may have propagated through the hippocampus. Electrode spacing on the
silicon probes (100 μm) allowed for three contacts to be located in the molecular layer, allowing
for a distinction between activities in the outer, middle, and inner thirds of the layer. As a
result, we were able to classify DS based on the site of phase reversal and current sink location
within the molecular layer. The majority (n = 866 in 9 animals) of DS displayed a phase rever-
sal and distinct current sink in the outer molecular layer. DS were also observed to have a
phase reversal and current sinks in the middle (n = 326 in 6 animals) and inner (n = 158 in 2
animals) molecular layers. Overall, DS in pilocarpine-treated animals occurred with a signifi-
cantly higher frequency compared to controls (Control: 0.008 ± 0.001 Hz; Pilocarpine:
0.036 ± 0.006 Hz; p< 0.001, Fig 3F). However, there was no difference in the frequency of DS
when comparing events that occurred at each third of the molecular layer (Fig 3F, Table 1).
Despite their overall increased frequency, there was no difference in the amplitude or width of
DS between controls and pilocarpine-treated animals or when comparing DS between layers of
the molecular layer (Table 1). Thus, following SE, there is an increase in the frequency of DS,
but no change in amplitude or width when compared to control DS.

In the two pilocarpine-treated animals that did not display DS, we observed large amplitude
events that crossed threshold but showed no phase reversal across the 16 channels recorded
(n = 468, Fig 3C). This type of event was never observed in control animals. Although there
was no phase reversal, the amplitude of the events varied across the 16 channels, suggesting
these events initiated outside the hippocampus and then invaded the hippocampal formation
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via volume conduction. These non-reversing events occurred at a significantly higher fre-
quency compared to controls (Control: 0.008 ± 0.001 Hz; Non-reversing: 0.063 ± 0.019,
p< 0.001), and have significantly smaller amplitude than both control (p< 0.05) and pilocar-
pine-induced DS (p< 0.01) (Table 1).

A third population of events was observed in pilocarpine-treated animals when recording
from the dorsal-ventral axis containing CA1 and the dentate gyrus characterized by a phase
reversal and current sink in the stratum lacunosum-moleculare with a corresponding source in
in the molecular layer (n = 72, Fig 3D, Table 1). These events were also never observed in con-
trol animals. Similar to DS, these events had a significantly higher frequency compared to

Fig 3. Waveform and CSD plots of identified spikes in control and pilocarpine-treated animals. In the top panel all individual events were overlaid and
aligned to the peak spike amplitude. In the bottom panel an average of the EEG traces was shown overlaid on a CSD plot displaying current sinks (blue) and
current sources (red). In both panels on the y-axis the anatomical location of each of the 16-laminar (100 μm spacing) EEG traces was shown. A) DS
observed in control animals (n = 8 spikes), B) Pilocarpine-induced DS (n = 40), C) Non-Reversing spikes in the CA1-DG plane (n = 58), D) Population events
with a reversal in CA1 SL-M (n = 35) E) Events recorded in the CA1-CA3 pane (n = 47). F) Frequency of all DS in control (black) and pilocarpine (grey) treated
animals. Frequency of DS in pilocarpine-treated animals was further segregated based on location of current sink in the dentate molecular layer. No
significant difference was observed between the frequencies of DS at each layer of the molecular layer. SO–stratum oriens, P–CA1 pyramidal cell layer, SR–
stratum radiatum, SL-M–stratum lacunosummoleculare, OML–outer molecular layer of the dentate gyrus, MML–middle molecular layer of the dentate gyrus,
IML–inner molecular layer of the dentate gyrus, GCL–granule cell layer, H–hilus, CA3 –CA3 pyramidal cell layer, AH–above hippocampus, ML–molecular
layer, TH–thalamus.

doi:10.1371/journal.pone.0132630.g003

CSD of Status Epileptics Induced Dentate Spikes

PLOS ONE | DOI:10.1371/journal.pone.0132630 July 6, 2015 8 / 15



control animals (Control: 0.008 ± 0.001 Hz; SL-M: 0.021 ± 0.012, p< 0.001), but were not sig-
nificantly different in frequency from pilocarpine DS. There was no difference in either spike
amplitude or spike width compared to controls.

Additional recordings were completed in both control and pilocarpine-treated animals
where silicon probes were placed in the dorsal-ventral plane containing CA1-CA3. In this ori-
entation two contacts on the probe were located in the lateral region of the molecular layer of
the dentate gyrus. Of those events that crossed threshold, none were observed to initiate in
CA1 or CA3. However, in one animal, events were observed with a phase reversal and current
sink in the lateral portion of the molecular layer, similar to what had been previously observed
with DS (n = 78, Fig 3E). Recordings in control animals (n = 3) with silicon probes displaying
similar trajectories through the CA1-CA3 axis did not have any events cross threshold.

All of the pilocarpine-treated rats had spontaneous seizures consisting of bilateral forelimb
clonus, with or without rearing. Seizures were not quantified with EEG-video monitoring. No
seizures occurred in the hour prior to, or during, the recordings.

Multiunit Activity
To access how dentate and CA1 neuronal activity was affected by DS, we evaluated changes in
multiunit activity before and after each event in the 9 pilocarpine and 2 control animals in
which DS were recorded. Perievent histograms were plotted so that time zero on the x-axis cor-
responds to the peak amplitude of the dentate spike in both control and pilocarpine-treated
animals.

Multiunit activity in the CA1 pyramidal cell layer showed no change in activity, as accessed
by z-score, across the time period analyzed in both control and pilocarpine-treated animals,
suggesting CA1 pyramidal cells were not affected by DS (Fig 4A and 4C). However, in the den-
tate granule cell layer in the two control animals with DS and 8 of the 9 pilocarpine-treated ani-
mals with DS, multiunit activity increased 5 ms before (Control: z-score = 3.95 ± 0.18;
Pilocarpine: z-score = 4.52 ± 0.47) and 5 ms after (Control: z-score = 3.40 ± 0.40; Pilocarpine:
z-score = 4.85 ± 0.56) the peak amplitude of the dentate spike, suggesting an event related
increase in granule cell layer activity (Fig 4B and 4D).

Discussion
The dentate gyrus plays an important role in gating excitatory inputs from the entorhinal cor-
tex, and disruption of this function can result in epileptiform activity within the hippocampus.

Table 1. Summary of all events and spike types observed in pilocarpine and control treated animals.

Spike Type # of Events # of Rats Frequency (Hz) Amplitude (μV) Width (ms)

Control DS 45 2 0.008 ± 0.001 1343.9 ± 88.3 16.4 ± 1.2

Pilocarpine DS–Total 1350 9 0.036 ± 0.006* 1497.0 ± 132.1 17.3 ± 0.6

Pilocarpine DS–OML 866 9 0.031 ± 0.007 1531.6 ± 160.1 17.1 ± 0.7

Pilocarpine DS–MML 326 6 0.023 ± 0.009 1330.8 ± 180.2 18.9 ± 1.1

Pilocarpine DS–IML 158 2 0.042 ± 0.016 1582.9 ± 14.3 15.4 ± 0.3

SL-M Reversal 72 3 0.021 ± 0.012* 1418 ± 335.8 15.9 ± 0.3

Non-Reversing 468 2 0.063 ± 0.019* 950.6 ± 137.3 14.3 ± 1.4

CA1-CA3 Reversing 78 1 0.031 758.9 17.8

* p < 0.001 compared to Control DS

OML–outer molecular layer of the dentate gyrus, MML–middle molecular layer of the dentate gyrus, IML–inner molecular layer of the dentate gyrus

doi:10.1371/journal.pone.0132630.t001
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Fig 4. Perievent Time Histogram and z-scores of multiunit activity in the hippocampus during DS.
MUA activity and z score of A) CA1 pyramidal cell layer and B) dentate granule cell layer in control animals.
MUA activity and z score of C) CA1 pyramidal cell layer and D) dentate granule cell layer in pilocarpine-
treated animals. The peak amplitude of DS was locked to time zero, depicted by the vertical dashed red line,
in all perievent time histograms. Horizontal dashed red lines in z score plots indicate a z score of 3. No
significant increase in MUA was seen in the CA1 pyramidal cell layer in either control or pilocarpine-treated
animals. However, in both groups a significant increase in MUA, demonstrated by z-scores�3, was
observed 5ms before and after DS.

doi:10.1371/journal.pone.0132630.g004
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Although SE-induced changes in principal cell- and interneuron physiology have been
described, little is known about the occurrence of spontaneous, large-amplitude, dentate gyrus
population spikes. In this study, we used 16-channel laminar silicon probes to investigate how
SE-induced changes modified large amplitude events in the CA1-DG and CA1-CA3 axis of the
hippocampus in urethane anesthetized rats. In 9 of the 11 pilocarpine-treated animals tested
and two control animals, we observed large amplitude events with a point of reversal and corre-
sponding current sink in the molecular layer of the dentate gyrus similar to previously
described DS [24,36]. Although there was no difference in the amplitude or width of these
events between pilocarpine-treated and control animals, there was a significant increase in the
frequency of DS in pilocarpine-treated animals. The increase in DS following SE suggests that
dentate spike activity was also altered by the epileptogenic process. An increase in dentate
spike frequency was also observed following kainic acid induced SE, suggesting that our
observed increase in DS frequency was not model specific [26]. It was surprising that we did
not observe interictal spikes with a site of generation in CA3, which are commonly reported
following pilocarpine-induced SE [37,38]. This may be due to pyramidal cell death in CA3, the
effect of urethane on network excitability [39], or a combination of both.

In previous studies, DS were observed within the hippocampus consisting of large ampli-
tude, short duration field potentials representing synchronous discharge of dentate granule
cells in both anesthetized and freely moving rats [24,25,27]. Consistent with our observations
here, current source density analysis of DS revealed current sinks in the outer and middle
molecular layer, suggesting these events result from population bursts in layer II stellate cells of
lateral and medial entorhinal cortex, respectively [36]. However, DS with current sinks in the
outer molecular layer were seen more frequently than those with sinks in the middle molecular
layer [25]. Although we did not observe a difference in the frequency of events when compar-
ing between layers, we did observe events in the outer molecular layer in more animals than in
middle or inner molecular layers, suggesting lateral entorhinal input has a strong effect on DS
generation following SE. Bilateral removal of the entorhinal cortex in normal rats significantly
reduced the number of DS, further implicating the entorhinal perforant path projection as the
main pathway for DS initiation [25].

Following SE, cell loss is observed in entorhinal cortex layers III and has been suggested to
result in hyperexcitable layer II stellate cells, which project to granule cells [20,21,40]. It is pos-
sible that the increase in DS frequency is a compensatory mechanism resulting from an
increase in excitatory input arriving from the entorhinal cortex since, DS have been suggested
to provide a suppressive effect on the excitability of the CA3-CA1 network. Hilar interneurons
increase firing during DS events while both CA1 and CA3 pyramidal cells demonstrate unal-
tered or suppressed firing activity [24,25]. Our observation that no ictal charges arose from the
dentate granule cell layer and CA1 multiunit activity was unaffected by DS supports these find-
ings. Urethane is also known to activate GABAergic receptors and inhibit NMDA receptors,
which could limit neuronal excitability [39]. However, the observation that DS were recorded
suggests the existence of synchronous population discharges in entorhinal layer II cells. It
should be noted that despite urethane anesthesia, we have elicited interictal and ictal discharges
with flurothyl inhalation. Importantly, Harvey and Sloviter [9] recorded 191 seizures in pilo-
carpine-treated rats during the chronic epileptic state and found that none of the ictal events
begin in the dentate granule cells. Indeed these authors found that granule cells became pro-
gressively less excitable, rather than hyperexcitable, as mossy fiber sprouting progressed.

The presence of DS with current sinks in the inner molecular layer has not been previously
reported in control animals, possibly because other investigators did not use the recording
techniques employed here. Following SE mossy fibers from granule cells form excitatory recur-
rent collaterals onto neighboring granule cells within the inner molecular layer [16]. Hilar
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mossy cells, which project to basket cells in the inner molecular layer, are highly susceptible to
cell death resulting in decreased excitatory input to inhibitory interneurons [13,41]. Remaining
hilar mossy cells can become hyperexcitable and project directly to granule cells in the inner
molecular layer [42,43]. As a result of these changes, increased excitatory input onto remaining
granule cells could initiate DS within the inner molecular layer. This population of DS could
represent a different class of events that are specific to the reorganized dentate gyrus and initi-
ate activity without afferent input.

In addition to DS we also observed large amplitude spikes that displayed no phase reversal
across the 16-channel laminar array. A difference in the amplitude at each contact was
observed suggesting that these events were not artifacts. However, the peak amplitude of the
non-reversing events was significantly smaller than both control and pilocarpine-induced DS.
Given the lack of phase reversal of these events across the 16-channels, it is likely that these
events were generated outside the hippocampus and traversed the recording electrode as a
result of volume conduction. Note that these events occurred in the only two animals that did
not display DS. The final population of events observed in the CA1-DG axis, is those with a
current sink in stratum lacunosum moleculare of CA1 and therefore likely originated from the
entorhinal cortex layer III [44].

It is surprising that we only observed events with electrodes in the CA1-CA3 orientation in
one animal, and that these events showed no current sink in CA3 or CA1. Following a pilocar-
pine-induced SE insult, interictal spikes in CA3 and/or CA1 have been observed [45,46]. One
explanation for this observation was profound cell death in CA3 and CA1 observed following
pilocarpine-induced SE [47]. Indeed, in the animals utilized in this study, cell loss was observed
in the pyramidal cell layer of CA3, while CA1 remained relatively unaltered. CA3 pyramidal
cells display recurrent connections and are easily recruited to generate interictal spikes, which
can propagate via the Schaffer collaterals to CA1 [48,49]. Thus, in this study the loss of these
cells would decrease the probability of observing large amplitude events in both CA1 and CA3.

In conclusion, in this study we have shown that there is an increase in the frequency of DS
that initiate in the molecular layer of the dentate gyrus following pilocarpine-induced SE. The
majority of animals tested displayed current sinks in the outer and middle molecular layer cor-
responding to excitatory input from lateral and medial entorhinal cortex, respectively. Overall,
the increase in frequency of these events suggests there is an increase in entorhinal input into
dentate granule cells. Further, our findings support the idea that DS inhibit granule cells by
activating feedforward inhibition.
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