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Abstract: Comparative analysis of the sensitivity of two surface plasmon resonance (SPR) biosensors
was conducted on a single-metallic Au sensor and bimetallic Ag–Au sensor, using a cathepsin S sensor
as an example. Numerically modeled resonance curves of Au and Ag–Au layers, with parameters
verified by the results of experimental reflectance measurement of real-life systems, were used for
the analysis of these sensors. Mutual relationships were determined between ∂Y/∂n components of
sensitivity of the Y signal in the SPR measurement to change the refractive index n of the near-surface
sensing layer and ∂n/∂c sensitivity of refractive index n to change the analyte’s concentration, c,
for both types of sensors. Obtained results were related to experimentally determined calibration
curves of both sensors. A characteristic feature arising from the comparison of calibration curves is
the similar level of Au and Ag–Au biosensors’ sensitivity in the linear range, where the signal of the
AgAu sensor is at a level several times greater. It was shown that the influence of sensing surface
morphology on the ∂n/∂c sensitivity component had to be incorporated to explain the features of
calibration curves of sensors. The shape of the sensory surface relief was proposed to increase the
sensor sensitivity at low analyte concentrations.

Keywords: surface plasmon resonance; bimetallic biosensor; sensitivity; cathepsin determina-
tion; biomarkers

1. Introduction

Surface plasmon resonance (SPR) is an optical measuring technique applied to test
the refractive index changes occurring in very close proximity to a thin, metallic layer
in which collective resonant oscillations of free electrons have been induced [1,2]. The
foundation of SPR biosensors’ design is a metal–dielectric interface, the surface of which
is functionalized by immobilization of the bioreceptor or selective ligand with respect
to the analyte being detected. The interaction between the immobilized bioreceptor and
captured analyte particles modifies SPR conditions, which, in turn, generate a change of
the sensor’s reflectance, which can be measured and correlated with the change of the
analyte’s concentration. SPR biosensors have found applications in many fields, including
in environmental protection [3–8], biological testing [9–14], food safety [15–20], and clinical
diagnostics [21–26].

The sensitivity of measurement is one of the most important functional features of
SPR biosensors [2,27,28]. Sensitivity S expresses the ratio of change of the sensor’s output
signal Y value and the change of the measured value X, and is equal to the value of the
calibration curve’s slope:

S =
∂Y
∂X

(1)
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In the case of an SPRi biosensor with modulation of intensity i as a function of analyte
concentration c, sensitivity Sic can be expressed as:

Sic =
∂Y
∂c

=
∂Y
∂n

∂n
∂c

= SRISnc (2)

where n is the refractive index of the dielectric medium at the sensing surface, SRI is the
sensitivity of output signal Y to change of the refractive index n caused by bonding of the
analyte to the sensor’s biorecognition layer, and Snc the sensitivity of refractive index n to
change of analyte concentration c.

In the general case, a single, thin layer of gold, which is used in the majority of
SPR biosensors currently applied, is not optimal in terms of the sensitivity requirements
posed towards biosensors. In recent years, there have been many publications proposing
diverse multi-layer and multi-material biosensor design configurations developed for the
purposes of enhancing their sensitivity [29–32]. Nevertheless, silver and gold are two
metallic elements that are used in most modern commercial applications due, accordingly,
to their high sensitivity and chemical stability [30,33]. Bimetallic Ag–Au sensors are
characterized by the combined advantages of both metals. Bimetallic structures using
silver and other metals also proved to be useful in other aspects, apart from increasing
the sensitivity of sensory surfaces. In bimetallic Ag and titanium nanoislands on top of
SiO2 surfaces, Ti proved to suppress the Ag from its oxidation in wet environments of
SPR structures [34]. A thin Cu seed layer was shown as an effective approach to produce
atomically smooth Ag films with greater electrical conductivity [35]. It was demonstrated
that the SPR peaks of Ag–Au bimetallic nanoparticles were tunable over a broad range
in the visible region, and this feature could be harnessed to create some attractive optical
properties and functionalities that are difficult to achieve with a single-component Ag or
Au nanoparticle [36].

Self-assembled monolayers (SAM) as a method of formulation of ultra-thin organic
films on Au sensory surface requires fewer steps than other approaches [2]. The SAM of
thiolate compounds has been widely used utilizing EDC/NHS chemistry for the coupling of
biomolecules [37–39]. In this article, cysteamine was used to form SAM film tightly attached
to Au surface by use of a mercapto group. The amino groups of cysteamine SAM made
it possible to immobilize antibodies using their carboxyl groups activated in EDC/NHS
coupling procedure. As a result, a strong covalent–amide bond was formed. Subsequent
interaction with analyte molecules was enabled in this way for the sensor operation.

In this work, a comparative analysis of the sensitivity of two SPR biosensors was
conducted on a single-metallic Au sensor and bimetallic Ag–Au sensor, using a cathepsin S
sensor as an example. In recent years, cathepsin S has emerged as an attractive target for
inhibiting immune responses [40]. The continuous presentation of antigenic self peptides is
thought to perpetuate the autoimmune disease process. Inhibitors of cathepsin S block the
presentation of autoantigens and may hold great promise for novel immunosuppressive
therapy. Cathepsin S SPR biosensor may prove useful in this context. In this article,
attention was directed to the details of sensing surface morphology that affected the
sensor’s sensitivity. As far as the authors know, this is the first proposal in the literature of
a description of biosensors’ calibration curves quantitatively relating to sensing surface
morphology parameters.

2. Materials and Methods
2.1. Deposition of Thin, Metallic Ag–Au Layers

Glass substrates with dimensions 20 × 20 × 1 mm and refractive index n = 1.51,
cut out from microscope slides (Thermo Scientific), were first polished using an aqueous
suspension of cerium oxide, then cleaned with the use of cleaning agents, i.e., detergent,
acetone, and isopropyl alcohol. Between every use of the cleaning agent, slides were rinsed
and washed ultrasonically in deionized water. Thin metallic layers were deposited onto
the surface of the glass by means of vapor deposition in an NA501 vacuum system in a
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vacuum of 8 × 10−6 ÷ 1 × 10−5 hPa. Prior to deposition of the Ag layer, approx. 1.0 nm of
adhesive Cr layer (99.9%) was deposited at a rate of approx. 0.1 nm/s. Next, approx. 43 nm
of Ag (99.99%) was deposited at a rate of 0.08 nm/s, and approx. 4 nm of Au (99.99%) at
a rate of 0.01 nm/s. Layer thickness and deposition rate were monitored by means of a
quartz crystal microbalance. Glass substrates, with dimensions of 16 × 16 × 1 mm, with
approx. 3 nm of Ti and a single Au layer approx. 50 nm thick were purchased from Ssens
(www.ssens.nl).

2.2. Materials and Reagents for Biosensing Surface Preparation and Measurements

Cathepsin S protein as well as a rat monoclonal antibody specific for cathepsin S (R&D
Systems, USA), cysteamine hydrochloride, N-Ethyl-N′-(3-dimethylaminopropyl) carbodi-
imide (EDC), human albumin (all SIGMA, Steinheim, Germany), N-hydroxysuccinimide
(NHS) (ALDRICH, Munich, Germany) were used, as well as absolute ethanol (POCh,
Gliwice, Poland), HBS-ES solution pH = 7.4 (0.01 M HEPES, 0.15 M sodium chloride,
0.005% Tween 20, 3 mM EDTA), phosphate-buffered saline (PBS) pH = 7.4, carbonate buffer
pH = 8.50–9.86 (all BIOMED, Lublin, Poland). Aqueous solutions were prepared with
miliQ water (Simplicity®MILLIPORE) and alcohol solutions with 99.8% absolute ethyl
alcohol (POCh, Gliwice, Poland). All measurements were conducted using glass plates
coated with the Au and Ag–Au metal layers described above.

Metallic surfaces of the Au and Ag–Au chips were covered with photopolymer and
hydrophobic paint as described in previous papers [41]. Each chip had 9 places with 12 free
metallic surfaces of 0.125 mm2 each.

2.3. Receptor (Antibody) Immobilization

Glass plates coated with pure metal were first rinsed with ethanol and miliQ and dried
under a stream of argon. A monolayer of cysteamine linker was achieved by immersing
each metal-coated glass slide in a 20 mM alcohol cysteamine solution for at least 12 h at
room temperature. In the second step, the slide was washed with absolute ethyl alcohol
and miliQ water and finally, dried under an argon atmosphere. The antibody activation
process was driven by carboxyl groups present in the antibody reacting with EDC (250 nM)
and NHS (250 nM), in the presence of carbonate buffer (pH = 8.5). Antibody immobilization
was conducted by mixing NHS and EDC in a ratio of 1:1 in a solution of carbonate buffer
at pH 8.5, after which the antibody solution was added. After activation, the mixture of
immobilized antibodies was applied onto the active area of a slide and incubated for 1 hour
at 37 ◦C. After this time, the slide was rinsed 10 times with miliQ water and dried under
an argon atmosphere. The sensor prepared in this way was then applied for determination
of cathepsin S.

2.4. Instrumental Measurements and Numerical Simulations

The surface topography of layers deposited on the glass substrate was measured
by atomic force microscopy (AFM) using a Nanosurf Nanite B system in contact mode.
Photographs of the surface and fracture surfaces of thin layers were taken using FIB-SEM
Scios 2 DualBeam system. SPR characterization of thin films was performed by using a
homemade experimental setup assembled in the Kretschmann prism configuration. The
prism/sample combination was placed on a revolving table mounted on the shaft of an
IP58 programmable incremental encoder with a programmed resolution of 0.01◦ (Lika
Electronics, 0.005◦ measurement accuracy), driven by a microprocessor-controlled unit.
Surface plasmon excitation was achieved by directing a 5 mW P-polarized parallel light
beam of a laser diode (wavelength λ = 650 nm) onto the prism/sample interface and
measuring the intensity variation of the reflected light as a function of incident angle θi
(Figure 1).

www.ssens.nl
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Figure 1. A schematic representation of the basic Kretschmann configuration of prism coupling for
reflectivity measurements to determine SPR characteristics.

Winspall software (RES-TEC Resonant Technologies GmbH) was used to simulate
SPR curves and determine theoretical values of parameters describing optical layers on the
basis of fitting model resonance curves to the results determined experimentally with the
measuring system in the Kretschmann configuration [42].

2.5. SPRi Measurements

SPRi measurements of cathepsin S were performed using a homemade device de-
scribed in previous papers [41]. In the first step, the proper SPR angle was selected, at
which the strongest light contrast between the sensor’s active spaces and its background
was achieved. The basic concept of all SPRi measurements involved the recording of a
proper image in two different polarization modes: P (light) and S (dark). Since the ana-
lytical signal responds to the number of cathepsin S biomolecules bonded at the sensor
surface, both types of images were recorded: before and after interacting with the analyte.

Cathepsin S standard solutions were placed directly on the prepared biosensors for
10 min to allow for interaction with the receptor-antibody. The volume of the sample
applied to each measuring area was 3 µL. After this time, the biosensor was washed
with HBS-ES buffer and water to remove unbound molecules from the surface. SPRi
measurements were performed at a constant light angle. Two images were recorded: the
first shows the immobilization of the antibody, and the second shows the interaction of
the antibody-receptor with the analyte cathepsin S. The intensity of the signals received
was obtained after subtracting the background signal of the S polarization. Non-specific
binding was monitored by measuring the SPRi signal in the area on the slide without
the receptor (ligand). Non-specific binding was minimized by preparing samples in a
PBS buffer and by applying BSA in PBS buffer to the slide. The SPRi signal, which was
proportional to the mass of entrapped cathepsin S, was obtained as the difference between
the signals before and after interacting with the analyte, separately for each area.

Each chip was used for measurements only once. A large number of measurement
fields allowed for statistical processing of the results of measurements carried out with
the use of one sample. It was not necessary to perform the sensor regeneration phase and
the re-measurement phase, typical of the SPR sensors operating under flow conditions,
requiring high reproducibility and stability. In order to ensure the invariable parameters of
the metallic measurement fields of the sensors, before use, the sensor chips were stored in
containers filled with argon. More experimental data will be presented in the next articles
on bimetallic chips.
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3. Results

In the measuring system in the Kretschmann configuration, measurements of re-
flectance R as a function of angle θi (Figure 1), at a resolution of 0.01◦, were conducted for
the slides with Au and Ag–Au layers. The results are shown in Figure 2.
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Figure 2. Results of fitting the SPR model curves using Winspall application (solid lines) to the
reflectance R measurement results (circles) of deposited Ag–Au and Au layer.

Values of dielectric constants of Cr, Ag, and Au layers were determined for the bimetal-
lic Ag–Au sensor, with the fitting of the model SPR curve to the results of measurement
of this layer’s reflectance using the Winspall application (Figure 2). Values of dielectric
constants of Ti and Au layers were determined for the single metallic Au sensor in a similar
way. For the bimetallic sensor, very good fit of modeling and experimental results was
obtained for a thickness of 0.6 nm, 43.0 nm and 3.1 nm, respectively, of modeled Cr, Ag, and
Au layers. The values of real and imaginary components of relative electrical permittivity,
in fitting of results, amounted to, for Cr, Ag, and Au, respectively: εCr = εCr

′+ iεCr
′′ = −2.1

+ i20.9, εAg = εAg
′ + iεAg

′′ = −19.4 + i1.2 and εAu = εAu
′+ iεAu

′′ = −12.8 + i1.4. For the Au
sensor, a thickness of 2.9 nm and 47.6 nm, εTi = εTi

′+iεTi
′′= −4.1 + i17.9 and εAu = εAu

′ +
iεAu

′′ = −12.8 + i1.3 for Ti and Au, respectively, was obtained.
The image of the surface morphology of the bimetallic Ag-Au layer and the view of

this layer’s cross-section, obtained by SEM, are presented in Figure 3a,b. Figure 3c presents
the SEM image of a single Au layer. The results of AFM measurements of the Ag-Au
bimetallic layer’s surface and the single Au layer’s surface are presented in Figure 4a,b.
Representative profiles of cross-sections for these AFM measurement results are shown in
Figure 5.

A calibration curve for cathepsin S determination was plotted at previously estab-
lished conditions: pH of 7.4 and antibody concentration of 20 ng·mL−1. The curve was
determined in a range of various cathepsin S concentration values between 0.1 ng·mL−1

and 1.5 ng·mL−1. Graphs of calibration curves of biosensors made using Au and Ag–Au
layers are shown in Figure 6. The figure presents only the linear range of the calibration
curves for both glass slides. Both calibration curves show a similar slope but extremely
different ranges of SPRi signal values. Precision and accuracy (represented by recovery)
were tested for three different cathepsin S concentrations (depending on slide type): Au
slide −0.1, 0.5, and 1.0 ng·mL−1, Ag–Au slide −0.05, 0.1, and 0.5 ng·mL−1. The number of
measurements was 2 × 12 for each concentration. The results are shown in Table 1. Both
slide types present an extremely low limit of detection (LOD) and limit of quantification
(LOQ) values, but the Ag–Au slide shows better LOD and LOQ values. LOD was calcu-
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lated as a sum of mean blank (matrix without analyte) and 3·SD of reagent blank. LOQ
was calculated as a sum of mean blank and 10·SD of reagent blank (SD is the standard
deviation).
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Table 1. Precision and accuracy for cathepsin S determination (n = 24) with the use of different slide
types.

Glass slide/Au

cadded
ng·mL−1

cfound
ng·mL−1

SD
ng·mL−1

Recovery
%

RSD
%

0.1 0.113 0.0387 113.4 34.1

0.5 0.529 0.0449 105.9 8.5

1.0 0.981 0.0852 98.1 8.7

LOD = 0.034 ng·mL−1

LOQ = 0.113 ng·mL−1

Glass slide/Ag–Au

cadded
ng·mL−1

cfound
ng·mL−1

SD
ng·mL−1

Recovery
%

RSD
%

0.05 0.052 0.0076 104.3 14.5

0.1 0.097 0.0088 97.1 9.1

0.5 0.507 0.0592 101.5 11.7

LOD = 0.031 ng·mL−1

LOQ = 0.093 ng·mL−1

4. Discussion

Bimetallic Ag–Au SPR systems with layer thicknesses similar to those applied in this
study have been described in [30,43]. A high degree of consistency of results was obtained
between the numerical model and experimental SPR results for the single- and bimetallic
system of Au and Ag–Au layers (Figure 2). The details of the surface morphology of Ag–Au
system of layers and its fracture, presented in Figure 3a,b, as well as the cross-sectional
profile presented in Figure 5, indicate that the constant thickness values of individual
layers adopted in modeling should be treated as mean values. Fine, convex, oval-shaped
forms with transverse linear dimensions on the order of 10 to several dozen nanometers are
dominant in the surface structure. An image of structures of a similar nature can be seen
on the surface of the single Au layer (Figure 3c); however, they are finer, and the surface
is smoother. General conclusions from SEM observations are confirmed by the results of
AFM measurements (Figure 4a,b). RMS roughness values determined for the profiles from
Figure 5 amounted to 2.12 nm and 0.15 nm, respectively, for Ag–Au and Au layers.

A characteristic feature arising from the comparison of both sensors’ calibration curves
(Figure 6) is the similar level of Au and Ag–Au biosensors’ sensitivity in the linear range,
indicated by the similar slope of the curves, where the signal of the Ag–Au sensor is
at a level several times greater. Immobilization of cathepsin S receptors was performed
identically on the Au surface of both sensor types; hence, the chemical characteristics of
the sensing surface should be very similar in both sensors. The presence of differences
between the calibration curves of the biosensors should therefore be ascribed to other types
of characteristics of the Au and Ag–Au metallic layers.

The high goodness of fit of SPR curve modeling results to experimental results of
reflectance measurement of the Ag–Au layer (Figure 2) suggests the possibility of using
the SPR model to estimate sensitivity SRI—the first component of sensitivity Sic from
Equation (2) for the bimetallic layer, with the application of Winspall software. The good
fit of the model’s results to the experiment indicates that the relative complex electric
permittivity εAg and εAu values used in the model account for losses present under the
conditions of the conducted SPR measurement. These losses result from, among other
things, the level of roughness of the metallic surface [44]. Hence, for a surface with a greater
roughness, the value of the imaginary component εAg

′′ of the electric permittivity of Ag is
slightly higher than that found in the literature for smoother silver surfaces [45]. It also
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seems that the Au sensor can be modeled in a similar fashion, and the results can be used
for the analysis of its sensitivity.

Sensitivity SRI (for both Ag–Au and Au layers) was defined as the value of the quotient
∆Y/∆n within the range of small values of increment ∆n Equation (2). The output signal
Y = A·∆R was adopted as proportional to the increment of reflectance ∆R, determined for a
constant value of angle θi_0, selected in the linear part of the SPR curve with a large slope,
so that angle θi_0 corresponded to the reflectance value R = 0.1 at ∆R = 0 (Figure 7). The
constant factor A was introduced in order to account for the 16-bit representation of the
reading result (expressed in a.u.) indicated by the detector of the Kretschmann measuring
system during the plotting of calibration curves (Figure 6). The value ∆n = 0.0025 was
adopted so that the ∆R value corresponded to the maximum change of reflectance of the
cathepsin S biosensor. It was assumed that changes of refractive index n occur in the
near-surface layer of the medium with relative permittivity ε3, adjoining the metallic layer
(Figure 1). The thickness of this medium’s layer, equal to 100 nm, was accepted as the typical
distance from the metal–dielectric boundary, on which the evanescent electromagnetic field
has a relatively high intensity [43]. Figure 7 provides a graphical representation of position
changes of the minimums of SPR curves plotted for Ag–Au and Au layers as a result of the
increase of the refractive index by ∆n, resulting in reflectance changes ∆RAg_Au and ∆RAu.
Based on simulations conducted for ∆n = 0.0025, reflectance increments of ∆RAg_Au = 0.153
and ∆RAu = 0.072 were obtained (Figure 7). Using the general relationship SRI = A·∆R/∆n,
described above, the value of SRI_Ag_Au = A·61.2 RIU−1 was determined for the Ag–Au
layer and SRI_Au = A·28.8 RIU−1 for the Au layer. These components of sensitivity accept,
in approximation, a constant value (SRI_Ag_Au = const and SRI_Au = const) within the range
of refractive index changes ∆n from 0 to 0.0025, and hence, within the entire range of
changes of analyte concentration c, with which refractive index n is related by function n(c).
The ratio of sensitivities takes the value SRI_Ag_Au/SRI_Au = 2.1.
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and Au model curves were fitted.

Using the determined SRI_Ag_Au, SRI_Au values, and biosensor calibration curves
(Figure 6), it is possible to draw conclusions as to the mutual relationships between sen-
sitivities Snc_Ag_Au = ∂nAg_Au/∂c and Snc_Au = ∂nAu/∂c for sensors of both types. Using
Equation (2) and the determinations given in Figure 6, the following dependencies can be
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written for concentration c within the range from 0 to c1 (analyte concentration interval I in
Figure 6):

YAg_Au_1 =

c1∫
0

SRI_Ag_Au

(
∂nAg_Au

∂c

)
I
dc (3)

YAu_1 =

c1∫
0

SRI_Au

(
∂nAu

∂c

)
I
dc (4)

where the expressions in parentheses denote sensitivities Snc_i = ∂ni/∂c, in the general
case of a non-linear characteristic, of individual biosensors within interval I. Substituting
the non-linear characteristics Snc_i of Ag–Au and Au sensors within interval I with their
average, constant values Snc_i, it can be written, based on (3) and (4), that:

YAg_Au_1 = SRI_Ag_AuSnc_Ag_Au_I
c1 (5)

YAu_1 = SRI_AuS
nc_Au_I

c1 (6)

Using (5) and (6) as well as the previously determined values of SRI_Ag_Au, SRI_Au, and
the numerical values from Figure 6, it is possible to determine the mutual, quantitative
relationship between the average sensitivities Snc_i of both types of sensors within interval I:

Snc_Ag_Au_I

Snc_Au_I

=
YAg_Au_1

YAu_1

SRI_Au

SRI_Ag_Au
= 1.4 (7)

Dependencies within the interval from c1 do c2 (analyte concentration c interval II in
Figure 6) can be written analogously:

YAg_Au_2 = YAg_Au_1 +

c2∫
c1

SRI_Ag_Au

(
∂nAg_Au

∂c

)
II

dc (8)

YAu_2 = YAu_1 +

c2∫
c1

SRI_Au

(
∂nAu

∂c

)
II

dc (9)

Adopting approximations analogously to those adopted in interval I, we obtain, in
interval II:

Snc_Ag_Au_II

Snc_Au_II

=
(YAg_Au_2 − YAg_Au_1)

(YAu_2 − YAu_1)

SRI_Au

SRI_Ag_Au
= 0.5 (10)

The results obtained indicate that, for very low analyte concentrations (interval I), the
mean sensitivity Snc of the Ag–Au sensor is nearly half higher than the sensitivity of the
Au sensor Equation (7). In turn, for concentration c corresponding to the linear range of
both biosensors’ calibration curves (interval II), sensitivity Snc of the Ag–Au sensor is on
the order of half of the sensitivity of the Au sensor Equation (10).

Preparation and immobilization of bioreceptors were realized in the same manner on
the Au surfaces of both sensors. Nevertheless, as demonstrated above, the sensitivities
Snc_i of both sensors differ. It is important to explain the reasons for the above-described
differences. The factor fundamentally influencing the value of sensitivity Snc is, in the
general case, the efficiency of chemical interaction of the sensing surface (with deposited
bioreceptors) with analyte molecules. Higher efficiency is expressed by a greater increment
of the number of analyte-bioreceptor pairs, and in effect, by a greater change ∆n of refractive
index n at a specific level of changes of concentration c of analyte molecules in the layer of
the solution coming into contact with the sensing surface.
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In search of the causes of these differences and comparing the cross-sectional profiles of
the surfaces in Figure 5, one can perceive distinct differences in the geometric characteristics
of both sensors’ surfaces. Surface roughness parameters are usually linked to sensor
performance [44]. As shown above, the influence of roughness of the Ag–Au layer was
already accounted for in the component of sensitivity SRI through a slightly higher value of
the imaginary component of relative electric permittivity of Ag. It seems that Snc sensitivity
can be linked to another aspect of the geometric characteristics of the sensing surface. It
seems that convex fragments of the surface (Figure 8) with a positive sign of radius of
curvature r and those more deeply immersed in the tested solution, with the bioreceptors
located on the surface, will more intensively bond with analyte molecules in comparison
to concave fragments of the surface in depressions. The local “expansion” of the convex
surface fragments and the geometric arrangement of receptors associated with it should
facilitate bonding with analyte molecules. In addition, the diffusive nature of transport of
these molecules, occurring in the direction of negative values of the z coordinate, fosters
adsorption of the analyte at the highest points on the surface, where the concentration
of analyte molecules available for reaction is the greatest during the active phase of the
biosensor’s operation. Therefore, these fragments of the surface should be characterized
by a higher increment value of refractive index n, arising from the greater increment of
the density of adsorbed analyte molecules as concentration c increases, and thus, by a
greater value of sensitivity Snc than the sensitivity of concave areas (r < 0) with a lower z
coordinate.
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In order to account for the geometric features of Ag–Au sensor surface described
above, a description of the surface was proposed, involving the determination of the ratio
∆Sxy/Sxy of the projection of the surface ∆Sxy above the z∆S coordinate to the projection
of area Sxy of the entire sensing surface (Figure 9) onto the xy plane. The results of AFM
measurements (Figure 4a) were used for calculations. It was accepted that the z coordinate
is equal to 0 for the lowest point on the surface. Moving from the highest peak on the
surface zmax in the direction of decreasing z values, increment ∆Sxy first encompasses the
areas most deeply immersed in the analyte, mostly having a positive sign of radius of
curvature r (which can be concluded from Figure 5), and therefore, with a postulated high
value of Snc. Graph of ∆Sxy/Sxy(z) in Figure 9, shows that for the Ag–Au sensor, the share
∆Sxy/Sxy of fragments of the surface with a high z coordinate (and therefore high Snc value)
is very low. Thus, as the analyte’s concentration grows, starting from the value of c = 0 in
analyte concentration interval I, bioreceptor–analyte pairs will be formed with the greatest
intensity in relatively few sites with a high z coordinate and Snc value Equation (7). As
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concentration c reaches values in interval II, these sites will quickly be depleted in terms of
reactive capacity. Next, the remaining, substantially larger sensing surface, characterized
by lower values of z coordinate and sensitivity Snc, will take part in the adsorption process.
For the significantly smoother surface of the Au sensor, it should be expected that the mean
Snc will be greater than for the Ag–Au sensor within the linear range in interval II Equation
(10).
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It can be observed that the presented description corresponds to the characteristics of
both sensors’ calibration curves. The higher level of the Ag–Au sensor signal results from
the higher values of both sensitivity components (SRI and Snc) in relation to the Au sensor
in analyte concentration interval I Equations (5) and (6). In interval II, the products SRI·Snc
of both sensors have similar values, so the calibration curves have a similar slope despite
the different signal levels.

At the same time, the higher signal values of the Ag–Au sensor result in a lower noise
level of this sensor at the same intensity of the measuring beam during the operation of
both types of sensors. Therefore, the Ag–Au sensor should be characterized by greater
measuring resolution and a lower limit of detection value in comparison with the Au
sensor. A comparison of the LOD and LOQ values of both sensors (Table 1) confirms these
dependencies.

5. Conclusions

It follows from the above discussion that increasing the value of the ∆Sxy/Sxy expres-
sion for convex areas of the sensory surface with a high z coordinate should result in an
increase in the Snc sensitivity component, and thus the overall sensitivity Sic of the sensor
for low analyte concentrations. The shape of the sensory surface should then take the
form of, for example, a dense matrix of convex vertices with the same high z coordinate.
Such a proposal is a new idea. Controlled preparation of surface relief structures with
such characteristics is a potentially difficult task. The actions taken so far in the design of
sensors are aimed rather at obtaining the smoothest sensory surface possible. Testing this
hypothesis could be a future research task. It is worth noting that the advantages of surfaces
with a higher roughness level have been demonstrated, for example, when optimizing
the surface chemistry of impedimetric biosensors [46]. Nevertheless, the issues related
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to the greater degree of complexity of the production of bimetallic structures, affecting
their production costs, the potentially higher susceptibility to oxidation of the Ag–Au
bimetallic sensory layer, and the related storage requirements, require further research in
order to optimize their properties. The presented hypothesis does not cover other factors
that could have a potential influence on the characteristics of calibration curves, e.g., the
effect of position change of the SPR curve’s minimum caused by the dissolution of certain
ingredients present in the sensing zone in the buffer. Determination of the occurrence of
these additional effects requires further research.
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