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A compact analytic model is proposed to describe the combined orientation preference

(OP) and ocular dominance (OD) features of simple cells and their mutual constraints on

the spatial layout of the combined OP-OD map in the primary visual cortex (V1). This

model consists of three parts: (i) an anisotropic Laplacian (AL) operator that represents

the local neural sensitivity to the orientation of visual inputs; and (ii) obtain a receptive

field (RF) operator that models the anisotropic spatial projection from nearby neurons

to a given V1 cell over scales of a few tenths of a millimeter and combines with the AL

operator to give an overall OP operator; and (iii) a map that describes how the parameters

of these operators vary approximately periodically across V1. The parameters of the

proposed model maximize the neural response at a given OP with an OP tuning curve

fitted to experimental results. It is found that the anisotropy of the AL operator does not

significantly affect OP selectivity, which is dominated by the RF anisotropy, consistent

with Hubel and Wiesel’s original conclusions that orientation tuning width of V1 simple

cell is inversely related to the elongation of its RF. A simplified and idealized OP-ODmap is

then constructed to describe the approximately periodic local OP-OD structure of V1 in a

compact form. It is shown explicitly that the OPmap can be approximated by retaining its

dominant spatial Fourier coefficients, which are shown to suffice to reconstruct its basic

spatial structure. Moreover, this representation is a suitable form to analyze observed

OP maps compactly and to be used in neural field theory (NFT) for analyzing activity

modulated by the OP-OD structure of V1. Application to independently simulated V1

OP structure shows that observed irregularities in the map correspond to a spread of

dominant coefficients in a circle in Fourier space. In addition, there is a strong bias toward

two perpendicular directions when only a small patch of local map is included. The bias

is decreased as the amount of V1 included in the Fourier transform is increased.

Keywords: orientation selectivity, ocular dominance, receptive field (RF), primary visual cortex (V1), cortical maps

1. INTRODUCTION

The aim of this study is to: (i) build a simple and idealized OP-ODmap representation of V1 which
is based on the local feature detection in OP and OD, and the modeling of the neural interaction
between nearby hypercolumns; and (ii) obtain a suitable Fourier domain representation of the local
area of OP-ODmap with the range of a few hypercolumns, in order to place it in the form required
to link it to the neural field theory (NFT) of neural activities and connections in approximately
periodic structures such as primary visual cortex (V1).
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V1 is the first cortical area that processes visual inputs from
the lateral geniculate nucleus (LGN) of the thalamus before
projecting output signals to higher visual areas (Hubel and
Wiesel, 1961, 1962a, 1972; Garey and Powell, 1967; Hendrickson
et al., 1978; Miikkulainen et al., 2005). The feedforward visual
pathway from the eyes to V1 involves two main processing
steps: (i) light levels at a given spatial location are detected
and converted into neural signals by the retina ganglion cells;
and (ii) the neural signals are transmitted to V1 through the
lateral geniculate nuclei (LGN) of the thalamus (Schiller and
Tehovnik, 2015). LGN neurons have approximately circular
receptive fields with either a central ON region (activity enhanced
by light incident there) surrounded by an OFF annulus (activity
enhanced by darkness there), or vice versa (Hubel and Wiesel,
1961; De Angelis et al., 1995). In addition, recent studies
(Suematsu et al., 2012, 2013) have found that most LGN neurons
have elongated receptive fields, which provide considerable
orientation bias. The current study focuses on circular LGN
receptive fields.

Similarly to other parts of the cortex, V1 can be approximated
as a two-dimensional sheet when studying the spatial structure of
various feature maps (Tovée, 1996). V1 neurons, which respond
to same eye preference or orientation preference, are arranged
in columns perpendicular to the cortical surface. Columns do
not have sharp boundaries; rather, feature preferences gradually
vary across the surface of V1. These maps are overlaid such that
a given neuron responds to several features (Hubel and Wiesel,
1962b, 1968, 1974a; Miikkulainen et al., 2005).

Two prominent feature preferences of V1 cells are their layout
in a combined the OP-OD map, as seen in Figure 1A, which
shows an example from experiment (Blasdel, 1992). Hubel and
Wiesel (1968) found that neurons that respond preferentially to
stimuli from one eye or the other are arranged in alternating
bands across layer 4C of V1 in macaque monkeys, and these
bands are termed left and right OD stripes. The average OD stripe
width in mammals ranges from∼ 0.5−1 mm (LeVay et al., 1985;
Horton and Adams, 2005; Adams et al., 2007). An OP column,
sometimes called an iso-orientation slab, comprises neurons that
respond to similar edge orientation in a visual field. Each OP
column not only spans several cortical layers vertically, but also
extends 25− 50 µm laterally in monkey. Moreover, OP normally
varies continuously as a function of the cortical position, covering
the complete range 0◦ to 180◦ of edge orientations (Hubel and
Wiesel, 1974a, 1977; Obermayer and Blasdel, 1993). Optical
imaging reveals that OP columns are quasiperiodic, and are
arranged as pinwheels, within which each of the OPs varies
azimuthally around a center called a singularity (Bonhoeffer
and Grinvald, 1991, 1993; Blasdel, 1992; Swindale, 1996).
Furthermore, the OP in each pinwheel increases either clockwise
(negative pinwheel) or counterclockwise (positive pinwheel) and
most neighboring pinwheels have opposite signs (Götz, 1987,
1988). Examples of positive and negative OP pinwheels are
outlined in Figure 1A. The superimposed OD and OP maps
have specific relationships, including that: (i) most pinwheels
are centered near the middle of OD stripes; (ii) linear zones,
which are formed by near-parallel OP columns, usually connect
two singularities and cross the border of OD stripes at right

angles (Bartfeld and Grinvald, 1992), as highlighted in the white
rectangle in Figure 1A. Additionally, various studies (Mitchison,
1991, 1995; Koulakov and Chklovskii, 2001; Chklovskii and
Koulakov, 2004) have argued that the appearance of the OP-OD
map reflects wiring optimization of local neuron connectivity,
in which the distance between neurons with similar feature
preference is kept as small as possible.

According to the quasiperiodicity of the feature preference
of V1, previous studies (Bressloff and Cowan, 2002; Veltz
et al., 2015) suggested that the functional maps of V1 can be
approximated by a spatially periodic network of fundamental
domains, each of which is called a hypercolumn. Each
hypercolumn represents a small piece of V1, which consists of
left and right OD stripes with a pair of positive and negative
pinwheels in each, so as to ensure the complete coverage of the
OP and OD selectivity.

Orientation selectivity plays a primary role in early-stage
visual processing. One way to characterize the preferred
orientations of a single neuron is to measure the tuning curve
from its neuronal response to visual stimuli with various
orientations. Figure 1B shows an experimental orientation
tuning curve obtained from single unit responses in area 17 of
adult cat, with optimal orientation angle of 90◦ (Swindale, 1998).
A typical full width at half maximum (FWHM) of such a curve
is∼ 35◦.

The mapping of inputs from the retina to V1 is organized
in a retinotopic manner. Visual information in nearby regions
within the visual field is projected to neighboring ganglion cells
in the retina. This spatial arrangement is maintained through
the LGN to V1, where the visual signals are further processed
by neighboring V1 neurons. The subregion in the visual field,
within which certain features of the visual object tend to evoke
or suppress neural firing of a given V1 neuron, is termed the
classical receptive field (RF) of that neuron (Hubel and Wiesel,
1962a; Tootell et al., 1982; Skottun et al., 1991; Smith et al.,
2001; Schiller and Tehovnik, 2015). The area around the classical
RF is referred to as the non-classical or extra-classical RF, in
which a stimulus can modulate the responses evoked by stimuli
in the classical RF (Allman et al., 1985; Rao and Ballard, 1999;
Henry et al., 2013). This paper focuses on the classical RF of
V1 simple cells, which respond best to oriented bars. The spatial
arrangement of a V1 simple cell RF has separate ON and OFF
subareas, which are elongated in a specific orientation, and these
subareas relate to the ON and OFF regions of LGN RFs that
project to the V1 RF of a given cell. The neuron will be excited
when light illuminates the ON subarea, and be depressed when
light exposed to the OFF subarea (Hubel and Wiesel, 1968;
Mechler and Ringach, 2002). It was first proposed by Hubel and
Wiesel (1962a) that the RF of a V1 simple cell can be predicted
by a feed-forward model. Specifically, they suggested that RF of
a V1 simple cell is formed by combining the circular RFs of
several LGN cells to produce an elongated RF with central ON
region flanked by OFF regions. Figure 2 shows a schematic of
this feed-forward model, which produces a RF with a three-lobed
pattern, as shown in the bottom left corner. In addition, several
studies have suggested that the lateral intracortical excitatory
and inhibitory connectivities from surrounding neurons also play
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FIGURE 1 | Experimental OP-OD properties. (A) Combined OP-OD map of macaque monkey, adapted from Blasdel (1992). The borders of OD stripes are shown in

solid black, and singularities (pinwheel centers) are labeled by white stars. Oriented color bars indicate different OPs. The blue and red circles outline examples of

positive and negative OP pinwheels, and the white rectangle outlines a linear zone. (B) Experimental orientation tuning curve, adapted from Swindale (1998). The

preferred orientation angle is around 90◦. The dots are the data points, and the solid curve is the fitted tuning curve using a von Mises function.

FIGURE 2 | Schematic of the elongated RF of a V1 simple cell, showing the

convergence of several LGN RFs into the V1 RF. The four cells in the right half

of the figure represents LGN cells with circular ON center, OFF surround RFs.

The outputs of these LGN cells project to form the elongated V1 RF shown at

the bottom left. Adapted from Hubel and Wiesel (1962a).

important roles in a cell’s orientation tuning and RF formation
(Gardner et al., 1999; Ferster andMiller, 2000;Mariño et al., 2005;
Finn et al., 2007; Moore IV and Freeman, 2012). Moreover, some
studies have discussed the relationship between the size of the RF
and the width of the orientation tuning curve (Hubel andWiesel,
1962a; Lampl et al., 2001). These authors predicted that the width
of orientation tuning curve should be inversely associated with
the elongation of the RF.

Numerous experiments have used optical imaging or
functional magnetic resonance imaging (fMRI) to reveal the
spatial structure of the OP-OD map in mammals including
humans (Bonhoeffer and Grinvald, 1991, 1993; Bartfeld and
Grinvald, 1992; Blasdel, 1992; Obermayer and Blasdel, 1993;
Bosking et al., 1997; Yacoub et al., 2008). Additionally, a number

of models have been proposed for constructing the OP-ODmaps
and simulated numerically (Obermayer et al., 1992b; Swindale,
1992; Erwin et al., 1995; Miikkulainen et al., 2005; Bednar, 2009;
Barbieri et al., 2012; Stevens et al., 2013). The resulting OP-
OD maps obtained from experiments or simulation are only
semiregular, as illustrated in Figure 1A. Hence, it usually requires
many data points to describe the structure of such maps, which
impedes understanding and requires extensive computation to
integrate OP-OD maps into models of neural activity in the
approximately periodically structured V1. Such models would
benefit from a compact approximate analytic representation
of the OP-OD map; e.g., to incorporate its structure into
existing spatiotemporal correlation analyses of gamma-band
oscillations of neural activity using neural field theory (NFT), or
to understand propagation via patchy neural connections in V1
(Robinson, 2005, 2006, 2007; Liu et al., 2020).

NFT averages over the properties of many neurons to model
brain structure and activity at scales from ∼0.1 mm to the
whole brain, where it has had many successful comparisons
with experiment (Deco et al., 2008). It is thus well placed to
analyze activity in V1, including in the wider context of brain
activity as a whole (Robinson, 2006), without having to model
every neuron individually, which is impractical. However, to do
this, it is necessary to obtain a compact Fourier representation
of the approximately periodic mm-scale variations of feature
sensitivity and to ensure that these are mutually consistent
(Robinson, 2006). This formulation then enables the evolution
of the corresponding properties of spatially modulated activity
evoked by various stimuli to be tracked.

The above issues motivate us to derive a compact analytical
representation of the OP-OD map for use in linking the
microscale neural activities to the brain dynamics in a larger scale
of a few tenths of a millimeter using NFT, and for analysis of
properties of OP-OD maps obtained from in-vivo experiments
or computer simulations. In this study we start with an idealized
map that is periodic and regularized. The idealization is suitable
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in a short scale of a few millimeters, where OD stripes can
be approximated as straight and parallel; at longer scales, these
stripes deviate in direction over a characteristic correlation length
beyond which they tend toward isotropy on average (LeVay et al.,
1985; Adams et al., 2007).

To achieve the above aim, we first note that it has long
been suggested that oriented visual features such as edges can
be detected by the Laplacian operator (Ratliff, 1965; Marr and
Hildreth, 1980; Marr and Ullman, 1981; Marr, 1982; Young,
1987). Hence, we approximate the local sensitivity of V1 neuron
to the orientation of stimuli by such an operator, which we
allow to be anisotropic. This operator incorporates the details
of LGN receptive fields, as projected to the cortex, and any
anisotropic response at V1, as implemented through local
excitatory and inhibitory wiring between neurons. Other edge
detectors have been proposed to exist in V1, and a wider range
have been suggested in the field of machine vision. These include:
(i) the Canny operator, which tracks the maximum gradient
points of the Gaussian-smoothed image through a non-maximal
suppression process (Canny, 1986); (ii) the Gabor filter that
extracts the image features with specific direction and spatial
frequencies using a Gaussian modulated sinusoid (Mehrotra
et al., 1992); and (iii) difference of Gaussian (DoG) filter, which
consists of two Gaussians of opposite sign and different standard
deviations (Young, 1987). Some of these filters are suitable for
modeling the receptive fields of retinal ganglion cells (e.g., DoG
filter) and V1 simple cells (e.g., Gabor filter) (Ringach, 2002;
Lindeberg, 2013). It is worth stressing that we are not aiming
to incorporate the latest and most sophisticated edge detectors
from computer vision; rather, we want a simple operator that
can plausibly be implemented in neural tissue. The Laplacian
is a suitable such operator, but use of more complex operators
would not affect the mutual constraints between OD and OP
maps. Secondly, we introduce an RF operator to approximate the
anisotropy of the visual region that projects activity to a given
V1 simple cell. The combined Laplacian and RF operators yield
an overall OP operator at each point, whose parameters can be
fitted to yield observed OP tuning widths. Thirdly, we allow the
properties of the OP operator to vary across V1 approximately
periodically, as described by dominant Fourier coefficients.

The paper is structured as follows: In Section 2, we
approximate the hypercolumn with its structure being
compatible with the general features of OP-ODmap. Meanwhile,
it also is compatible with NFT; We describe the local sensitivity
to stimulus orientation by applying an anisotropic Laplacian
operator to the stimulus. A RF operator is then introduced to
project activity from neighboring neurons to a given point. Then,
in Section 3, the resulting combined OP operator maximizes the
response of V1 neurons to their preferred stimulus orientation
and its parameters are adjusted to match experimental tuning
curves; Moreover, we Fourier decompose the OP and OD
variations on the period of an idealized hypercolumn and
investigate the properties of the resulting Fourier coefficients.
The results are then applied to compactly represent and analyze
OP and OD maps generated from widely used simulation
models. Finally, the main findings are discussed and summarized
in Section 4.

2. MATERIALS AND METHODS

2.1. Hypercolumns and OP-OD Maps
In this section, an approximate OP-OD map within a
hypercolumn is proposed, which reproduces the main aspects
of observed maps. It is Fourier decomposed in later sections to
generate a sparse set of Fourier coefficients that can be used in
NFT to study activity across many hypercolumns.

2.1.1. Hypercolumn Arrangement
All feature preferences within a small visual field are mapped
to a hypercolumn in V1 (Hubel and Wiesel, 1962b, 1974a;
Miikkulainen et al., 2005). Based on the pinwheel model
introduced by De Valois and De Valois (1990), we approximate
the hypercolumn as a square domain, which consists of left
and right OD stripes of equal width; the structure of OD
map constrains the variation of OP, such that each OD stripe
contains a pair of positive and negative pinwheels for continuous
(except at pinwheel centers) and complete feature preference
coverage within a hypercolumn. The hypercolumn is consistent
with general observations of visual cortical map formation
from experimental studies (LeVay et al., 1985; Bonhoeffer and
Grinvald, 1991; Bartfeld and Grinvald, 1992; Obermayer et al.,
1992a; Obermayer and Blasdel, 1993; Erwin et al., 1995; Müller
et al., 2000; Adams et al., 2007), including that: (i) left-eye
and right-eye OD stripes are arranged as alternating stripes in
V1 of average width ≈1 mm; (ii) OP angles are arranged as
pinwheels; (iii) each pinwheel center coincides with the center
of its OD band; (iv) OP is continuous at OD boundaries; and
(iv) neighboring pinwheels have opposite signs. A+ sign denotes
a counterclockwise increase of OP around the pinwheel center,
whereas a − sign denotes a clockwise increase. According to
the rules described above, two distinct arrangements of the
hypercolumn are possible, as illustrated in Figure 3, where each
hypercolumn is 2a wide. Pinwheel arrangement I in Figure 3A is
used for further study in later sections, without loss of generality.
However, other arrangements produce analogous results due to
the fact that the hypercolumn are assumed to be continuous
at boundary and periodic across V1, and other hypercolumn
arrangements can be obtained by either rotating the pinwheels
clockwise/counterclockwise or swapping the left/right column or
top/bottom row horizontally or vertically of Figure 3A. Note also
that one is free to consider a hypercolumnwhose lower left corner
is at the center of the current hypercolumn in Figure 3A. Such
a hypercolumn has exactly the same structure as in Figure 3B,
except for interchange of the left- and right-eye columns.

2.1.2. OD Bands and OP Pinwheel Structure
In our idealized case, we approximate the left and right OD
bands as straight parallel stripes. The degree of eye preference is
approximated as a sinusoidal function�(x, y) of cortical position
(x, y). We define �(x, y) by subtracting the response to left eye
stimuli from the response to the right eye (so positive and
negative values indicate R- and L-eye dominance, respectively)
and write

�(x, y) = sin(ux+ vy), (1)
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FIGURE 3 | Schematics of possible hypercolumn arrangements. The two vertical bands of each hypercolumn represent the left and right OD stripes. The orientated

bars represent the OP within a pinwheel, and the +/− signs indicate the polarity of the pinwheels. (A) Pinwheel arrangement I. (B) Pinwheel arrangement II.

where

u =
π

a
sin(ξ ), v =

π

a
cos(ξ ), (2)

where 2a is the period of the OD stripe and ξ is the angle at which
the OD stripes measured relative to the x-axis, which is set to
90◦ here (stripes are parallel to the y axis). Figure 4A shows the
resulting OD map with left/right OD bands represented by black
and white stripes, respectively; binocular cells tend to be located
near the boundaries between stripes. We note that the exact
profile of OD need not be sinusoidal, but this approximation
suffices for the present purpose of examining the links between
OD and OP maps.

Our model also approximates the OP as a function of cortical
location within each hypercolumn. The spatial coordinates of the
hypercolumn are set by placing the origin of the coordinates at
the center of the hypercolumn, whose boundaries are at x = ±a
and y = ±a, as shown in Figure 3. The four pinwheels in a
single hypercolumn are modeled by first generating the right-top
pinwheel, and other pinwheels are produced by mirroring the
right-top pinwheel across the x-axis, the y-axis, and then both.
When generating the right-top pinwheel, the x and y coordinates
range from 0 to a and the OP angle ϕ(x, y) at each cortical
position (x, y) is approximated by the inverse tangent function
defined as

ϕ(x, y) =
1

2



































arctan
(

y−y0
x−x0

)

, x > x0, y > y0
π
2 , x = x0, y > y0

arctan
(

y−y0
x−x0

)

+ π , x < x0, y > y0
3π
2 , x = x0, y < y0

arctan
(

y−y0
x−x0

)

+ 2π , x > x0, y < y0

(3)

where (x0, y0) = (a/2, a/2) is the center of the right-top
pinwheel. The 1/2 coefficient in front of the inverse tangent
functions is to make the range of ϕ(x, y) to be 0◦ to 180◦.

The negative and positive pinwheels on the top half of
hypercolumn are illustrated in Figures 4B,C. Figure 4D shows
a hypercolumn containing four pinwheels. As mentioned
previously, the OP and OD features are approximated as
continuous and periodic for the moment, so V1 can be
approximated as lattice of hypercolumns. Thus, we can construct
an array of our approximated hypercolumns to represent a
piece of V1, which is shown in Figure 4E. In such an array,
the OP structure resembles maps reconstructed from in-vivo
experiments (e.g., Figure 1A), although the OD stripes are
approximated as straight here (Bonhoeffer and Grinvald, 1991,
1993; Blasdel, 1992; Obermayer and Blasdel, 1993).

2.2. OP Operator
In this section, we derive analytic representations for the OP of
V1 neurons. Firstly, we adopt an anisotropic Laplacian operator
to describe the local response of the system to an edge, which
can include both the near-isotropic response of the LGN plus
any anisotropy introduced by local wiring in V1. We also
introduce the RF operator that describes the projection of activity
from nearby neurons in an anistropic surrounding region. The
combination of these two operators gives an overall OP operator,
whose parameters we fit to match experimental tuning curves.
Again, we stress that we do not adopt the latest edge detection
operator from machine vision; rather, we seek a simple operator
that can detect the edges while also be plausibly instantiated by
the neural wiring of simple cells. In any event, the precise form
operator chosen does not affect the relationship between OP
and OD maps, so other variants could be used without affecting
our core arguments (but specificity of OP would be affected,
in general).

2.2.1. Anisotropic Laplacian (AL) Operator
In computer vision, edges with different orientation can
be detected by linearly combining the second-order partial
derivatives of the input (Marr and Hildreth, 1980; Marr,
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FIGURE 4 | Schematics of visual feature preference maps in V1. (A) OD map with left and right OD bands represented by black and white stripes, respectively. The

color bar indicates the OD sensitivity, with left-eye preference being negative. (B) Negative pinwheel. (C) Positive pinwheel. Both pinwheels are 180◦ periodic and the

color bars indicate OP in degrees. (D) Hypercolumn. The vertical line divides the hypercolumn into left and right OD bands of equal width, while the horizontal and

vertical lines split the hypercolumn into four squares, each containing one OP pinwheel. The white and black crosses mark examples of locations near a pinwheel

center and in an iso-orientation domain, and the circle around each cross indicates the characteristic width of the integration region for computing the overall neuron

responses in Section 3.2. The short bars highlight the OP at various locations. The 0 and 180◦ orientations both appear as horizontal bars. The color bar indicates OP

in degrees. (E) Periodic spatial structure of OP and OD across a small piece of V1 comprising 25 hypercolumns. Black/white stripes indicate left (L) and right (R) OD

bands. One pinwheel is outlined in white and one hypercolumn is outlined in black. The left/right color bar indicates OP angle in degrees and OD selectivity.

1982; Torre and Poggio, 1986). Similarly, we can model the
local sensitivity of V1 simple cells to stimulus orientation,
by calculating the weighted sum of the second-order partial
derivatives of activity projected from the oriented bar stimuli,
using rotated axes for simplicity. Figure 5A shows an original
x− y coordinate system, and x′− y′ axes obtained by rotating the
original axes by an OP angle ϕ that is the angle of an oriented bar.

A short bar in an image gives rise to localized, anisotropic
intensity changes (Torre and Poggio, 1986). In the rotated

coordinates, this 2-dimensional intensity change can be detected
by the weighted second order partial derivatives in the x′

and y′ directions. Hence, we define an anisotropic Laplacian
operator P as a weighted linear combination of the second order
partial derivatives:

P = a2
∂2

∂x′2
+ b2

∂2

∂y′2
, (4)
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FIGURE 5 | Schematics of coordinates and operators. (A) Coordinates used to analyze the anisotropic Laplacian operator. Original axes x and y are shown in solid,

while the rotated axes x′ and y′ are dashed. The input stimulus is a bar oriented at angle ϕ. (B) Operators leading to the OP response at cells at r on the cortex. An

oriented bar is mapped to locations R in the receptive field, which projects to r via the anisotropic weight function G(r− R) indicated by the solid elliptic contour. The

local anisotropic Laplacian operator P then acts at r. The arrow shows how the neural response are project to measurement point r via the weight function. The xg
and yg are the major and minor axis of the weight function, respectively.

where the rotated coordinates satisfy

x′ = x cosϕ + y sinϕ , (5)

y′ = −x sinϕ + y cosϕ , (6)

where the OP ϕ ranges from 0 to π , and a2 and b2 are constants.
Taking the Fourier transform of both sides of Equation (4)

yields

P(k) = −a2k2x′ − b2k2y′ , (7)

where

k2x′ = (kx cosϕ + ky sinϕ)
2 , (8)

k2y′ = (−kx sinϕ + ky cosϕ)
2 . (9)

Substituting Equations (8) and (9) into Equation (7) and then
performing an inverse Fourier transform yields

P = (a2 cos2 ϕ + b2 sin2 ϕ)
∂2

∂x2
+ (a2 − b2) sin (2ϕ)

∂2

∂x∂y

+(a2 sin2 ϕ + b2 cos2 ϕ)
∂2

∂y2
. (10)

Since the stimulus S is oriented along the x′ axis, we would need
more weight on ∂2/∂y′2 than on ∂2/∂x′2 to have a maximal
response to the desired orientation; this implies that b2 ≥ a2.

2.2.2. Receptive Field (RF) Operator
Previous studies (Hubel and Wiesel, 1977; Toth et al., 1997;
Troyer et al., 1998; Ferster and Miller, 2000; Schummers et al.,
2002; Mariño et al., 2005; Finn et al., 2007) have suggested that
the orientation tuning of V1 neuron is altered by the excitatory
(inhibitory) inputs from locally connected neighboring neurons

(either from the same orientation column or from neighboring
columns). Thus, we now introduce an RF operator to model the
anisotropic RF that projects to V1 cells. This consists of a weight
function G(R − r), which describes the strength of the neural
projection from locations R, where input stimuli are mapped
to V1, to a cell at location r whose OP is being approximated.
Figure 5B shows a schematic of the RF operator on a piece of
cortex, indicating both the location r and locations R whose
activity projects to r.

We approximateG(r−R) as an anisotropic Gaussian function
whose long axis is oriented at the local OP ϕ at R (Jones and
Palmer, 1987). If R = (xR, yR) and r = (x, y), we have

G(r− R) =
1

2πσxσy
exp

[

−
1

2

(

x2g

σ 2
x

+
y2g

σ 2
y

)]

, (11)

where

xg = (x− xR) cosϕ + (y− yR) sinϕ, (12)

yg = −(x− xR) sinϕ + (y− yR) cosϕ. (13)

The appropriate width ofG(r−R) along the xg axis is determined
by three factors: (i) the approximate RF size near the fovea
measured from experiments. Previous studies (Hubel andWiesel,
1974b; Dow et al., 1981; Keliris et al., 2019) yielded an RF size
of ≈0.082◦ at the eccentricity of 1◦ in macaque Monkey. We
then transform the RF size in visual degree to the corresponding
cortical size in mm by adopting the magnification factor from
Horton and Hoyt (1991), where the magnification factor M
(expressed in mm per degree) in monkey is approximated as

M =
12

E+ 0.75
, (14)

where E is the eccentricity in degrees. The corresponding cortical
RF size is then ∼0.56mm; (ii) the width of the weight function

Frontiers in Computational Neuroscience | www.frontiersin.org 7 February 2022 | Volume 16 | Article 659316

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Liu and Robinson Analytic Model for OP-OD Maps

should ensure an approximate 30◦ fall off from the measuring
neuron’s maximum response when it is activated by its optimal
orientation (De Valois et al., 1982; Swindale, 1998; Ringach et al.,
2002; Gur et al., 2005; Moore IV and Freeman, 2012); (iii) In local
connections, the typical axonal projection range of a V1 neuron
lies between 0.18 and 0.3 mm (Lund, 1973; Blasdel et al., 1985;
Fitzpatrick et al., 1985; Vanni et al., 2020). In order to satisfy all
the three factors mentioned above, we choose σx = 0.18mm.

2.2.3. Combined OP Operator
Here we combine the anisotropic Laplacian and RF operators
from above to obtain an overall OP operator and adjust its
parameters to match experimental OP tuning curves.

The input that reaches location R on the cortex is
approximated by applying the AL operator to the stimulus S (i.e.,
P{S(R)} in Figure 5B), so that the local orientation sensitivity
is picked out, while the weight function G(R − r) determines
how much response from locations R are projected to r. Hence,
the response at r can be approximated by convolving the weight
function with the OP operator on the stimulus at different
location R. It can be written as

I(r) =

∫

G(r− R)P
{

S(R)
}

dR . (15)

In the Fourier domain, the convolution theorem yields

I(k) = G(k)P(k)S(k) . (16)

where the algebraic function P(k) is defined in Equation (7). We
can thus reverse the order of P(k) and G(k) on the right hand
side of Equation (16) and inverse Fourier transform to obtain

I(r) =

∫

P
{

G(r− R)
}

S(R)dR . (17)

Hence, the response at r becomes the convolution of a new
combined OP operatorP

{

G(r− R)
}

with the stimulus itself; the
resulting operator is a Gaussian-derivative operator. This result
agrees with previous studies (Movshon et al., 1978; Graham,
1989), which indicated that V1 simple cell can be modeled as
a linear filter and its responses are computed as the weighted
integral of the Laplacian-transformed stimulus, with the weights
given by the RF pattern.

Figure 6A shows a contour plot of the combined OP operator
P
{

G(r− R)
}

with a preferred orientation angle of ϕ = 22.5◦.
The operator has an elongated three-lobe pattern with its major
axis along the direction ϕ, with an ON center lobe and two
OFF side lobes. Figure 6B shows a measured RF of V1 simple
cells of macaque monkey (Ringach, 2002), showing that our
OP operator closely resembles the experimental one in spatial
structure. Some studies have used different OP operators such as
Gabor functions, difference-of-Gaussian functions, or Gaussian
derivatives to describe the spatial structure of the RF (Young,
1987; Lindeberg, 2013). Second order Gaussian derivatives and
difference-of-Gaussian functions are dominated by a central
peak flanked by two peaks of opposite sign, and our function
shares these features. Gabor functions and functions involving

higher Gaussian derivatives, for example, have smaller additional
peaks, which are observed in a small fraction of V1 simple cells
(De Valois et al., 2000; Ringach, 2002). However, these additional
features do not change the OP of the cell and do not affect the
results below, which depend on this OP, not the details of how it
was detected.

3. RESULTS

3.1. Angular Selectivity of the OP Operator
The full width at half maximum (FWHM) of the bell-shaped
OP angle tuning curve plotted from the neuron response by
convolving the RF operator and the stimulus can be used
to parameterize the OP selectivity of the OP operator. The
parameters are tunable by adjusting the ratio σ 2

x /σ
2
y of the weight

function G(r − R) defined in Equation (11), and the ratio b2/a2

of the anisotropic Laplacian operatorP defined in Equation (10).
Hence, we can find the optimal parameter values of the combined
OP operator by adjusting its parameters so its tuning curve
matches experiment.

We first vary the values of a2 and b2 while keeping their sum
constant by writing

a2 = sin2 ψ , (18)

b2 = cos2 ψ , (19)

where ψ ranges from 0 to π/4 to ensure b2 ≥ a2. We also vary
the ratio σx/σy from 1.5 to 6.5 to elongate the weight function
along the xg axis defined in Equation (12). Figure 7 shows the
resulting contour map of the FWHM vs. b2/a2 and σx/σy. The
FWHM varies rapidly with σx/σy, with sharper tuning as σx/σy
increases. In contrast, the FWHM only sharpens slightly when
b2/a2 increases.

In order to illustrate the insensitivity of the FWHM to b/a
more clearly, Figure 8A shows the normalized tuning curves for
fixed σx/σy = 2.5, varying b2/a2 from 1 to 100. The FWHM
decreases by only ∼2◦ when b2/a2 changes from 1 to 5, and
it does not decrease significantly further for larger b2/a2. The
reason for this is that the RF operator envelope defined by G(r−
R) limits the effective lengths of its three lobes to the Gaussian
envelope’s characteristic width, so they do not changemuch when
b2/a2 increases. This agrees with previous studies, which argued
that the OP tuning width of a V1 simple cell varies inversely with
the size of its RF (Hubel and Wiesel, 1962a; Lampl et al., 2001).
It is also consistent with the Gaussian derivative model proposed
by Lindeberg (2013) and Young et al. (2001) for modeling the
spatiotemporal RF of V1 cells. Our results also match Hubel
and Wiesel’s feed-forward model, in which the overall V1 RF
results from the net effect of aggregating isotropic LGN RFs via
anisotropic connections in V1 (Hubel and Wiesel, 1962a).

The above analysis implies that we can simplify the OP
operator by setting b2 = a2 because their ratio does not
affect the OP tuning width significantly. Then the OP operator
P
{

G(r− R)
}

becomes the Laplacian of the weight function
L
{

G(r− R)
}

and the tuning width is controlled by the
elongation of the weight function G(r− R).
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FIGURE 6 | Comparison of theoretical and experimental OP detection. (A) OP operator P
{

G(R− r)
}

with OP = 22.5◦. The color bar indicates the amplitude of the

operator. (B) RF of macaque monkey V1 simple cell from experiment (Ringach, 2002). The color bar indicates normalized impulse response strength of the neurons.

FIGURE 7 | Contour map of the FWHM of the OP tuning curve vs. b2/a2, and

σx/σy . The preferred orientation angle at measurement point is 135◦. The value

of σx/σy is given by x axis, and the ratio of b2 and a2 is given by y axis. The

color bar represents the FWHM width in degrees.

Previous studies (Pei et al., 1994; Volgushev et al., 2000;
Gillespie et al., 2001; Lampl et al., 2001; Goris et al., 2015)
suggested that the linear prediction of orientation tuning curves
resulting from the spatial structure of receptive field maps (such
as the OP operator in the current study) showed a better match
with the responses from intracellular membrane potential, rather
than the spike activity. The nonlinear effects imposed by the
transformation of membrane potential to spikes (i.e., spikes are
produced only when potentials is higher than the spike threshold)
sharpens the final tuning curve. From the studies mentioned

above, the FWHM measured from membrane potentials ranges
from 45◦ for highly selective cells (i.e., with long and narrow
RF) to 100◦ for less selective cells (i.e., with short and wide RF).
In this study, we focus on the high selective cells with narrow
tuning. Thus, we chose tomatch ourmodel with the experimental
FWHM of 45◦, and this corresponds to σx/σy ≈ 2. The tuning
curves corresponding to this ratio is shown in Figure 8B for
various optimal OP.

3.2. Tuning Curves vs. Distance From
Pinwheel Center
Early experiments showed that neuron populations near
pinwheel centers have low mean orientation selectivity (i.e.,
broad tuning curve), by using optical imaging with voltage
sensitive dyes (Blasdel, 1992; Obermayer and Blasdel, 1993),
although individual neurons in these regions have good OP
selectivity (Bartfeld and Grinvald, 1992; Maldonado et al., 1997;
Ohki et al., 2006). We next compute the overall response at a
measurement site located at r0 [i.e., IOP(r0)] and compare it
with experimental results. The overall responses is computed by
taking a weighted average of the neural responses around the
measurement location by integrating the responses of all the cells
with a Gaussian weight function centered at r0 over the region:

IOP(r0) =

∫

I(r)W(r− r0)dr , (20)

where

W(r− r0) =
1

2πσ 2
r

exp

[

−
(r− r0)

2

2σ 2
r

]

. (21)

The width of the weight function is set to 40 µm, to approximate
the characteristic width of an OP microcolumn and the
experimental range of pinwheel-center effects on OP selectivity
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FIGURE 8 | OP tuning curves. (A) Normalized tuning curves with b2/a2 set to 1 (blue), 2 (red), 10 (green), 20 (yellow), and 100 (purple); and fixing σx/σy = 2.5. The

preferred orientation angle is set to 45◦. (B) OP tuning curves with orientation angles 0◦ (pink), 30◦ (blue), 60◦ (green), 90◦ (orange), 120◦ (yellow), 150◦ (brown), and

180◦ (pink), with σx/σy = 2 and b2/a2 = 1.

(Obermayer and Blasdel, 1993; Maldonado et al., 1997; Ohki
et al., 2006; Nauhaus et al., 2008).

We consider two cases of tuning curves for measurement
sites with different locations in the hypercolumn, one near a
pinwheel center and another one in an iso-orientation domain.
These locations are marked with crosses in Figure 4D, and the
circle around each cross indicates the characteristic width of the
weight function in Equation (21). Figure 9A shows the resulting
tuning curve of the overall responses of a measurement site
located in an iso-orientation domain (i.e., the location marked
with black cross in Figure 4D) with preferred orientation ≈60◦.
It is sharply peaked at the preferred angle with FWHM ≈41◦.
In Figure 9B, we plot the tuning curves for an array of cells
that are around the measurement site within the circular region.
Since all the cells are located in the iso-orientation domain, they
have very similar orientation preferences and tuning curves. The
average response of cells near the pinwheel center is plotted in
Figure 9C, it is much broader than the tuning curve shown in
Figure 9A due to the fact that we average the responses from
neurons with a wide range of OPs, as shown in Figure 9D.
Our predictions agree with the experimental results (Bartfeld
and Grinvald, 1992; Maldonado et al., 1997; Ohki et al., 2006),
who found that individual neurons near the pinwheel center are
just as orientation selective as the ones in the iso-orientation
domain, and the overall broadly tuned response seen by Blasdel
and Salama (1986) for example is the averaged response of nearby
cells with a wide range of OPs.

We have also investigated how the tuning width and response
strength vary with distance from the pinwheel center, and
compare them with experiment in Figure 10. We calculate half
width at half maximum (HWHM) here, in order to be consistent
with the experimental plots. As expected, our predicted HWHM

decreases when moving away from the pinwheel center to an
iso-orientation domain, while the response strength increases
with distance, as seen in Figure 10B. Both results match
the experimental findings shown in Figure 10A, except the
experimental HWHM in iso-orientation domain is wider than
ours; However, our plots do not reproduce the overshoot and
dip in the responses strength and HWHM curves, respectively,
shown in Figure 10A. In order to achieve a better fit to the
experimental data, we thus try the Mexican hat function,

Wmex(r− r0) =

[

1−
(r− r0)

2

2σ 2
r

]

exp

[

−
(r− r0)

2

2σ 2
r

]

, (22)

as the weight function to average the responses, and the resulting
plots are shown in Figure 10C. Overshoot and dip features
are visible in this case, implying a better match. Thus, it is
potentially possible to deduce the shape of the weight function
from experimental results such as these, but detailed exploration
is beyond the scope of the present paper.

3.3. Fourier Analysis of the OP-OD Map
We seek a representation of the OPmap in the Fourier domain so
that we can apply it to compactly represent experimental data and
to study spatiotemporal neural activity patterns in periodic V1
structures using NFT, which requires such Fourier coefficients as
input. Thus, in this section, we decompose the OP-ODmap of the
hypercolumn that is defined in Section 2.1 in the Fourier domain,
derive the two sets of the Fourier coefficients that represent the
spatial frequency components of the OD and OP map structure
respectively, and discuss their properties. We also determine the
least number of Fourier coefficients we need in NFT analysis
while maintaining the essential features of the OP-OD map. This
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FIGURE 9 | Averaging of OP tuning curves at different distances from a pinwheel center. (A) Tuning curve of averaged responses at measurement site located in

iso-orientation domain (i.e., marked as black cross in Figure 4D). (B) Tuning curves of all the cells surrounding the measurement site within the circular region in

iso-orientation domain. (C) Tuning curve of averaged responses at measurement site located near pinwheel center (i.e., marked as white cross in Figure 4D). (D)

Tuning curves of all the cells surrounding the measurement site within the circular region near pinwheel center.

is achieved by reconstructing the OP-OD map with a subset of
the coefficients using the inverse Fourier transform.

We analyze the OD map shown in Figure 4A by directly
performing 2D Fourier transform on the map. The magnitude
plot of the resulting Fourier coefficients has 2-fold symmetry and
is shown in Figure 11A. As the ODmap is modeled by sinusoidal
function, it only has two dominant K modes, which are located
at k = (±K, 0), where K = π/a and 2a is the period of the
OD stripe.

We analyze the OP map in the hypercolumn by first applying
a spatial operator O to the map, with O defined as

O = exp [i2ϕ(x, y)]. (23)

This operator preserves the structure and periodicity of the OP-
OD map and allows us to avoid the spurious discontinuities
between 0◦ and 180◦ orientations, which actually correspond to
the same stimulus orientation (Swindale et al., 1987). This is
important because representation of such discontinuities would
require use of high spatial frequencies, and thus many Fourier
coefficients. We then perform a 2D Fourier transform on the
resulting map, which yields a sparse set of Fourier coefficients.

Figure 11B shows the magnitude of the Fourier coefficients
of a lattice of 5 × 5 hypercolumns (i.e., Figure 4E). We note
that: (i) the coefficients have 4-fold symmetry, and the four
K modes with lowest spatial frequency are dominant; and (ii)
the lowest K modes are located at (±π/a, 0) and (0,±π/a),
where 2a is the width of hypercolumn. The strong bias toward
vertical and horizontal directions in the Fourier domain is
introduced by the regularized arrangements of the map, such
that the OD stripes are straight and parallel to each other and
the OP pinwheels are approximated as lying on a square grid.
This idealization is suitable for OP-OD maps at short scales
of a few millimeters; as larger areas of V1 are included, the
direction of OD stripes increasingly varies until overall near-
isotropy is attained (LeVay et al., 1985; Niebur and Wörgötter,
1994; Adams et al., 2007). We stress that local isotropy of the map
is not possible unless no OP-OD map structure exists to break
that symmetry.

One of our main aims in finding these Fourier coefficients of
the OP-OD map is to incorporate the OP map structure into
the patchy propagator theory introduced to treat periodic V1
structure in previous studies (Robinson, 2006, 2007; Liu et al.,
2020). We want to use as few coefficients as possible to simplify
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FIGURE 10 | Dependence of tuning properties on distance from a pinwheel

center. (A) Experimental HWHM and response strength vs. distance in µm

from pinwheel center from Swindale et al. (2003), averaged over 13 pinwheels.

The filled circles shows the response strength in arbitrary units, while the open

circles show the HWHM in degrees and the bottom-most curve shows the

(Continued)

FIGURE 10 | baseline activity. (B) Predicted HWHM vs. distance (blue) and

Responses strength vs. distance (orange) from pinwheel center, by using a

Gaussian function as weight function for averaging the responses. (C)

Predicted HWHM vs. distance (blue) and response strength vs. distance

(orange) from pinwheel center, by using a Mexican hat function as weight

function for averaging the responses.

computation, while preserving the essential OP-OD structure.
In order to test how well a small subset of Fourier coefficients
can approximate the OP-OD map, we reconstruct the lattice
of hypercolumns from these coefficients and compare it to the
original one. To reconstruct the ODmap, we perform the inverse
Fourier transform including only the two Fourier coefficients
with the lowest spatial frequency. Likewise, when reconstructing
the OP map, we perform the inverse Fourier transform on
the small set of coefficients with lowest spatial frequency. The
resulting complex data represents the values that have been
transformed from the OP angles after applying the operator O

defined in Equation (23). We then transform the complex data
back to OP angles via

eiϕ(x,y) = cos[ϕ(x, y)]+ i sin[ϕ(x, y)], (24)

whence

ϕ(x, y) = tan−1

[

sinϕ(x, y)

cosϕ(x, y)

]

. (25)

We find that the K modes with lowest spatial frequency (the
yellow squares in both Figures 11A,B) suffice to reproduce the
main features of the hypercolumn lattice, and the reconstructed
map with combined OP and OD is shown in Figure 11C, which
is very similar to the original one (i.e., Figure 4E) except that the
absence of higher modes leads to differences of up to 4◦ in OP
and some angular contours of the OP map are smoother than
in the original map. This detail is shown in the top left frame of
Figure 11D, which is to be compared with the frame below it,
which is from the same part of the original lattice.

Figure 11E shows the absolute differences between the
original OP map in one hypercolumn and the reconstructed one.
The square on the left is a zoomed-in patch that is marked by
the dashed square, and it is extracted in the same location as we
do for the zoomed-in patch in Figure 11D. The largest difference
is ≈4.5◦ near the edges of each pinwheel. Nevertheless, the basic
structure and periodicity of the hypercolumn are all preserved in
the reconstructed lattice. Thus, we can conclude that theKmodes
with lowest spatial frequency in Figures 11A,B are sufficient for
incorporating the OP-ODmap structure into NFT computations.

In V1, the arrangement of hypercolumns is not as regular
as our idealization above. To model the development of
irregularities in the actual structure, one would simulate cortical
plasticity using NFT driven by an ensemble of input stimuli
with various features using the present OP operators and OP-
OD constraints. As in other branches of physics where local
order gives way to long-range disorder, one would expect that
randomness in the ensemble would break the local symmetries
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FIGURE 11 | Representations of the OD-constrained OP-OD map for a lattice of 25 hypercolumns. (A) Magnitude of Fourier coefficients of the OD map. (B)

Magnitude of Fourier coefficients of the OP map after applying the operator O. In both (A,B), each square on the figure represents one spatial mode K, and the color

(Continued)
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FIGURE 11 | bar indicates its magnitude. (C) Reconstructed OP-OD map using the two sets of dominant Fourier coefficients shown in (A,B). (D) Reconstructed OP

map with the two squares on the top-left are the zoomed-in patches of the reconstructed (top) and the original (bottom) lattice. These are extracted from the same

location that is marked by dashed oval. The color bar indicates the OP in degrees. (E) Absolute differences between the original hypercolumn OP in Figure 4E and

the reconstructed one. The square on the left shows a zoomed-in patch that is extracted from the location marked by blue dashed-line. The color bar indicates the

difference in degrees.

over some correlation length, giving rise to disorder in the OP-
OD map across V1 as a whole. For the moment, though, we can
illustrate such situations, and show that the present analysis has
sufficient flexibility to describe them, by adding spatial modes
around the dominant Kmodes. Our approach for illustrating the
effects of disorder in a larger-scale OP map is to add K modes
around the previous 2 (for OD) and 4 (for OP) lowest spatial
frequency modes, with magnitudeMk that is defined by Gaussian
envelopes in Kx, Ky, and azimuthal angle2:

Mk = exp
[

−(|K| − |K0|)
2/212

K

]

exp
[

−(2−20)
2/212

2

]

,
(26)

where K0 and 20 run over the locations and azimuthal
angles, respectively, of the original K modes with lowest spatial
frequency, 1K and 12 are the variances of the Gaussian
envelope and we set these to 1

2K and 20◦, respectively, to
match experimental observations. The resulting magnitude plot
of the two sets of K modes for OD and OP map are shown in
Figures 12A,B. To approximate the joint structure of OD andOP
maps, we set the magnitude and phase of the two K lobes in the
ODmap in Figure 12A to be identical to the left and right K lobes
in the OP map in Figure 12B. Moreover, the top and bottom K
lobes in Figure 12B are obtained by rotating the pair of K lobes
counterclockwise by 90◦. The reconstructed OP-OD map using
these two set of K is shown in Figure 12C, which resembles the
OP-ODmaps obtained in experiments (Blasdel, 1992; Bonhoeffer
and Grinvald, 1993; Obermayer and Blasdel, 1993). It reproduces
the general feature of the OP maps mentioned in Section 2.1.1,
including: (i) it has both positive and negative pinwheels, and
most of the neighboring pinwheels have opposite signs; (ii)
linear zones connect two pinwheel centers; and (iii) most of the
pinwheel centers lie in the middle of the OD stripe.

In previous studies (Blasdel, 1992; Niebur and Wörgötter,
1994), the Fourier transform of the OP-OD map of the whole of
V1 produced a set of coefficients with near-circular symmetry.
Thus, we construct an OP-OD map by expanding the K modes
more widely in azimuth angle to make the spectrum nearly
isotropic, as shown in Figure 12D. Because the annulus is
sampled by square pixels, it retains a residual 4-fold symmetry.
The resulting reconstructed OP map shown in Figure 12E has
more irregular arrangement of OP columns, with no significant
preference for horizontal or vertical OD stripes. This figure also
underlines the fact that the map is not locally isotropic even if the
overall Fourier spectrum is.

3.4. Application to OP Maps From a Neural
Network Model
In order to analyze the general properties of more realistic OP
maps, we perform the same Fourier analysis as on the idealized

hypercolumns in previous sections for the OP map generated
from a computational neural network model.

The model of V1 we use here is the Gain Control, Adaptation,
Laterally Connected (GCAL) model (Stevens et al., 2013), which
treats the retina, LGN, and V1 as 2-dimensional sheets, with
neurons in each sheet connected topographically. Neurons not
only connect to a small group of neurons of the lower level sheet,
but also laterally connect to the neurons within the same sheet.
A Hebbian learning rule is adopted in the model for updating
the connection weights between neurons (Stevens et al., 2013).
Figure 13A shows an example output from the GCAL model
simulation (Bednar, 2009), and we use this map for further
analysis in the Fourier domain.

We process the map in the Fourier domain as follows: (i)
Because the 2D discrete Fourier transform implicitly assumes a
repeated pattern in both dimensions, the OP has discontinuities
at the edges. We minimize these edge effects by doubling the
linear dimensions of the array and zero padding the added
region. Additionally, we apply a Gaussian window to the map
to smooth the edges; (ii) Then we apply the operator O

defined in Equation (23), to the resulting map and Fourier
transform it.

Figure 13B shows the resulting Fourier coefficients. The
dominant terms at |k| = K are shown in blue. The ring-shaped
enhancement near the center arises from zero padding and the
large linear size of the overall simulation area, other dominant
K terms correspond to the periodicity of the hypercolumns
and have 4-fold symmetry similar to the pattern in Figure 11A,
but with a roughly ±15◦ spread of K. The 4-fold symmetry
is most likely at least partly due to a combination of: (i)
the artifacts introduced by the approximately square unit cell,
and (ii) a structural bias introduced by the square grid on
which the GCAL model is simulated. In the simulated map
there are roughly ±15◦ variations, but the Fourier transform
still shows signs of 4-fold symmetry resulting from the square
simulation boundaries.

4. SUMMARY AND CONCLUSION

We present a compact analytic description of an idealized
mutually consistent OP-OD map in V1. This includes modeling
both the local neuron sensitivity to the stimulus orientation and
the weighted projection from nearby neurons, and obtaining
a compact Fourier representation of the resulting structure in
a form suitable for use in neural field theory. The results and
analysis include:

(i) We approximate the periodic OP-OD map in a square
grid of hypercolumn with parallel left and right OD stripes
with equal width and OP pinwheels with alternating signs. The
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FIGURE 12 | Illustrative OP-OD map with a distribution of K in Gaussian envelopes centered on principal modes of the idealized case. (A) Magnitude plot of OD K

modes showing 2-fold symmetry. The color bar indicates the magnitude. (B) Magnitude plot of OP K modes showing 4-fold symmetry. (C) Illustrative OD-constrained

OP map using the sets of K modes shown in (A,B). The left color bar indicates the OP angle in degrees. (D) Magnitude plot of K modes with approximate circular

symmetry. The color bar indicates the magnitude. (E) Reconstructed map using set of K modes shown in (D). The color bar indicates the OP angle in degrees.
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FIGURE 13 | Representations of simulated OP maps. (A) OP map generated from GCAL model (Bednar, 2009), and the color bar indicates the OP angle in degrees.

(B) Magnitude plot of the Fourier coefficients obtained from GCAL OP map. Each pixel-like square represents one spatial mode K, and the color bar indicates its

magnitude.

approximation is idealized but good enough for preserving the
basic structure of the OP-OD map.

(ii) We propose a simple approximate AL operator to detect
the orientation of the stimulus for local neuron. It is a weighted
sum of second order partial derivatives.

(iii) The OP operator reproduces the spatial arrangement of
the receptive field of V1 simple cells. It is derived by finding the
neuron responses by combining the AL operator with a weighted
sum of the projections from neighboring neurons. We optimize
the parameters of the operator by controlling the width and angle
selectivity of the response tuning curve, and we find that the
orientation tuning is only affected significantly by the aspect ratio
of the weight function, not the weights of the second order partial
derivatives for detecting input orientation in local neuron. The
orientation tuning sharpens when we elongate the OP operator
along the orientation axis, in accord with experiment (Hubel and
Wiesel, 1962a; Lampl et al., 2001).

(iv) We account for the lower OP sensitivity and lower
response strength near pinwheel centers by averagingOP over the
characteristic microcolumn scale of 40 µm—near centers many
different OPs are averaged together, broadening the tuning curve.
A Mexican hat function gives a better match to experiment,
raising the possibility of using such experimental results to infer
the microscopic connectivity profile.

(v) Fourier analysis of a relatively local OD-constrained OP
map with the range of ∼5 hypercolumns in each direction,
were performed to generate two sets of Fourier coefficients
for a compact representation of OD and OP, respectively, and
especially for use in NFT. The resulting Fourier representation
has 2-fold symmetry for OD and 4-fold symmetry for OP
due to the idealization of parallel straight OD stripes. Only

the K modes with lowest frequency are needed to described
the spatial structure of OP-OD within a hypercolumn. This
simplifies the computational work when we integrate the
OP-OD map into NFT to investigate neuronal activity and
plasticity in V1. Moreover, if we keep these K modes as the
basic modes and add extra modes around it using Gaussian
envelopes, we could reconstruct a more realistic OP-OD map
that is similar to the ones obtained from experiments or
computer simulations.

(vi) We also perform Fourier analysis on the irregular
OP map generated by the GCAL model. The dominant
K modes have approximately square symmetry as an
artifact of the square grid on which the simulations
are done.

Overall, we have focused on modeling the interactions
between hypercolumns and local operators for OP feature
detection, and have succeeded in obtaining a compact
representation of an idealized joint OP-OD map. Notably,
the elongated generalized Gaussian operator dominates in
determining OP and mutual consistency of OP and OD
maps strongly constrains the possible combined maps in
hypercolumns, with four pinwheels, not one, required periodic
unit of the hypercolumn lattice. The Fourier representation
of the idealized structure is sufficiently compact to be used
in NFT analyses of V1 structure and activity in future
work, with disorder arising from randomness in the drives
of cortical plasticity, for example. Moreover, this study
can potentially serve as the basis for further modeling
of more realistic OP-OD maps on larger scales, and also
of other feature maps including the one for direction of
motion preference.
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