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Abstract: Breast cancer (BC) diagnosis is made by a pathologist who analyzes a portion of the breast
tissue under the microscope and performs a histological evaluation. This evaluation aims to deter-
mine the grade of cellular differentiation and the aggressiveness of the tumor by the Nottingham
Grade Classification System (NGS). Nowadays, digital pathology is an innovative tool for patholo-
gists in diagnosis and acquiring new learning. However, a recurring problem in health services is the
excessive workload in all medical services. For this reason, it is required to develop computational
tools that assist histological evaluation. This work proposes a methodology for the quantitative
analysis of BC tissue that follows NGS. The proposed methodology is based on digital image pro-
cessing techniques through which the BC tissue can be characterized automatically. Moreover, the
proposed nuclei characterization was helpful for grade differentiation in carcinoma images of the
BC tissue reaching an 0.84 accuracy. In addition, a metric was proposed to assess the likelihood of a
structure in the tissue corresponding to a tubule by considering spatial and geometrical characteristics
between lumina and its surrounding nuclei, reaching an accuracy of 0.83. Tests were performed from
different databases and under various magnification and staining contrast conditions, showing that
the methodology is reliable for histological breast tissue analysis.

Keywords: automatic classification; breast cancer diagnosis; digital image processing; histological
differentiation grade

1. Introduction

Breast cancer (BC) is the abnormal and disorganized growth of cells in the breast tissue,
and according to the World Health Organization (WHO), it is the most common type of
cancer in women. Therefore, the survival prognosis of a woman diagnosed with breast
carcinoma is directly related to tumor behavior. A pathologist analyzes a portion of tissue
under a microscope to establish the histopathological grade of cellular differentiation [1].
This evaluation is made by describing the variations and abnormalities of the structures
in the tissue [2]. For this purpose, the histological Nottingham Grading System (NGS)
considers three morphological characteristics of the breast tissue to describe the grade
of differentiation: tubular formation, nuclear pleomorphism, and mitotic count [3–5].
However, this task implies that the description of the characteristics depends on human
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perception, and, even under a trained eye, it is subject to human error in the diagnosis [6].
For this reason, developing support tools, such as Computer-Aided Diagnosis (CAD)
systems, may help carry out diagnostics. Moreover, automatic analysis of the breast tissue
image could help compare and support diagnosis results.

Usually, histological evaluation is performed through a quantitative feature analysis
based on the NGS. Several strategies have been developed to detect and quantify cellular
structures in histopathological images automatically. Naik et al. [7] used an automatic
Bayesian to classify healthy and cancerous tissue based on the analysis of features, such
as intensity values and relationship among nuclei pixels, reaching an accuracy of 80%.
However, analysis of those features depended on manual segmentation of the centroid of
nuclei, a time-consuming task. The study of healthy and cancerous tissue may generate a
large set of features, although not all have the same relevance. Doyle et al. [8] used spectral
clustering to identify common features in nuclei, which simplified the set of textural features
used as input in the Support Vector Machine (SVM) classifier, reaching an accuracy of 93%.

Additionally, high-frequency features provide information associated with the dif-
ferentiation grade in nuclei. For instance, high-frequency information has been extracted
through wavelet transform [9] or active contours [10] that identified relevant differences
in intensity. Comparison between pair of grades (e.g., G1–G2/G1–G3) reached accuracy
levels up to 93%, but comparison among the three grades was significantly lower with a
maximum accuracy of 74%. Automatic feature extraction also has been applied by employ-
ing Deep Learning (DL) [11,12], although for the three differentiation grades the reached
accuracy was 69%. However, extracted features could not be related to the reference NGS.
Given the complexity of identifying characteristics from the NGS, fewer reports analyzed
more than one characteristic in the histological tissue. Petushi et al. [13] studied nuclear
pleomorphism and tubule formation by integrating automatic feature extraction algorithms
and classifiers. An accuracy of 72% was achieved by considering three grades of differ-
entiation. To the best of our knowledge, only Dalle et al. [14] have addressed the three
differentiation grades, including all the characteristics stated in the NGS. The authors pro-
posed a multi-resolution approach that improves the analysis of nuclear pleomorphism and
mitotic count in high-resolution images while analyzing tubule formation in low-resolution
images. Nevertheless, an evaluation of the features used in the tissue classification process
was not reported.

In the analysis of related works, two main issues are noticed. First, histopathological
images usually vary in intensity or stain conditions; texture or high-frequency features
may change among sets acquired under different conditions. Secondly, feature extraction
should not depend on the intrinsic characteristics of the image but on the elements that the
experts have identified as relevant. Therefore, the classification accuracy and the relation of
analyzed features with those used in the practical histological analysis are important in a
diagnostic support system.

This work proposes a quantitative analysis of the relevant structures in histological
sections of BC with Hematoxylin and Eosin (H&E) staining to characterize the grade of
cellular differentiation based on two of the characteristics considered in the NGS: nuclear
pleomorphism and tubular differentiation. An initial advance reported in [15] addressed
clumps of cell nuclei segmentation since these may affect the counting and analysis when
considered as one single element. The extended methodology proposed here shows that
it is possible to differentiate between healthy and cancer nuclei based on the analysis
of shape characteristics. Moreover, these characteristics distinguished among the three
differentiation grades in carcinoma images. Additionally, an analysis of the relation between
a lumina region and the surrounding nuclei that more likely define a tubule was proposed.
The obtained results for grade differentiation reached an accuracy of 0.84 based on nuclear
pleomorphism and 0.83 based on tubules identification.

This document describes the basic concepts of the proposed methodology in Section 2.
The proposed methodology for analyzing, segmenting, and characterizing tissue structures
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is explained in Section 3. Section 4 describes the experiments carried out and the obtained
results. Finally, conclusions about the findings are presented in Section 5.

2. Materials and Methods
2.1. Differentiation Grade in Histopathology

According to the Royal College of Pathologists, histopathology studies structures in
tissues characteristic of disease in order to reach a diagnosis. A tissue sample (biopsy) is
obtained from the body tissue and examined under microscopy after being prepared and
fixed on glass slides. Often, the cellular structure of tissue components is intended to be
highlighted with different colorants. The H&E staining remarks nuclei in purplish-blue
while cytoplasm and extracellular matrix in pinkish tones. (Figure 1) [16]. Given the
usefulness of the (H&E) staining, it has become a standard for tissue analysis [17].

Figure 1. Sample of a digital histological image of lobular carcinoma stained with H&E from the
BreakHis database [18].

The grade of cellular differentiation describes the morphological variations of the
mammary tissue, i.e., how a tissue varies from the appearance of normal tissue. Thus, the
differentiation grade is associated with the malignancy degree in the tissue, and based on
it, the pathological diagnosis guides the most appropriate treatment. The NGS [2], the
standard in histological grading, considers three cellular characteristics in the tissue to
determine the grade of differentiation: tubular formation (structure corresponding to the
milk ducts), nuclear pleomorphism (deformation of nuclei), and mitotic count (nuclei that
are in the process of mitosis).

2.2. Mathematical Morphology

Mathematical morphology is a set of image processing techniques useful in describ-
ing image structures. A morphological transformation requires structures (objects) in the
image I to be processed by a structuring element B, which imposes the configuration or
morphology (shape) used for such processing [19]. Although a square shape is typically
used, the shape of the structuring element may vary depending on the objects of inter-
est (circular, diamond, line) [20]. Opening and closing (Equations (1) and (2)) are basic
morphological operations based on morphological erosion ελB(I)(x) = min{I(y); y ∈ λB}
and dilation δλB(I)(x) = max{I(y); y ∈ λB}, where λ indicates the scale or size of B. A
morphological dilation enlarges the area of image objects while morphological erosion
contracts them. However, avoiding a significant change in object size could be important
for some processes. Then, the dual transformation is applied as a second step to avoid such
effects, e.g., dilation after erosion. In this sense, the purpose of the second transformation
in a morphological opening or closing is to restore the object size affected by the first
transformation to some extent.

γλB(I) = δλB[ελB(I)] (1)

ϕλB(I) = ελB[δλB(I)] (2)
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2.3. Granulometry

Granulometry is an operation, based on morphological openings, that allows measur-
ing the effect that a scale λ has over the grains in the image; thus, λ can be related to the
size of the grains. In digital image processing, grain refers to a structure or object associated
with a certain gray level (solid) [21]. Thus, grain size analysis is a tool for estimating the
sizes of relevant objects in an image. Granulometry consist of a set of operations {γλ}.
Then, the granulometry of image I consists of mapping I through morphological apertures
in {γλ}, and measuring the effect of λ + ∆ in the image through a normalized difference
between mes(γλ(I)) and mes(γλ+∆(I)), where mes is the accumulated sum of gray levels.
The measured effect is called pattern spectrum (PS(I)) (Equation (3)) [22]. Then, it is as-
sumed that a size λ + ∆ generates a high impact when it matches the size of representative
structures in the image.

PS(I) =
mes(γλ(I))−mes(γλ+∆(I))

mes(I)
(3)

2.4. Watershed

Watershed is a segmentation technique that enables the dividing of regions in the im-
age by considering the increment of intensity values from a local minimum to the maximum
local change achieved. Watershed labeled pixels by considering their spatial proximity,
gray level gradient, or texture [19,23]. Watershed analyzes the image as a topological map
where a local minimum (lower intensity) corresponds to the bottom of a catchment basin
(Figure 2a,b) from where the flood starts. The flood refers to marking the analyzed pixels
under the same label to indicate that they belong to the same region (Figure 2c,d). When
a local maximum (higher intensity) is reached, the flood stops to avoid overflowing into
another region, i.e., duplicate labeling (Figure 2e). Thus, limits among basins can be drawn,
generating the segmentation of objects (Figure 2f). Then, the watershed of image I in
the space D, containing a set of local minimums {mk}k∈I , is defined by the intersection
between a set of points CB(mi) = {x ∈ I|x is closer to mi than to any other mj} and the set
of points in D (Equation (4)) [24].

(a) (b) (c)

(d) (e) (f)

Figure 2. Watershed flooding process for region segmentation. (a,b) Original image and its repre-
sentation as a topological map, (c,d) flooding starting from local minima to higher levels forming
catchment basins, (d,e) local maxima reached stopping flooding, and (f) the final borders indicating
the division of regions.
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Wshed(I) = D ∩
(⋃

i∈I
CB(mi)

)c

(4)

2.5. Circularity Estimation

Circularity metrics allow measuring how circular a shape is. In some kinds of images,
it is relevant to identify regions of interest with higher circularity since they could be asso-
ciated with specific particles or characteristics of the sample [25]. The circularity measure
is often used in diverse applications, such as medicine and industrial processes [26–28].
Although regions of interest could be perceived as circular, in real samples, they often
present some degree of deformation, fold, or defect caused by the nature of the process
(e.g., occluded or incomplete regions) that may affect their quantitative assessment through
a circularity metric. The MOR circularity metric [29] is based on the probability distribution
of radius f (r) from the center of the region c to its edge pixels r and assumes that the set
r does not follow a Gaussian distribution as the object is deformed, making MOR less
sensitive to distortions in the analyzed region. Thus, MOR is defined as the ratio between
the area centered in the ri of higher probability in f (r) and the total area (Equation (5)),
where k1 and k2 are the local minimums of ri.

MOR =

∫ k2
k1

f (r)dr∫ +∞
−∞ f (r)dr

(5)

3. Methodology

The proposed methodology comprises three main parts: (i) identification and segmen-
tation of tissue structures corresponding to nuclei and tubules, (ii) feature extraction and
analysis, and (iii) classification of nuclear pleomorphism and tubules quantification. This
methodology is based on digital image processing techniques, which allow analyzing the
morphology of the elements of interest in the histological tissue.

3.1. Nuclei Extraction

The first part of the methodology comprises an analysis of the elements or structures
contained in the image to identify those corresponding to nuclei. For this, an analysis
of structure sizes and filtering by area is used to determine the most likely structures
of interest. Additionally, an image contrast enhancement is applied to distinguish better
among elements in the image. Histopathological images usually have an H&E stain
highlighting the tissue components in purple tones, darker in the nucleus area, and pink in
the cytoplasm and related tissue surrounding the nucleus. Given that the main contribution
in these tones comes from the red color, the R channel will be used in the following
processes. A first approximation of this step was addressed in [15] and is now extended as
part of the proposed methodology.

3.1.1. Separation of Tissue and Nuclei

For this work, a histopathological image is divided into elements of interest (nuclei
and tubules) and background (connective tissue and empty parts of the slide). However,
H&E stain conditions may vary from one image to another, affecting contrast among the
elements in the image. Then, a contrast enhancement is required to facilitate later nuclei
extraction. Gamma correction is often used in contrast enhancement since it is related
to the distribution of values in which human vision perceives stimuli better. A contrast
adjustment by the Gamma correction is defined as the power function Vout = AVg

in, where
Vin is a real positive value, A is a constant, and g is the gamma encoding that symbolizes a
numeric parameter [30]. This correction improves contrast by mapping the current range
of values in the image [lowin, highin] to a wider range; for instance, in an 8-bit image the
complete range of values is [0, 255]. The performed contrast enhancement was based on a
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linear correction (g = 1) considering that lowin = µ− (σ ∗ 2) and highin = µ, where µ and
σ are the mean and standard deviation of values in the image. In this way, it is expected
that objects of interest be highlighted.

Nevertheless, it must be noted that contrast conditions may vary in regions of the
same image. Therefore, if a general adjustment takes statistics from the whole image, some
objects of interest may be lost. For example, cell nuclei on low contrast areas could take a
value similar to the background, making their subsequent segmentation difficult.

For a contrast enhancement suitable to the particular stain conditions of histopatho-
logical images, the image is divided into sub-regions where values adjustment depends on
local conditions. It must also be considered that histopathological images may be acquired
at different magnification and, depending on it, elements in the image are observed to
be smaller or larger. Therefore, a sub-region size must ensure to contain the elements of
interest. As a reference, the image’s most representative size is considered associated with
the elements of higher occurrence, i.e., nuclei. A granulometric analysis with a circular
structural element is performed since cells tend to be rounded shapes (Figure 3a,b). As
observed, most elements are reached by λn = 4, meaning that nuclei cover an area of 7× 7.
After heuristic testing, it was determined that square sub-regions of size 25λn were suitable
for contrast analysis (Figure 3c). In this way, the sub-division of the image is independent
of magnification.

(a) (b)

(c) (d) (e)

Figure 3. Process to separate tissue and nuclei [15]: (a) original image, (b) granulometric analysis,
(c) separation by sub-regions using λn with higher PS as a reference, (d) local contrast adjustment,
and (e) sub-regions binarization.

Once the image has been divided, local contrast adjustment is performed in each
sub-region by considering their statistics. As observed in Figure 3d, nuclei are highlighted
according to their local surrounding; where nuclei are similar to the rest of the tissue,
Gamma correction generates a higher distance of gray values, increasing the contrast. This
process facilitates nuclei binarization with Otsu’s method, eliminating the background and
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other tissue parts that are not of interest. Figure 3e shows how nuclei have been separated
from the rest of the information in the image.

3.1.2. Nuclei Segmentation

The previous binary image provides a partial segmentation of nuclei. However, nuclei
cells have not been segmented yet. According to the granulometric analysis, elements of
interest have a size λn = 4 and must be preserved. On the one hand, it is assumed that
elements of a smaller size (<λn), associated with noise or artifacts, are not relevant and
must be removed from the image. On the other hand, elements of a larger size (>λn) are
considered clumped cells of possible interest and should be separated for later individual
analysis. The pre-selection of elements is shown in Figure 4a–d.

Figure 4. Cell nuclei segmentation and filtering. (a) Binary cell nuclei markers, (b) small elements
(<λn), (c) elements of average size (λn = 4), (d) clumps of cells (>λn), (e) clumps division, and (f) final
segmentation fusion.

Clumps of cells may contain a significant number of nuclei that, if eliminated, could
affect the histopathological image assessment. Then, it is relevant to identify the inner
nuclei that these components contain and divide them. For this, a watershed transformation
is applied, allowing individual identification of elements (Figure 4e). Then, all the elements
in Figure 4c,e are put together in a single image. It must be remarked that not all segmented
elements correspond to nuclei since some remaining clumps could not be divided by
watershed. Segmentation results were improved through two filtering criteria based on
the features that elements in the same image contain: nuclei tend to have similar areas
and be rounded. By taking as reference the size λn = arg max(PS) from granulometric
analysis, a range of sizes is settled as Tλ = [λn/2, arg maxλn+1≤x≤X(PS(x)), where X is the
maximum value of λ analyzed in PS. This means that elements of interest go from half size
of λn to the second relevant size in PS. Thus, potential artifacts, over-segmentation errors,
or undivided clumps are discarded. The mean and standard deviation of roundness values,
estimated with MOR, was computed to establish the circularity threshold Tc = µc − σc.
Only elements with roundness greater or equal to Tc are kept. The final segmented nuclei
are illustrated in color over the original histopathological image in Figure 4f.

3.2. Tubule Detection and Segmentation

The second part of the methodology is mainly focused on detecting tubules. A tubule
has two main characteristics: the presence of an element of high intensity (lumina) sur-
rounded by an area of connective tissue and nuclei (glandular tissue) that usually retain
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regularity in its distribution and orientation (Figure 5). In addition, the tubule commonly
has high circularity, although this condition varies in cancerous tissues. Therefore, for the
detection and segmentation of tubules, the proposed methodology consists of three steps:
detecting lumina candidates, retrieving glandular tissue, and analyzing glandular tissue.

(a) (b) (c)

Figure 5. Tubules in breast tissue. Regular shaped tubule in (a) healthy tissue and (b) benign tumor
tissue; and (c) irregular shaped tubule in cancerous tumor tissue. Images taken from [31].

3.2.1. Detection of Lumina Candidates

For the initial extraction of lumina candidates, the remaining tissue of previous nuclei
segmentation is taken as a basis (Figure 6a) to avoid processing regions where a lumina is
unlikely to be found. However, the remaining tissue may contain components resembling
lumina and must be analyzed. A lumina tends to be a homogeneous region with a high
intensity. Therefore, the mean intensity of connective tissue is taken as a threshold to
isolate lighter regions (lumina candidates) from the rest of the connective tissue (Figure 6b).
Once the initial extraction has been obtained, detected lumina candidates are analyzed and
evaluated using two criteria. The first is an area criterion Ua = 2(Arean), where Arean is
the average area of nuclei in the image. It is assumed that lumina should be at least twice
as long as nuclei. The second criterion is based on statistical mode and mean of intensity
values. In the resulting lumina segmentation, there could be some elements that, despite
having a high-intensity value, are not luminas. It is considered that a lumina candidate with
mode below mean intensity could correspond to connective tissue but does not correspond
to lumina; then, it must be deleted. Moreover, lumina candidates in the image edge are also
deleted to avoid analyzing incomplete elements. The result of applying these two criteria
is shown in Figure 6c.

(a) (b) (c)

Figure 6. (a) Remaining connect tissue of benign tumor after nuclei segmentation [31], (b) lumina
candidate segmentation, and (c) the refinement of luminas regions.

3.2.2. Retrieving of Glandular Tissue

Since the previous step focused on extracting the highest intensity regions, lumina
candidates lack surrounding glandular tissue. Nevertheless, glandular tissue is a piece of
essential information to confirm if the candidate corresponds with a tubule. The binary
markers of luminas (Figure 6c) were thickened through a series of morphological dilations
(γλ) to retrieve the glandular tissue area of interest. It is expected that the initial region
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(lumina candidate) grows to reach the glandular tissue containing the nuclei, defining a
tubule (Figure 7). With each dilation, the inclusion of nuclei generates intensity changes
that are considered to know when the region should stop growing. The variation coefficient
CV = σI/µI is computed to assess the intensity change, where σI is the standard deviation,
and µI is the mean statistics; this metric helps to estimate the contrast in a region. For
instance, Figure 7a shows a lumina candidate (initial region) that presents high values in
most of its area; therefore, it is expected to have a low variation (CV = 0.108). Figure 7b
shows the growth of the region after being dilated five times, including part of the nuclei
and increasing the variation of values, as CV = 0.240 indicates. In Figure 7c, most of the
nuclei surrounding lumina have been reached (CV = 0.460). As the region is dilated and
nuclei are reached, the intensity variation is expected to increase since nuclei are outlier
values compared to the lumina values. This behavior is reflected in the plot of Figure 7d,
where the CV value helps to evaluate if the region growth should continue. A decrease
in CV indicates that the added area is mainly glandular tissue (high luminance values) or
does not contain a relevant nuclei area anymore. Therefore, the increment in CV is used as
a stop criterion for dilation.

(a) (b) (c)

(d) (e)

Figure 7. Retrieving glandular tissue through the CV measure and morphological dilations. (a) Orig-
inal lumina candidate (CV = 0.108), its increasing area after (b) γ5 (CV = 0.240) and (c) γ10

(CV = 0.460), and (d) the behavior of CV associated with the addition of nuclei; and (e) the retrieving
of glandular tissue around lumina candidates after filtering with d.

It must be considered that some lumina candidates may not be related to a tubule since
nuclei do not surround them. This condition is evaluated by considering the normalized
mean values of the lumina (µl) and the connective tissue added with dilation (µγ). If the
connective tissue includes a few nuclei or none, the difference d = µγ − µl is small. On the
other hand, it is expected that the inclusion of a significant number of nuclei generates a
difference higher than d. Hence, if CV > d, it is assumed that the change in intensity is due
to the presence of nuclei around the lumina candidate; otherwise, the lumina candidate
is eliminated. As a result, lumina candidates with their corresponding glandular tissue
are obtained. Figure 7e shows an example of the complete identification process of lumina
candidates in a histopathological image of invasive carcinoma. Nevertheless, this result
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partially selects lumina candidates as possible tubules. Therefore, in the next step, glandular
tissue is analyzed to identify tubules finally.

3.2.3. Analysis of Glandular Tissue

Figure 8 shows light regions corresponding to luminas of tubules; some others corre-
spond to gaps in the tissue or fatty regions. Therefore, the analysis of lumina candidates
is relevant for identifying their possible association with tubules. This step addresses
the surrounding nuclei distribution analysis to distinguish the tubules from the rest of
similar structures.

(a) (b)

Figure 8. Light regions in the tissue: (a) related to lumina tubules and (b) other structures of similar
composition that are not tubules. Images taken from [31].

Based on the previous segmentation of nuclei and lumina candidates (Sections 3.1.2
and 3.2.2), it is possible to obtain their binary markers in the retrieved glandular tissue
to be analyzed. For this purpose, some characteristics from the markers are analyzed
to obtain more information about lumina candidates. First, it must be considered that
the glandular tissue contains nuclei surrounding the lumina and some others from near
unrelated regions. Since the count of nuclei can be relevant to identifying a tubule, it was
established a minimum threshold considering that at least half of the lumina perimeter
pl must be covered by the average diameter of the nuclei dn and the minimum distance
among them dmin, i.e., Tn = pl/2(dn + dmin). Therefore, candidates whose nuclei account
is less than Tn are unlikely to be a tubule.

Secondly, although the number and distribution of nuclei may be different, it was
observed that nuclei tend to be uniformly distributed around lumina (L), forming an enve-
lope that is useful for characterizing tubules (Figure 9a). Three parameters are estimated to
obtain the envelope: nuclei centroid, the distance between adjacent nuclei, and the angle
between those and the lumina centroid (Figure 9b). From the nuclei and lumina centroids,
the convex hull EC is estimated to represent them as an irregular polygon (Figure 9c). It is
expected that the lumina associated with a tubule were completely contained in the convex
hull formed by its nuclei (Figure 9d). Moreover, since most lumina candidates have an
elliptical shape, it is assumed that EC and the lumina candidate regions can be described by
elliptical properties, such as centroid and orientation. Then, also it is expected that ellipses
from EC and lumina candidates are similar (Figure 9e,f). In Figure 10a, it is observed that
the convex hull descriptions match with lumina candidates segmentation through their
ellipses, having a slight difference when the lumina correspond with a tubule. On the other
hand, when the lumina candidate is more likely a light region not related to a tubule, the
ellipses present a higher difference Figure 10b.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. (a) Lumina candidate, (b) its binary markers of nuclei and lumina indicating their cen-
troids, and (c) the envelope formed by nuclei. (d) The relationship of regions L and EC for tubule
identification, and (e,f) the similarity between their respective ellipses.

(a)

(b)

Figure 10. Lumina candidates description through the ellipses from their corresponding convex
hull and centroid to distinguish between candidates (a) related to tubules and (b) related to other
structures (no-tubules).
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Finally, symmetry in the distribution of nuclei around lumina is also a characteristic
considered. For symmetry estimation, the major axis of the ellipse from EC is used as a
reference. The general description of the tubule is associated with the ellipse from its convex
hull since it includes both lumina and the nuclei around it. Then, the symmetry measure
is obtained as S = min(Nu, Nl)/ max(Nu, Nl) where Nu and Nl are the counting of nuclei
in the upper and lower side of the major axis of the ellipse, respectively (Figure 11). The
measure S has values in the range [0, 1], tending to 1 when there is a high symmetry. Thus,
these three parameters (Tn, EC, and S) help find differences among lumina candidates that
are more likely associated with tubules.

Figure 11. Separation of nuclei corresponding to Nu and Nl to perform the symmetry calculation.

4. Results and Discussion

This section presents the results of histopathological images analyzed under the
proposed methodology. Two main experiments were carried out: the differentiation degree
based on nuclear pleomorphism and the identification of tubules. For this, several datasets
were used and tested, as described below.

4.1. Dataset

Histopathological samples from three different databases were used to evaluate the
proposed methodology. The Breast Cancer Image Classification (BreakHis) database [18]
consists of images of 700× 460 of breast benign (2480) and malign (5429) tumor tissue under
different magnification factors (40×, 100×, 200×, and 400×). The Breast Cancer Histology
database (BACH) [31] is composed of 400 microscopic images with a magnification factor
of 200× and a resolution of 2048× 1536. Samples in the BACH are divided into sets of
100 images in which tissue is labeled as healthy, benign tumor, carcinoma in-situ, and
invasive carcinoma. The Breast Cancer Cell Segmentation (BCCS) database [32] contains
58 images of BC with a resolution of 896× 768 pixels and is the only one that includes a
ground truth of nuclei segmentation. These databases were used in the different stages of
the proposed methodology to evaluate its performance, as described below.

4.2. Automatic Segmentation of Nuclei

For assessing the performance of the proposed nuclei extraction process, images
from the BCCS were used since their ground truth allows a direct comparison of results.
Segmentations obtained from the proposed nuclei extraction and the ground truth are
denoted Ss and St, respectively. For comparison results, a set of area-based segmentation
metrics were used. Precision and sensitivity metrics were calculated as TP

TP+FP and TP
TP+FN ,

respectively; where TP = Ss ∩ St are true positives, FP = Ss − St are false positives,
TN = St − Ss are true negatives, FN = E− Ss − St are false negatives, and E denotes the
region, including all possible segmented regions. In addition, the Sørensen–Dice similarity
coefficient was also calculated as SDC = 2·TP

2·TP+FP+FN . The SDC value is in the interval
[0, 1], where 0 indicates that both segmentation are completely different and 1 suggests
they are the same [33,34].
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Figure 12 shows some examples of original histopathological images and the compari-
son between their obtained segmentation (red), their corresponding ground truth (green),
and the coincidence of both (yellow). Although a significant similarity can be observed
between both results, also some differences affect metric values. It was identified that
differences occurred due to three main factors: (i) the segmentation of the ground truth
does not consider the separation of nuclei clusters (Figure 13a,b), (ii) differences between
nuclei detection (Figure 13c,d), and (iii) the proposed method eliminates elements that
significantly differ from the representative features in the image, such as the average area or
circularity used in image filtering (Section 3.1), as illustrated in Figure 13e,f. The similarity
between segmentation results and the ground truth was measured for all samples from
BCCS and registered in Table 1. As observed, similarity surpasses 0.80 in the metrics when
a direct comparison is performed without considering cell cluster separation. When cell
clusters are separated, the SDC value is lower since similarity among cell areas decreases
because of the division of regions; therefore, sensitivity is also reduced. Nevertheless,
accuracy continued showing a high value (0.86). Furthermore, although not considered
on the ground truth, cluster separation and elimination of no-representative particles al-
lowed an improved identification of the nuclei, as shown in Figure 13. These are desirable
characteristics in histological analysis to determine the degree of cell differentiation in
mammary carcinoma.

The pathologist analyzes nuclei variations in size and shape to establish the grade of
nuclear pleomorphism in BC. In digital histopathological images, both characteristics are
analyzed after nuclei segmentation. Here, two analyses were performed to find differences
related to nuclear pleomorphism in (i) cancerous and healthy tissue and (ii) in the three
different grades of cell differentiation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Evaluation of the proposed nuclei segmentation. (a,e) Original image, (b,f) proposed
segmentation (Ss), (c,g) ground truth segmentation (St), and (d,h) segmentation comparison; Ss in
red, St in green, and their coincidence in yellow.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Differences were found between the proposed nuclei segmentation and the ground truth.
(a,b) Separation of nuclei clusters, (c,d) nuclei detection, and (e,f) elimination of nuclei significantly
different from the average features (shape/area) considered in the filtering.

Table 1. Evaluation of nuclei segmentation with and without cluster separation.

Metric No Cluster Cluster
Separation Separation

Coefficient Sørensen–Dice 0.82± 0.06 0.79± 0.08

Accuracy 0.82± 0.08 0.86± 0.05

Sensitivity 0.83± 0.10 0.76± 0.12

mean ± standard deviation.

4.2.1. Healthy Tissue vs. Cancerous Tissue

For this analysis, segmented nuclei from images of the BreakHis database were ob-
tained for both healthy and cancerous tissue. In healthy tissue, nuclei tend to have high
roundness and a more uniform size; the opposite occurs in cancerous tissue. Therefore,
it is expected to represent these conditions by quantifying the related features. Then, a
multivariate analysis of the area-circularity dispersion of nuclei was performed to know
how these two features that allowed segmentation can be used to describe each type of
tissue. Given the vectors (A) and (C), containing area and circularity values from nuclei, its
covariance matrix M = Cov(A, C) was computed. The covariance matrix allows knowing
the dispersion between the features used to describe nuclei. To represent the dispersion
of data in M, the eigenvalues ΛA and ΛC were obtained; the general dispersion was rep-
resented as Λ = ΛA + ΛC. Figure 14 represents the relationship maintained between the
analyzed features and their dispersion, where each point represents the mean values from
an image. It was observed that nuclei keep high circularity and similar area among the
samples in healthy tissue; therefore, dispersion Λ is low. On the other hand, cancerous
tissue presents a wider variation in circularity because of nuclei deformation, generating
higher Λ between the features. Then, area and circularity measures show suitable features
to differentiate the nuclear pleomorphism in healthy and cancerous tissues. Nevertheless,
this is a general separation since cancerous tissues are not of a unique type.
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Figure 14. Area-circularity relationship and its dispersion Λ differentiating healthy from cancer-
ous tissues.

4.2.2. Cancerous Differentiation Grades

Nuclear pleomorphism in cancerous tissues is divided into three grades of cell differen-
tiation contemplated in the NGS. With the support of two experts pathologists and a doctor,
83 histopathological images of invasive cancer from the BACH database were evaluated
and labeled according to the NGS. From this dataset, 13 images are grade 1, 24 images are
grade 2, and 46 images are grade 3. The imbalance in the number of images for each grade
may generate that their analysis result is not representative enough. Nuclei were extracted
individually from all images to generate an equal number of representative subsets and
overcome the imbalance. Nuclei were randomly selected and clustered according to the
label of the image into subsets of cardinalities n = {100, 500, 2000} for each grade. Thus,
each subset was considered a sample of its respective grade. It was assumed that nuclei
of the same grade might have similar characteristics then, 100 subsets of each grade were
taken, and their values of circularity and area were extracted to be analyzed, as described
in Section 4.2.1. It was observed that circularity varies depending on the proportion of
healthy and cancerous nuclei in tissue samples of the same grade. On the other hand, it was
observed that the mean intensity of nuclei presented lower dispersion than circularity. This
behavior may be due to the effect of staining being similar regardless of the state of the cell
nucleus. Therefore, the mean intensity and area characteristics were considered to describe
each grade, as shown in Figure 15. The sub-sets analysis reflects that the characteristics
of each grade show a possible separation when a cardinality of n = 100 is considered
(Figure 15a). Tests also showed that a higher cardinality (n = 500 and n = 2000) improves
the separation of the NGS grades since statistics are more representative of the sample.
Figure 15b,c showed that, although the area varies because of nucleus deformation, mean
intensity had low intra-class variation. Thus, the average area and intensity characteristics
indicate a significant difference between the three NGS grades of cellular differentiation
that can be used for identifying the grade to which a sample belongs.

Based on the relationship between the characteristics and the degree of cell differen-
tiation, it performed a K-Nearest Neighbor (KNN) classification. A total of 200 samples
for each degree, previously labeled and clustered with cardinality n = 500, were taken to
perform automatic classification. Samples were divided in half for the training and test sets.
A factor K = 5 was used that expresses the number of neighbors considered by KNN. As a
result, the classification reached an accuracy of 0.84± 0.03 and F1-score of 0.85± 0.02 using
a 10-fold cross-validation to classify the three degrees of cell differentiation.
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(a) (b)

(c)

Figure 15. Scatter graphs of the area-circularity relationship variation and mean intensity in 300 sam-
ples of the 3 degrees of cell differentiation grade 1, grade 2, and grade 3. (a) Graph with random
samples of size n = 100, (b) graph with random samples of size n = 500, and (c) graph with random
samples of size n = 2000.

4.3. Identification of Tubules

The tubules were identified through features obtained from the analysis in Section 3.2.3.
Moreover, due to the variations in morphology, tubules classification was addressed using
the score measure Cs (Equation (6)) from the structural characteristics of the glandular tissue.
The Cs metric considered the contribution of the different characteristics analyzed. The
distance between the centroids of a lumina ellipse and its EC (lcdis), as well as the difference
in their angles (lθ) are expected to be small, indicating that EC is more likely associated
with a lumina (see Figure 10). Cs also considers symmetry (S) of nuclei distribution around
lumina. Although the values of lcdis and lθ are expected to be small for a lumina, its
respective value of S is expected to be high. Then, to follow the general trend of values
lcdis and lθ in Cs, the asymmetry value lA = (1− S) ∗ 100 was used instead S. Finally, if the
minimum threshold of nuclei around lumina (Tn) is not reached for a candidate, a value
Tnuclei = 10 is added as a penalty to the final value. Although Tn affects Cs its purpose is
not to generate a significant change in the final value since lumina could fulfill the other
features even being surrounded by a number of nuclei lower than Tn.

Cs = Tnuclei + lcdis + lθ + lA (6)

The proposed metric was tested on 30 invasive carcinoma images from the BACH
database, all containing lumina candidates from which Cs scores were obtained. In Figure 16,
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the plot relates the Cs value obtained for 120 candidates extracted from the images and
labeled by an expert pathologist as tubule and no tubule. It is observed that lumina candi-
dates labeled as tubules obtained a score Cs = 41± 19. In contrast, candidates labeled as no
tubule present higher scores and dispersion, i.e., Cs = 96± 49. Thus, evidence was found
that Cs is a metric for differentiating tubules from similar structures by integrating lumina
features. By considering the mean and dispersion of Cs in lumina candidates corresponding
to tubules, it was set that a candidate with values Cs > 60 is unlikely related to a tubule.
Under this criterion, it reached an accuracy of 0.83 for tubule identification.

Figure 16. Identification of lumina candidates that correspond to tubules based on the proposed
metric Cs.

According to the selection of candidates through Cs, an analysis of the 56 remaining
invasive carcinoma images from the BACH database containing tubules was performed. It
is expected that tubule counting is related to the grade of cell differentiation. Since these im-
ages were labeled with their differentiation grade (Section 4.2.2), it was possible to emulate
the histological evaluation (identification and counting) performed by the pathologist, try-
ing to associate the degree of tubule formation considered in the NGS. Figure 17 shows the
tubules counting in obtained for images of each grade (empty circles) and their respective
mean counting (filled circles). Due to the lack of a labeled tubule database and the limited
number of available images containing tubules per grade, it was not possible to carry out a
more extensive analysis for automatic classification or error calculation. However, although
there is no significant difference among central tendencies, the proposed metric reflects
the tendency of tubule counting to be reduced as the differentiation degree increases in
carcinoma images, which matches with the considerations in the NGS.

Figure 17. Counting of tubules identified with CS per grade of differentiation.
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4.4. Discussion

Although several studies have addressed the grade of cell differentiation on histopatho-
logical images of breast carcinoma, these do not establish a relationship between their results
and the characteristics considered by NGS. Additionally, most methods only considered
one of the three characteristics of the tissue. In pathological practice, scores of analyzed
structures have equal influence, and their value can affect the final grade determination.
Therefore, considering more structures is helpful for the expert. Two main approaches
have been reported about the degree of cellular differentiation considering nuclei (Table 2):
based on features and automatic classification with DL models. On the one hand, the first
approach computes features based on texture, contours, and graphs that, subsequently,
were used as an input for a classifier. Petushi et al. [13] achieves an accuracy of 92% dif-
ferentiating between grades 1 and 3. However, when the comparison considers the three
grades, accuracy drops to 72%. Basavanhally et al. [10] also performed a comparison be-
tween pairs of grades, obtaining an accuracy of 93% between grades 1 and 3, 72% between
grades 1 and 2, and 74% between grades 2 and 3. In addition to texture, graph features
were also used in [8] to include information about the way if cell nuclei were arranged in
tissue, which is related to cancer progression. The combination of these features allowed
differentiation between G1 and G3 with an accuracy of 93%. Similarly, Naik et al. [7]
performed a decomposition of low and high-level image information through boundaries
segmentation and a template matching with four predefined shapes. Additionally, the
spatial relationship between histological structures was considered, reaching an accuracy of
80.5% when comparing grades G1 and G3. As observed, accuracy tends to be higher when
extreme grades are compared since their characteristics differ more. Still, the identification
task is more complex when adjacent classes or the three classes are considered.

Table 2. Comparison of accuracy results for nuclear pleomorphism.

Method G1 vs. G2 G1 vs. G3 G2 vs. G3 G1 vs. G2 vs. G3 Approach

Petushi et al. [13] - 92% - 72% Texture features

Basavanhally et al. [10] 72% 93% 74% - Texture features

Doyle et al. [8] - 93% - - Texture and graph features

Naik et al. [7] - 80.5% - - Template matching and
morphological features

Cao et al. [12] 74% 90% 76% - DL

Wan et al. [11] 77% 92% 76% 69% DL

Yan et al. [35] 94.1% 97.8% 93.9% 93.4% DL

Proposed - - - 84% Morphological and
geometrical features

On the other hand, approaches based on deep learning techniques, such as CNNs, iden-
tify characteristics from images corresponding to the three grades, i.e., learn to differentiate
them. Under this approach, Cao et al. [12] obtained an accuracy of 90% comparing grades 1
and 3, 74% comparing grades 1 and 2, and 76% comparing grades 2 and 3. Wan et al. [11]
reported similar accuracy results: 92% for grades 1 and 3, 77% for grades 1 and 2, and 76%
for grades 2 and 3; additionally, the evaluation of the three grades obtained 69%. Then,
in general, the characterization obtained from both approaches provides lower accuracy
results when the three grades are considered. In comparison, the proposed methodology
obtained an accuracy of 84% in the three grades of cellular differentiation corresponding
to nuclei. Recently, Yan et al. [35] reported the NGNet, a network that allows cell nuclei
segmentation and classification. The reported results showed that NGNet reaches 94.1%
for grades 1 and 2, 97.8% for grades 1 and 3, 93.9% for grades 2 and 3, and 93.4% among
all the grades. This work also mentioned that magnification is an important feature in cell
nuclei identification. However, the network was trained only for 20x and 40x, which can be
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a relevant restriction. In this regard, morphological and geometrical features could provide
a more stable description for nuclei classification under different magnification. Moreover,
the areas considered important for classification have higher weight when gland-related
nuclei (i.e., tubules) are present. In a G3 grade, there is poor or null tubules formation;
therefore, this can affect the selection of relevant areas.

In general, both approaches struggle to distinguish among the three degrees of dif-
ferentiation since it is harder to identify differences. Although with a DL approach higher
accuracy is reached, it must be taken into account that to preserve the high performance
of the DL model, data must have wide variability including (e.g., staining, amplification,
illumination). This is a relevant issue in any medical application and has been analyzed in
detail in some works. For instance, in [36] showed that a DL model keeps a good perfor-
mance only if the data distribution is similar to the training data. Still, it is affected when the
tested dataset presents different distribution due to factors, such as a different population,
disease characteristics, or imaging systems. In this sense, the feature extraction approach
could bring a more stable solution to the description of histopathological structures. The
proposed method presents a description based on morphological and geometrical features,
which are less variant under staining or amplification conditions and are directly related to
structures analyzed by NGS. Moreover, the results were obtained by testing the method-
ology under the conditions of three different databases, distinguishing among the three
different degrees of differentiation, which is the final goal of comparison.

A few recent works have addressed tubular formation. In [13,14], tubules were also
identified as high-intensity regions surrounded by nuclei. Although it is mentioned that
the number of tubules was considered in the identification of the grades, the analysis of
its values was not reported. The main difference with the proposed tubule analysis is the
exhaustive evaluation of lumina candidates, considering the general information of the
lumina and its spatial and geometric relationship with the surrounding nuclei.

5. Conclusions

The proposed methodology focused on identifying and segmenting cell nuclei and
tubules from histopathological images, independent of expected changes in conditions,
such as staining and magnification. On the one hand, performed nuclei segmentation
coincided with the ground truth reaching SDC values of 82%± 3. Cluster separation and
its relevance in nuclei analysis was also addressed. Furthermore, it was demonstrated
that shape characteristics of cell nuclei allow the automatic identification of healthy and
cancerous tissue, and among the three grades of differentiation established in the NGS
with an accuracy of 84%. On the other hand, based on the analysis performed on the
spatial relationship among lumina and nuclei around it, as its geometric description, it
was possible to propose a metric to evaluate how likely a lumina candidate corresponds
to a tubule. Results from evaluation with CS showed that estimated tubule identification
corresponds with the behavior of the differentiation grades described in NGS. Although
more extensive research is necessary, the current tubule evaluation reached an accuracy of
83%, providing a starting point. Thus, evidence was found that it is possible to estimate
breast carcinoma tissue variations from the analysis of histological images and their digital
descriptors, which, in turn, can be associated with the NGS classification.

Moreover, the proposed methodology can then serve as a basis for a digital tool for
comparing diagnoses among pathologists or as an educational tool for remote pathology
due to the growing need to digitize images for later analysis or discussion of cases to agree
on better surgical planning or oncological treatment for patients.
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