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Improved small blob detection in 
3D images using jointly constrained 
deep learning and Hessian analysis
Yanzhe Xu1, Teresa Wu1*, Fei Gao1, Jennifer R. Charlton2 & Kevin M. Bennett3

Imaging biomarkers are being rapidly developed for early diagnosis and staging of disease. The 
development of these biomarkers requires advances in both image acquisition and analysis. Detecting 
and segmenting objects from images are often the first steps in quantitative measurement of these 
biomarkers. The challenges of detecting objects in images, particularly small objects known as blobs, 
include low image resolution, image noise and overlap between the blobs. The Difference of Gaussian 
(DoG) detector has been used to overcome these challenges in blob detection. However, the DoG 
detector is susceptible to over-detection and must be refined for robust, reproducible detection in a 
wide range of medical images. In this research, we propose a joint constraint blob detector from U-Net, 
a deep learning model, and Hessian analysis, to overcome these problems and identify true blobs from 
noisy medical images. We evaluate this approach, UH-DoG, using a public 2D fluorescent dataset for cell 
nucleus detection and a 3D kidney magnetic resonance imaging dataset for glomerulus detection. We 
then compare this approach to methods in the literature. While comparable to the other four comparing 
methods on recall, the UH-DoG outperforms them on both precision and F-score.

There is great interest in tailoring diagnostic and therapeutic tools to individual patients. This concept reflects 
the growing recognition that there is significant variability between individuals. As therapies focus on molecular 
targets, diagnostic medical imaging tools must reveal focal pathologies and the effects of therapy in each patient. 
High-resolution object detection and image segmentation are thus critical to obtaining meaningful data in a 
heterogeneous image.

In image analysis, detection is used to identify objects such as organs and tumors, and segmentation is used to 
isolate the objects from an image. While large objects can often be automatically or semi-automatically isolated, 
small objects (blobs) are difficult to detect and segment. Blobs can range in size and location in images. Examples 
of blobs include cells or cell nuclei in images from optical microscopy1, exudative lesions in images of the ret-
ina2, breast lesions in ultrasound images3, and glomeruli in magnetic resonance (MR) images of the kidney4–6. 
Major challenges to detecting these blobs include low image resolution and high image noise. The small blobs 
are often numerous and can overlap each other. Many approaches have been proposed for blob detection7–9 of 
which intensity thresholding is among the most common10. Intensity thresholding assumes that the blobs have 
consistently different intensities from the background. Global differences can be addressed with a fixed threshold 
and local differences can be addressed with an adaptive threshold11,12. However, the assumptions required for con-
sistent thresholding are often violated, and thresholding alone can lead to erroneous detection or segmentation. 
To address this, researchers have proposed multi-step pipelines13,14 in which thresholding is only the first step. 
Intensity-based features are then derived using filters for improved detection. One popular class of filters is based 
on mathematical morphology15,16. Operators such as erosion, dilation, opening and closing allow geometrical and 
topological properties of objects. This approach often begins with selected seed points in the image and iteratively 
adds connected points to form labeled regions. Mathematical morphology is preferred when the blobs are rela-
tively large in size and small in number. Weaknesses of this approach include the tendency to under-segment and 
diminished performance in the presence of noise. Under-segmentation occurs when multiple blobs within close 
proximity are detected as one, resulting in an erroneously low detected number. Another type of filter is based on 
space transformation. For example, Radial-Symmetry17, a point detector for small blobs, uses radially symmetric 
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space as a transformation space to detect radially symmetric blobs. SIFT18, SURF19 and BRISK20 are region detec-
tors. Each of the region detectors extracts scale invariant features to detect small objects but may suffer from 
poor performance in optical imaging21. Recently, the Laplacian of Gaussian (LoG) detector22,23, from scale space 
theory, has attracted attention in blob detection8,24. Similar to the radially symmetric detector, the LoG detector is 
unreliable in detecting rotationally asymmetric blobs. To solve this, LoG extensions have been proposed, includ-
ing the Difference of Gaussian (DoG)18,25–27 and the Generalized Laplacian of Gaussian (gLoG)21. While each 
approach detects small blobs to some extent, non-blob objects are detected as false blob candidates resulting in 
over-detection. A post-pruning procedure can remove false blob candidates, but results have been inconsistent28.

Here we focus on detecting individual glomeruli in MR images of the kidney as a specific blob detection 
problem. To date, most biomarkers of kidney pathology have come from histology using destructive techniques 
that estimate glomerular number29–31. A non-destructive imaging approach to measuring nephron endowment 
provides a new marker for renal health and susceptibility to kidney disease. Cationic ferritin enhanced MRI 
(CFE-MRI) enables the detection of glomeruli in animals32,33 and in human kidneys5,32–34. Because each glomer-
ulus is associated with a nephron, CFE-MRI may provide an important imaging marker to detect changes in the 
number of nephrons and susceptibility to renal and cardiovascular disease5. Glomerulus detection by CFE-MRI 
presents difficulties because glomeruli are small and have a spatial frequency similar to image noise. Zhang et 
al. developed the Hessian-based Laplacian of Gaussian (HLoG) detector1 and the Hessian-based Difference of 
Gaussian (HDoG) detector28 to automatically detect glomeruli in CFE-MR images. They employed the LoG or 
DoG to smooth the images, followed by Hessian analysis of each voxel for pre-segmentation. Since LoG and 
DoG suffer from over-detection, a Variational Bayesian Gaussian Mixture Model (VBGMM) was implemented 
as a final step. LoG and DoG were the first two detectors applied to MR images of the kidney to identify glomer-
uli. However, deriving Hessian-based features from each blob candidate is computationally expensive, limiting 
high-throughput studies. In addition, unsupervised learning using the VBGMM in the post-pruning procedure 
requires a number of carefully tuned parameters for optimal clustering. Here we propose a new approach, termed 
UH-DoG, which applies joint constraints from spatial probability maps derived from U-Net, a deep learning 
model, and Hessian convexity maps derived from Hessian analysis on the DoG detector. The theoretical founda-
tion of Hessian analysis guarantees that pre-segmentation will recognize all true convex blobs and some non-blob 
convex objects, resulting in a blob superset. Joining probability maps allows us to distinguish true blobs from the 
superset. The joint-constraint extension of the detector requires no post-pruning and thus is robust, generalizable 
and computationally efficient.

Within the field of deep learning, the Convolutional Neural Network (CNN) has been successfully imple-
mented in medical imaging applications ranging from object detection and segmentation to classification35–37. 
The first generation of CNN models was used to classify images through fully connected layers. Shelhamer et al.38 
first proposed a Fully Convolutional Network (FCN) that transfers the fully connected layers to deconvolutional 
layers and provides a dense class map with arbitrarily-sized input image. The FCN changes “image-label” map-
ping to “pixel/voxel-label” mapping for object detection and image segmentation. One limitation of the FCN for 
medical imaging is the need for large training datasets. A lightly weighted FCN model, the U-Net39, employs a 
modified FCN architecture to require fewer training images but yield precise, fast segmentation. U-Net has been 
implemented in various medical segmentation tasks such as nucleus, cell, and breast lesion segmentation40–42, 
all drawn from limited datasets. The U-Net yields a probability map where each pixel or voxel indicates the 
likelihood of being within the imaging object. However, based on our previous study43, U-Net does not reliably 
separate glomeruli within close proximity. Therefore, we choose to adopt the probability map as part of UH-DoG 
in conjunction with Hessian analysis for glomerulus detection from CFE-MR images.

There are three main advantages of the UH-DoG method. First, a global blob likelihood constraint from the 
U-Net probability map reduces over-detection by DoG. Second, a local convex constraint from the Hessian con-
vexity map reduces under-segmentation. Third, integrating the probability map constraint with the Hessian con-
vexity map eliminates the need for post-pruning. To validate the performance of UH-DoG, four methods were 
chosen from the literature: HLoG1, gLoG21, LoG22, and Radial-Symmetry17. We tested these on dataset of 2D fluo-
rescent images (n = 200) where the locations of blobs were known. UH-DoG outperformed the other four meth-
ods in F-score and performed comparably to the other four methods in recall. Next, we compared blob detection 
of these methods on a 3D kidney MR dataset against the HDoG method. The differences between UH-DoG and 
HDoG were negligible but the average computation time of UH-DoG was 35% shorter than that of HDoG.

Methods
We propose UH-DoG, a joint constraint-based detector for glomeruli detection. UH-DoG consists of three steps 
(Fig. 1). Step 1 is to use the Difference of Gaussian (DoG) to smooth the images, followed by Hessian analysis to 
identify possible blob candidates based on local convexity. Step 2 is to use a trained U-Net to generate a proba-
bility map, which captures the most likely blob locations. Step 3 is to combine the probability map from Step 2 
with blob candidates from Step 1 as joint constraints to identify true blobs. Each step is discussed in detail in the 
following sections.

Hessian analysis and hessian convexity map.  Before implementing Hessian analysis, DoG is used to 
smooth the images. By employing a convolution operator, DoG can filter image noise and enhance objects at the 
selected scale24. DoG is a fast approximation of the LoG filter to highlight blob structure4 and is thus computa-
tionally efficient18.

Let a 3D image be → .f R R: 3 The scale-space representation σL x y z( , , ; ) at point (x, y, z), with scale param-
eter σ, is the convolution of image f(x, y, z) with the Gaussian kernel σG x y z( , , ; ):
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According to18, σ σσ∇ = .σL x y z L x y z( , , ; ) ( , , ; )2 We approximate the partial derivative σσL x y z( , , ; ) by a 
one-sided difference quotient, the DoG approximation of LoG is:
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To locate an optimum scale for the blobs, similar to1, we add γ-normalization to form the normalized DoG 
detector σ σ∇γ L x y z( , , ; )2 , which is:
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where γis introduced to automatically determine the optimum scale for the blobs. We set γ to 2 here. For details 
on tuning γ, refer to1. The normalized DoG transformation underlies Hessian-based convexity analysis to detect 
blobs.

After the image is smoothed by the normalized DoG, for a voxel (x, y, z) in the normalized DoG image 
σDoG x y z( , , ; )nor  at scale σ, the Hessian matrix for this voxel is:
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In a normalized DoG-transformed 3D image, each voxel of a transformed bright blob has a negative definite 
Hessian matrix28. We define a binary indicator matrix, σHI x y z( , , ; ), termed the Hessian convexity map. 

σ =HI x y z( , , ; ) 1 when σH DoG x y z( ( , , ; ))nor  is negative definite; otherwise, σ =HI x y z( , , ; ) 0.
To determine a single optimum scale σ*, the maximum value of the normalized DoG is used here28. Let the 

average DoG value per blob candidate voxel measure BGoG be:
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We have σ σ=⁎ argmax B ( )DoG . σ* is used to generate the optimum Hessian convexity map σ⁎HI x y z( , , ; ). 
This map is the local convexity constraint for detecting the convex blob regions. Result is a set of convex objects 
including all true blobs and some non-blob convex objects.

U-Net and Probability Map.  A classical CNN usually consists of multiple convolutional layers followed by 
pooling layers, activation layers, and fully connected layers. Convolutional layers learn hierarchical and high-level 
feature representation. Pooling layers can reduce feature dimensions and capture spatial feature invariance. The 
final fully-connected layers categorize the images into different groups. Compared to classical CNNs, FCNs 

Figure 1.  Proposed UH-DoG for glomerulus identification.
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replace all fully-connected layers with a fully convolutional layer. There are several advantages to this approach. 
First, the input image size can be arbitrary because all models consist of convolution layers, so output size only 
depends on input size. Second, the FCN can be trained from whole images without patch sampling, thus the 
effects of patch-wise training need not be considered. However, FCNs require a large dataset for training. To 
address this issue, a modified FCN model, the U-Net, was proposed. Interested readers are referred to U-Net39 for 
details. The output of U-Net is a probability map in [0, 1].

In U-Net, let the input images be ∈ × ×X RI I I1 2 3, and the output map be ∈ × ×Y RI I I1 2 3, where ∈y [0, 1]i i i, ,1 2 3 . A 
binary cross entropy loss function is used in the training process to obtain the output map:

∑= − Δ + − Δ −
=

× ×
ˆ ˆL

I I I
Y Y Y Y1 log( ) (1 ) log(1 ),
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k k k k
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where Yk is the true label and Ŷk is the predicted probability for voxel k.
In our U-Net output, we obtain a probability map U x y z( , , ), where x and y are dimensions of each 2D image 

slice and z is the slice number. The probability map is the global blob likelihood constraint in our joint constraints 
operations to detect the most likely blob regions. By setting a probability threshold, most noise is removed. 
However, some touching blobs could have a higher probability than the threshold in the boundary and might not 
be split up, resulting in reduced detection known as under-segmentation. Joining the Hessian convexity map with 
U-Net probability map will address the challenges of small blob detection.

Joint constraint operation for true blob identification.  Given a 3D image →f R R: ,3  Hessian analysis 
is applied to render a convexity map σ⁎HI x y z( , , ; ), U-Net is applied to render a probability map U x y z( , , ). We 
introduce a joint operator

σ= 

⁎UH x y z HI x y z I x y z( , , ) ( , , ; ) ( , , ), (7)

where I x y z( , , ) is a binary indicator matrix. Given a probability threshold δ I x y z, ( , , )b  = 1 when δ>U x y z( , , ) b; 
otherwise, I x y z( , , ) = 0. We define the true blob candidate as a 27-connected voxel44, and the blob set is represented as:

σ= | ∈ = .S x y z x y z DoG x y z UH x y z{( , , ) ( , , ) ( , , ; ), ( , , ) 1 } (8)blob nor

To illustrate, Fig. 2 shows images of blobs detected during the joint constraint operation of the U-Net prob-
ability map and the Hessian convexity map. The blue circle in Fig. 2a shows only one blob. The same blue circle 
on Fig. 2b, after application of the Hessian convexity map, shows there is one “bigger” blob in the middle and a 
number of smaller blobs around the boundary of the blue circle. Figure 2c shows the correct outcome, only one 
blob in the middle. This clearly illustrates the sensitivity of the Hessian matrix to noise. Even though the Hessian 
analysis guarantees the detection of the convex object, some non-blob convex objects (noise) will also be detected, 
resulting in over-detection. This noise can be readily filtered by the U-Net probability map (Fig. 2c). We conclude 
that U-Net may be useful for denoising, which alleviates the over-detection of Hessian analysis.

The red circle in Fig. 2a shows overlapped blobs. They are still overlapping in the U-Net probability map from 
Fig. 2c. But they are split up in the Hessian convexity map from Fig. 2b. By joining the Hessian convexity map 
and U-Net probability map with a single global threshold, the overlapped blobs in the red circle are visualized as 
distinct entities, as shown in Fig. 2d. We conclude Hessian analysis could alleviate the under-segmentation issue 
from U-Net.

Our proposed UH-DoG integrates the probability map from U-Net and convexity map from Hessian analysis 
to guarantee robustness to noise and effective blob detection. The detailed steps of UH-DoG are shown in Table 1.

Experiments.  Two experiments were conducted to validate of the performance of our proposed UH-DoG 
detector. The first experiment validated the UH-DoG on 200 fluorescence, 2D light microscopy images for cell 
detection45. The 2D cell images were of interest because (1) to the best of our knowledge, there are no 3D small 
blob datasets available for comparison; (2) the blobs from these images are small and each image could be used 

Figure 2.  (a) A 2D gray scale image preprocessed from experiment 1 fluorescent image (b) Binary Hessian 
convexity map of (a), the convex pixels are marked as the white color. (c) U-Net probability map of (a), pixel 
is illustrated with a color indicating a probability of the pixel belonging to a blob. (d) Blob identification map 
joined from Hessian convexity map and U-Net probability map with 0.5 threshold.

https://doi.org/10.1038/s41598-019-57223-y


5Scientific Reports |          (2020) 10:326  | https://doi.org/10.1038/s41598-019-57223-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

to test the performance of the algorithm in the presence of background noise; (3) this dataset has the ground 
truth of the locations of each blob. The detection accuracy measured by recall, precision, and F-score can be used 
to compare this approach with methods from the literature. The second experiment validated the performance 
of UH-DoG on CFE-MR images of mouse kidneys where each glomerulus was detected. All experiments were 
approved by the University of Virginia Institutional Care and Use Committee, in accordance with the NIH Guide 
for the Care and Use of Laboratory Animals.

Results
Training dataset and data augmentation.  We used a public dataset46 to train our deep learning model, 
based on optical images of cell nuclei. This dataset has 141 optical microscopy pathology images (2,000 × 2,000 
pixels), as shown in Fig. 3a. The 12,000 ground truth annotations are typically done by an expert, which involves 
delineating object boundaries over 40 hours46. Due to the large amount of time and effort required, the annotated 
nuclei in this dataset only represents a small fraction of the total number of nuclei present in all images. Since we 
aim to facilitate U-Net to denoise our blobs images based on the ground truth labeled images, as shown in Fig. 3b, 
we generated Gaussian distributed noise with µ = 0noise  and σ = .0 01noise

2  and we added it to the ground truth 
labeled images, resulting in 141 simulated training images, as shown in Fig. 3c. Data were augmented to increase 
the in variance and robustness properties of U-Net39. We generated the augmented data by a combination of 
rotation shift, width shift, height shift, shear, zoom, and horizontal flip.

Experiment I: Validation experiments using 2D fluorescent images.  Figure 4 illustrates an exam-
ple fluorescent image (256 × 256 pixels). Since this was a 2D image, our proposed UH-DoG must incorporate a 
modified 2D DoG because comparison algorithms were from the 2D LoG and its extensions.

To revise the DoG to a 2D version, for 2D images f x y( , ) with the Gaussian kernel σG x y( , ; ), we modified the 
normalized 3D DoG detector from Eq. 4 in a 2D format:
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The parameter settings for Hessian analysis and DoG were as suggested in28. γ is set to 2. σ varies from 0.5 to 
3 with step-size 0.5. Δσ is set to 0.001.

We used precision, recall and F-score to evaluate the performance of our proposed algorithm. Precision 
measures the fraction of retrieved candidates confirmed by the ground-truth. Recall measures the fraction of 
ground-truth data retrieved. F-score measures overall performance. Since ground truth data were provided in 
the form of dots (the coordinates of the blob centers), as in the literature1,28, a candidate was considered a true 
positive if its intensity centroid was within a threshold d of the corresponding ground truth dot. Specifically, if the 
Euclidian distance Dij between dot i and blob candidate j was less than or equal to d, the blob was considered a 
true positive. To avoid duplicate counting, the number (#) of true positives TP was calculated by Eq. 11. Precision, 
recall, and F-score are calculated by Eqs. 12, 13, 14 respectively:

= ≤ ≤= ={ }{ } { }TP j D d i D dmin # : min , # : min , (11)i
m

ij j
n

ij1 1

=precision TP
n

, (12)

=recall TP
m (13)

1. Use a pretrained model to generate a probability map of blobs from original image

2. Initialize the normalization factor γ, and range and step-size of parameter σ, to transform the original image into normalized DoG space.

3. Calculate the Hessian matrix based on normalized DoG smoothed image and generate the Hessian convexity map σHI x y z( , , ; ).

4. Calculate average DoG intensity σ =
σ

σ

∑

∑
B ( )DoG

x y z DoG x y z HI x y z

x y z HI x y z
( , , ) ( , , ) ( , , ; )

( , , ) ( , , ; )
 and find the optimum scale section by.

5. Get the optimum Hessian convexity map σ∗HI x y z( , , ; ) under scale σ*.

6. Join the probability map with Hessian convexity map to identify true blobs.

Table 1.  Detail Steps of proposed UH-DoG.
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− = ×
×
+

F score precision recall
precision recall

2
( )

,
(14)

where m is the number of ground-truth and n is the number of blob candidates; d is a thresholding parameter set 
to a positive value + ∞(0, ). If d is small, fewer blob candidates are counted since the distance between the blob 
candidate centroid and ground-truth should be small. If d is too large, more blob candidates are counted. Here, 
since local intensity extremes could be anywhere within a small blob with an irregular shape, we set d to the aver-
age diameter of the blobs: = ×

σ

π

∑d 2
I x y( , ; )x y( , ) .

Since the results of detection by the complete versions of HLoG, gLoG, Radial-Symmetry and LoG on 200 
pathological images are available online1,17,21, the results were directly used from these papers for comparison.

Figure 5 shows a comparison of UH-DoG to the HLoG, gLoG, LoG and Radial-Symmetry algorithms. While 
UH-DoG is comparable to HLoG, gLoG and Radial Symmetry algorithms in recall, it significantly outperforms 
the four algorithms in both precision and F-score (Table 2). The standard deviation of F-score in UH-DoG was 
0.025, compared to 0.0377 with the HLoG method, compared to 0.1436 with the gLoG method, 0.0795 with the 
Radial-Symmetry method, and 0.0385 with the LoG method. We conclude that UH-DoG provides more accurate 
and robust detection of blobs in this dataset. In addition, statistical analysis was performed with the results sum-
marized in Table 2. While comparable to the four algorithms on recall, our approach statistically outperformed 
the others on precision and F-score.

Experiment II: Validation experiments using 3D Kidney MRI.  In this section, we conducted exper-
iments on CF-labeled glomeruli from a dataset of 3D magnetic resonance images (256 × 256 × 256 voxels) to 
measure number (Nglom) and apparent size (aVglom) of glomeruli in diseased kidneys and healthy control kid-
neys. Acute kidney injury was induced in adult male C57Bl/6 mice using an intraperitoneal injection of folic 
acid (125 mg). A subset of the group receiving folic acid, the AKI group (n = 4) was euthanized 4 days after the 

Figure 3.  Training images. (a) Original image. (b) Ground truth labeled image. (c) Simulated training image.

Figure 4.  (a) Sample 2D fluorescent image. (b) Ground truth dots of (a).
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folic acid was administered and the remainder of those that received folate were euthanized 4 weeks later and 
termed the chronic kidney disease (CKD) group, n = 3. The control groups for AKI (n = 5) and CKD (n = 6) were 
age-matched adult male C57Bl/6 mice that received intraperitoneal sodium bicarbonate.

For improved detection, we adopted a preprocessing step to segment the medulla from the image because no 
glomeruli are located there. Based on the segmented kidney image, shown in Fig. 6a, we converted it to a binary 
mask (Fig. 6b). Then we generated a distance mask, seen in Fig. 6c. With the map showing the distance between 
each kidney’s voxel and the kidney boundary, we set up a distance threshold to remove regions farther from the 
boundary than this threshold. Figure 6d shows the 2D image slice after removing the medulla.

Then we performed the proposed UH-DoG method to segment the kidney glomeruli in Fig. 6d. The param-
eter settings are as follows: γ is set to 2. σ varies from 0.5 to 1.8 with step-size 0.1. Δσ is set to 0.001. Example 
segmentation results are shown in Figs. 7 and 8. The number of glomeruli (Nglom), mean apparent glomerular vol-
ume (aVglom) and median aVglom are reported in Table 3, where the UH-DoG method is compared to the HDoG 
method. We used the method of calculating apparent glomerular volume from the paper34. Similarly, Table 4 
summarizes the results from the AKI and control groups.

We performed quality control by visually checking the identified glomeruli in kidney images. Figure 7 shows 
glomerular identification for CKD and control kidneys. Figure 8 shows glomerular identification for kidneys in 
the AKI and control groups.

Discussion: computation cost.  UH-DoG significantly decreases computation time compared to the 
HDoG algorithm28, as shown in Tables 5 and 6. The training time of U-Net is not included in the estimates of 
computation time as it is trained beforehand and can be used to test on all images.

Discussion: Clinical translation.  The use of imaging biomarkers in humans has increased both for dis-
ease early detection and disease severity assessment. Additionally, imaging biomarkers can serve as surrogate 
endpoints in clinical trials, reducing cost and burden associated with these studies. For example, total kidney vol-
ume has recently been accepted as a surrogate marker for disease progression in autosomal dominant polycystic 

Figure 5.  Comparison of full versions of UH-DoG, HLoG, gLoG, Radial-Symmetry and LoG on 200 
fluorescence images. The error bar indicates the standard deviation of the corresponding measure across 200 
images. For precision and F-score, UH-DoG has significant different (see Table 2) with others. For recall, UH-
DoG has significant difference with gLoG and LoG.

UH-DoG vs. Precision Recall F-Score

HLoG *<0.0001 0.207 *<0.0001

gLoG *<0.0001 *0.001 *<0.0001

Radial Symmetry *<0.0001 0.963 *<0.0001

LoG *<0.0001 *<0.0001 *<0.0001

Table 2.  ANOVA using Tukey’s HSD pairwise test on 200 Fluorescent Images (*significance p < 0.05).

Figure 6.  (a) One slice of healthy mouse kidney (ID: 477) image. (b) Binary image of (a). (c) Distance mask of 
(b). (d) Remove medulla from (a).
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kidney disease trials47. Although the importance of glomerular number has been universally accepted, the detec-
tion of glomerular number and size has been limited because the only methodology to obtain these metrics were 
destructive stereological approaches that could only be performed post mortem. With the advent of CFE-MRI, 
the need for image analysis tools is paramount. However, it is critical to the success of any imaging biomarker that 

Figure 7.  (a) Glomerular segmentation results from 3D MR images of mouse kidneys (selected slices 
presented). (a–e) One slice for the CKD group. (f–j) Identified glomeruli are marked in red. (k) is the zoom-in 
region of (d) while (l) is the segmentation result of (k). (b) Glomerular segmentation results from 3D MR 
images of mouse kidneys (selected slices presented). (m–p) One slice for the control group. (q–t) Identified 
glomeruli are marked in red. (u) is the zoom-in region of (o) while (v) is the segmentation results of (u).

Mouse
Nglom  
(UH-DoG)

Nglom 
(HDoG)

Nglom Difference 
Ratio (%)

Mean aVglom 
(UH-DoG)

Mean aVglom 
(HDoG)

Mean aVglom 
Difference Ratio (%)

Median aVglom 
(UH-DoG)

Median aVglom 
(HDoG)

Median aVglom 
Difference Ratio (%)

CKD

ID 429 7,346 7,656 4.05 2.92 2.57 11.99 1.74 1.48 14.94

ID 466 8,138 8,665 6.08 2.06 2.01 2.43 1.15 0.94 18.26

ID 467 8,663 8,549 1.33 2.32 2.16 6.90 1.47 1.28 12.93

Avg 8,049 8,290 2.91 2.43 2.25 7.67 1.45 1.23 15.14

Std 663 552 0.44 0.29 0.30 0.27

Control

ID 427 12,701 12,724 0.18 1.61 1.49 7.45 1.26 1.15 8.73

ID 469 11,347 10,829 4.78 2.20 1.91 13.18 1.41 1.20 14.89

ID 470 11,309 10,704 5.65 2.04 1.98 2.94 1.50 1.37 8.67

ID 471 12,279 11,943 2.81 1.56 1.5 3.85 1.22 1.13 7.38

ID 472 12,526 12,569 0.34 1.49 1.35 9.40 1.16 1.06 8.62

ID 473 11,853 12,245 3.20 1.58 1.50 5.06 1.25 1.18 5.60

Avg 12,003 11,836 1.41 1.75 1.62 7.16 1.30 1.18 9.10

Std 595 872 0.30 0.26 0.13 0.10

Table 3.  Glomerular number (Nglom) and volume (aVglom) for the CKD and control mice kidneys using the 
proposed UH-DoG method comparing with HDoG method (*aVglom unit mm3 × 10−4).
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the marker be accurate and rapidly obtained. This study demonstrates some of the challenges in detecting small 
objects, such as glomeruli, particularly in the settings of low image resolution, image noise and overlap of objects. 
It also shows the promise of rapid acquisition where data can be used in a timeframe to influence patient care. 

Figure 8.  (a) Glomerular segmentation results from 3D MR images of mouse kidneys (selected slices 
presented). (a–e) One slice for the AKI group. (f–j) Identified glomeruli are marked in red. (k) is the zoom-in 
region of (d) while (l) is the segmentation result of (k). (b) Glomerular segmentation results from 3D MR 
images of mouse kidneys (selected slices presented). (m–p) One slice for the control group. (q–t) Identified 
glomeruli are marked in red. (u) is the zoom-in region of (o) while (v) is the segmentation results of (u).

Mouse
Nglom  
(UH-DoG)

Nglom 
(HDoG)

Nglom Difference 
Ratio (%)

Mean aVglom 
(UH-DoG)

Mean aVglom 
(HDoG)

Mean aVglom 
Difference Ratio (%)

Median aVglom 
(UH-DoG)

Median aVglom 
(HDoG)

Median aVglom 
Difference Ratio (%)

AKI

ID 433 11,033 11,046 0.12 1.63 1.53 6.13 1.27 1.17 7.87

ID 462 10,779 11,292 4.54 1.48 1.34 9.46 1.17 1.00 14.53

ID 463 10,873 11,542 5.80 2.61 2.35 9.96 1.60 1.25 21.88

ID 464 11,340 11,906 4.75 2.40 2.31 3.75 1.59 1.17 26.42

Avg 11,006 11,447 3.85 2.03 1.88 7.27 1.41 1.15 18.47

Std 246 367 0.56 0.52 0.22 0.11

Control

ID 465 10,115 10,336 2.14 2.40 2.30 4.17 1.66 1.42 14.46

ID 474 11,157 10,874 2.60 2.52 2.44 3.17 1.70 1.44 15.29

ID 475 10,132 10,292 1.55 1.70 1.74 2.35 1.26 1.16 7.94

ID 476 10,892 10,954 0.57 1.62 1.53 5.56 1.21 1.09 9.92

ID 477 11,335 10,885 4.13 1.70 1.67 1.76 1.27 1.19 6.30

Avg 10,726 10,668 0.54 1.99 1.94 2.62 1.42 1.26 11.27

Std 572 325 0.43 0.41 0.24 0.16

Table 4.  Glomerular number (Nglom) and volume (aVglom) for the AKI and control mice kidneys using the 
proposed UH-DoG method comparing with HDoG method (*aVglom unit mm3 × 10−4).
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Further work is necessary to validate the accuracy of the detection of diseased glomeruli to apply this algorithm 
to a wider range of renal disease models.

Conclusion
Discovering imaging biomarkers is important to inform disease diagnosis, prognosis, therapy development and 
treatment assessment. Of particular interest in this research is to identify quantitative glomeruli biomarkers from 
CFE-MR image. This is a challenging problem because the number of glomeruli is large, the size is small. In addi-
tion, the limitation from imaging acquisition such as hardware and variable acquisition parameters often renders 
the images with less desirable resolution resulting the overlapping glomeruli. In this paper, we demonstrated 
a new small blob detector by joining the Hessian convexity map and probability map from U-Net. This joint 
constraint-based approach overcomes under-segmentation by U-Net and over-detection by Hessian analysis. 
While it was successfully implemented in segmenting the kidney glomeruli, there are still some limitations. First, 
the assumption that the blobs are convex and similar in size may not be robust for non-convex objects with differ-
ence sizes. A future possible improvement is to enhance ability of U-Net to detect both convex and non-convex 
small objects. Second, the probability map is sensitive to the threshold. We plan to explore the use of thresholding 
to improve UH-DoG.

Data availability
The datasets generated during and/or analyzed during the current study will be made available upon request.
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Mouse HDoG (seconds)
UH-DoG 
(seconds)

CKD

ID 429 9.3 7.3

ID 466 9.5 7.3

ID 467 11.4 7.6

Avg 10.1 7.4

Std 1.2 0.2

Control

ID 427 11.7 8.2

ID 469 11.7 8.0

ID 470 12.0 8.0

ID 471 11.9 8.0

ID 472 12.0 8.1

ID 473 25.2 8.2

Avg 14.1 8.1

Std 5.5 0.1

Table 5.  Computation time for CKD and Control kidneys using HDoG and the proposed method with 
scale = 1 (Intel Xeon 3.6 GHz CPU and 16 GB of memory, NVIDIA TITAN XP and 12 GB of memory).

Mouse HDoG (seconds)
UH-DoG 
(seconds)

AKI

ID 433 13.7 7.9

ID 462 13.4 8.0

ID 463 13.1 8.0

ID 464 14.3 8.3

Avg 13.6 8.1

Std 0.5 0.2

Control

ID 465 11.0 7.8

ID 474 12.3 8.0

ID 475 11.4 7.8

ID 476 12.0 8.1

ID 477 11.6 7.9

Avg 11.7 7.9

Std 0.5 0.1

Table 6.  Computation time for AKI and Control kidneys using HDoG and the proposed method with scale = 1 
(Intel Xeon 3.6 GHz CPU and 16 GB of memory, NVIDIA TITAN XP and 12 GB of memory).
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