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Abstract: Isothiocyanates (ITCs) are important functional components of cruciferous vegetables.
The principal isothiocyanate molecule in broccoli is sulforaphane (SFN), followed by erucin (ERN).
They are sensitive to changes in temperature, especially high temperature environments where they
are prone to degradation. The present study investigates the effects of high hydrostatic pressure on
isothiocyanate content, myrosinase activity, and other functional components of broccoli, and evaluates
its anti-inflammatory and antioxidant effects. Broccoli samples were treated with different pressures
and for varying treatment times; 15 min at 400 MPa generated the highest amounts of isothiocyanates.
The content of flavonoids and vitamin C were not affected by the high-pressure processing strategy,
whereas total phenolic content (TPC) exhibited an increasing tendency with increasing pressure,
indicating that high-pressure processing effectively prevents the loss of the heat-sensitive components
and enhances the nutritional content. The activity of myrosinase (MYR) increased after high-pressure
processing, indicating that the increase in isothiocyanate content is related to the stimulation of
myrosinase activity by high-pressure processing. In other key enzymes, the ascorbate peroxidase (APX)
activity was unaffected by high pressure, whereas peroxidase (POD) and polyphenol oxidase (PPO)
activity exhibited a 1.54-fold increase after high-pressure processing, indicating that high pressures
can effectively destroy oxidases and maintain food quality. With regards to efficacy evaluation,
NO production was inhibited and the expression levels of inducible nitric oxide synthase (iNOS) and
Cyclooxygenase-2 (COX-2) were decreased in broccoli treated with high pressures, whereas the cell
viability remained unaffected. The efficacy was more significant when the concentration of SFN was
60 mg·mL−1. In addition, at 10 mg·mL−1 SFN, the reduced/oxidized glutathione (GSH/GSSG) ratio
in inflammatory macrophages increased from 5.99 to 9.41. In conclusion, high-pressure processing can
increase the isothiocyanate content in broccoli, and has anti-inflammatory and anti-oxidant effects in
cell-based evaluation strategies, providing a potential treatment strategy for raw materials or additives
used in healthy foods.

Keywords: high hydrostatic pressure; broccoli; Isothiocyanates; sulforaphane; erucin; anti-inflammatory;
antioxidant

1. Introduction

Brassica oleracea var. italica (broccoli) is a vegetable widely consumed worldwide. It is
derived from genetic mutations and the evolution of wild cabbage, and is a cultivar of Bras-
sica oleracea, which belongs to the family Brassicaceae together with cabbage, gai lan, and
cauliflower. Broccoli is rich in a variety of nutrients, including vitamin A, vitamin C, dietary
fibers, and isothiocyanates. Among these, isothiocyanates are formed primarily through
hydrolysis of glucosinolates by the enzyme myrosinase, and are the most representative func-
tional component in cruciferous vegetables. They can inhibit the proliferation, development,
and metastasis of cancer cells, regulate the production of inflammation-related factors, and
enhance the expression of antioxidant-related proteins [1–4]. The most abundant isothiocyanate
molecule found in broccoli is sulforaphane, followed by erucic acid [5].
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Myrosinases and glucosinolates not only comprise the isothiocyanate production system
in plants but also act as a chemical defense mechanism. Under normal circumstances, the
myrosinase enzyme is in an inactive state and the glucosinolates are stored in plants in
a precursor form since these two are spatially separated. When attacked by herbivores,
insects, or microorganisms, the cells are destroyed, releasing these enzymes and glucosinolate
molecules, which then interact to produce the biologically active isothiocyanates, nitriles,
and thiocyanates, such as, sulforaphanes [5,6]. The degree of myrosinase hydrolysis and
the types of products formed are strongly affected by environmental changes, including the
substrates and cofactors of myrosinase, the presence of specific proteins, pH, stress, carbon
dioxide concentration, and temperature. When the pH of the hydrolysis environment is
slightly acidic or neutral, the principal product produced are isothiocyanates, whereas under
acidic conditions (pH < 3) or in the presence of iron or epithiospecifier protein (ESP), nitriles
are produced instead, which, unlike the isothiocyanates, have no physiological effects [5,7,8].

The inflammatory response is the natural defense mechanism activated by the body
when subjected to noxious stimuli. A proper inflammatory response not only protects the
human body from injuries to tissues and microbial invasion, but also increases the ability
of tissues and cells to restore stability and enhance the immune system [9,10]. During the
inflammatory response processes, inflammation-related factors are activated to promote
the production of inflammatory mediators (e.g., TNF-α and IL-6). Some inflammatory
mediators may drive blood vessels to be remodeled during inflammation [11]. The oxida-
tive stress leads to large amounts of reactive oxygen species (ROS) being produced [12].
In addition, cells and tissues absorb more oxygen due to swelling, leading to gradual
accumulation of ROS. Inflammation and oxidative stress increase the likelihood of injury or
pathology to tissues and cells, which can lead to immune-related diseases such as cancers
and multiple sclerosis (neurodegenerative diseases) [13].

High-pressure processing (HPP), which is also known as high hydrostatic pressure
(HHP) processing or ultra-high pressure (UHP) processing, is a non-thermal processing
technology that has undergone rapid development in recent years. Its mechanism of ac-
tion is primarily based on the use of liquids as a pressure transmission medium. Food
processing under high-pressure environments at appropriate temperatures and times can
inactivate microorganisms and enzymes, thereby achieving sterilization, prolonging shelf
life, and reducing the use of chemical preservatives. When compared to traditional thermal
processing strategies, this technique can do a much better job in preserving nutrients, flavor,
appearance, and texture without any heat treatment [14–16]. Since isothiocyanates and
their production systems are easily damaged in high-temperature environments, many
studies have investigated this problem by using high-pressure techniques to treat crucif-
erous crops, and have noticed that not only was the isothiocyanate content retained, but
there was also a tendency of improvement in the content [8,17–19]. Current research in
this topic is focused on investigating cruciferous crops, such as samples of cabbage or
broccoli sprouts, and the efficacy evaluation is based primarily on purified isothiocyanates.
In this study, the No. 42 broccoli grown commercially in Taiwan was selected as the sam-
ple for processing under different high-pressure conditions to investigate the effects of
high-pressure processing techniques on the changes in isothiocyanate content, myrosinase
activity, and other functional components in broccoli, and also to develop the optimal
processing conditions, to analyze the mechanisms behind these changes, and to evaluate
efficacy through cell-based experiments.

2. Materials and Methods
2.1. Materials/Processing

Fresh broccoli was purchased from Erlun Produce Cooperative, Yunlin County, Taiwan.
The broccoli was cleaned and was cut into 2-cm pieces under the florets, and equal amounts
of broccoli was divided into several clean airtight bags and vacuum-sealed. The bags were
then randomly divided into two groups: control group and high-pressure group. The high-
pressure group was further subdivided into 9 batches based on the applied pressure and
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the incubation time, namely 200 MPa (3, 10, 15 min), 400 MPa (3, 10, 15 min), and 600 MPa
(3, 10, 15 min). The high-pressure groups were placed into an HPP600 MPa/6.2 L (Bao Tou
KeFa High Pressure Technology Co. Ltd., Inner Mongolia, Baotou, China) high-pressure
apparatus for high-pressure treatment, and then allowed to stand at room temperature for
1 h to allow the myrosinase enzyme and glucosinolates to react with each other [18]. The
broccoli samples were blanched in boiling water for 1 min to inactivate the polyphenol
oxidase (PPO) and Peroxidase (POD) activities to reduce the browning reaction, to retain
the highest commercial values. After cooling, the broccoli was freeze-dried and ground
using a food processor. This was followed by filtration through a mesh and the powder
was stored at −20 ◦C for use in subsequent analyses.

2.2. Extraction and High Performance Liquid Chromatography (HPLC) Analysis of Isothiocyanates

2.2.1. Preparation of the Extract

The isothiocyanate extraction process was performed as described previously by
Hwang and Lim (2014) [12]. A total of 0.5 g of broccoli powder was added to a 6 mL
solution of 80% methanol (Macron Fine Chemicals, Center Valley, PA, USA) and the
extraction process was performed with constant shaking at 1260 rpm for 1 h, followed
by centrifugation at 10,000× g and 4 ◦C for 20 min. The supernatant was collected and
the precipitate was resuspended with the same volume of 80% methanol, followed by
extraction and centrifugation under the same conditions. The two supernatants were
combined as a crude isothiocyanate extract and stored at −20 ◦C.

2.2.2. HPLC

The analysis was performed as described by You et al. (2008) [20], with modifications.
The analytical instrument used for this process was a WatersTM 600 series Controller
pump with a Waters 717 Plus Autosampler and SPD-20AV UV-VIS detector (Shimazu Co.,
Kyoto, Japan). A C18 reversed-phase chromatography column (Zorbax Eclipse XDB C-18,
4.6 × 150 mm) was used for the separation. The detection wavelength was set to 241 nm,
and the sample injection volume was set to 20 µL. Water and methanol were used as the
HPLC mobile phases. Initial conditions consisted of 10% methanol, followed by a linear
increase to 90% methanol at 40 min, reduced to 10% at the end of the 50 min analysis time,
and the column was then equilibrated at 10% methanol for 10 min. The mobile phase flow
rate was kept at 1 mL·min−1.

2.3. Chemical Characterization
2.3.1. Polyphenol Determination

The Folin–Ciocalteu reagent (Sigma Chemical Inc., St. Louis, MO, USA) was used to
determine the content of the phenolic compounds in broccoli. A total of 0.1 g of broccoli
powder was taken and suspended in 3 mL of an 80% methanol solution and the extraction
process was performed for 1 h, followed by centrifugation of the homogenate at 10,000× g
and 4 ◦C for 20 min. The supernatant was collected, and the precipitate underwent an
extraction process for a second time in the same manner as described above. The two
supernatants were combined and used as the crude extract. A total of 60 µL of extract
and 60 µL of Folin–Ciocalteu reagent were mixed with 480 µL of water and was placed
in the dark and allowed to react for 90 min. The change in absorbance was measured at a
wavelength of 760 nm. The concentration of the TPC is expressed in GAE mg·g−1. Gallic
acid (Sigma Chemical Inc., St. Louis, MO, USA) was used as a standard for plotting the
standard curve [21].

2.3.2. Flavonoid Determination

The sample extraction was performed, as described above, for the flavonoid content
determination. The supernatants of the two extractions were combined and used as the
crude extract. A total of 150 µL of the extract was dissolved in 450 µL 95% ethanol, a
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30 µL 10% aluminum chloride solution (AlCl3) (Thermo Fisher Scientific Inc., Waltham,
MA, USA), 30 µL potassium acetate (Merck KGaA, Darmstadt, DA, Germany), and 840 µL
water, and allowed to react at 25 ◦C for 30 min. Then, the change in absorbance was
measured at a wavelength of 415 nm. The standard curve was plotted using quercetin as a
standard, and the concentration is expressed as QuE mg·g−1 [22].

2.3.3. Vitamin C Determination

A total of 0.05 g broccoli powder was dissolved in 0.95 µL ddH2O (double-distilled
H2O) to yield a 20-fold diluted solution. A reflectometer (Merck KGaA, Darmstadt, Ger-
many) along with its Ascorbinsaure-test (Reflectoquant®116981) was used to determine
the content of vitamin C in the solution. The concentration is expressed as mg·g−1.

2.4. Enzyme Activity Assays
2.4.1. Myrosinase Activity

The experimental method followed is performed as described by Yuan et al. (2010) [23],
Li et al. (2008) [24], and Zhao et al. (2008) [25], with slight modifications. A total of 0.05 g of
broccoli powder was dissolved in 0.45 g of water, and then 1.8 mL of MES buffer (50 mM,
pH 6.0) was added and the mixture was extracted with shaking for 5 min and centrifuged
at 10,000× g and 4 ◦C for 10 min, and the supernatant was collected. A total of 100 µL
of 1 mM glucoraphanin (USBiological Inc., Salem, MA, USA) was mixed with 20 µL of
supernatant and allowed to react at 40–60 ◦C for 15 min. Then, 240 µL of DNS reagent
(Sigma Aldrich Inc., St. Louis, MO, USA) was added and the reaction was carried out at
100 ◦C for 5 min, and then immediately cooled by placing it in an ice bath. After cooling to
room temperature, 720 µL of water was added and mixed well, and a spectrophotometer
was used to measure absorbance change at a wavelength of 540 nm. A standard curve was
made using glucose solution as standard and the concentration was expressed as µmol
glucose (Sigma Aldrich Inc., St. Louis, MO, USA) produced per min (µmol·g−1·min−1).

2.4.2. Ascorbate Peroxidase (APX) Activity

The APX activity measurements were performed as described by Chen and Liu
(2012) [26], with slight modifications. A total of 10 mL extraction solvent (containing
100 mM KH2PO4 (J.T. Baker Chemical Inc., Oklahoma, PA, USA), pH 7.8; 1% Triton X-
100 (Sigma Chemical Inc., St. Louis, MO, USA); 1 mM EDTA-Na2 (Sigma Chemical Inc.,
St. Louis, MO, USA) was added to 0.5 g broccoli powder and the mixture was centrifuged at
10,000× g and 4 ◦C for 20 min. Then, the supernatant was collected, with the enzyme extract
at 0.047–0.077 mg/g protein, and the protein content was determined by the Bradford
method, with the standard curves prepared using BSA. A 0.5 mL KH2PO4 (250 mM, pH 7),
0.05 mL EDTA-Na2 (0.5 mM), 0.2 mL H2O2 (10 mM), 0.2 mL ascorbic acid (Honeywell
Riedel-de Haen, Seelze, Germany), and 0.05 mL enzyme extract was sequentially added to
the quartz tube, and the changes in absorbance were measured immediately after mixing at
a wavelength of 290 nm within 5 min. The APX activity was calculated using the extinction
coefficient of H2O2 (2.8 mM−1 cm−1) and the enzyme activity was expressed in units of
mmol ascorbate min−1 mg−1 protein.

2.4.3. Peroxidase (POD) and Polyphenol Oxidase (PPO) Activities

The enzymatic activities of these two enzymes were determined as described by Yang
(2016) [27], with slight modifications. A total of 0.5 g of broccoli powder was added to 10 mL
of a 0.2 M sodium phosphate buffer solution (pH 6.5) containing 1% PVPP (Sigma Chemical
Inc., St. Louis, MO, USA), mixed well; the extraction was conducted by continuous shaking
for 5 min, followed by centrifugation at 4 ◦C and 10,000× g for 20 min. The supernatant
was collected and used as the enzyme extract. Peroxidase activity was determined by
mixing 25 µL of the extract with 2.7 mL of a sodium phosphate buffer (pH 6.5), 200 µL
of 1% p-phenylenediamine (Sigma Chemical Inc., St. Louis, MO, USA), and 100 µL of
1.5% hydrogen peroxide (Honeywell Riedel-de Haen, Seelze, Germany), measuring the
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absorbance at a wavelength of 485 nm every min for 10 min. Polyphenol oxidase activity
was determined by mixing 100 µL of the enzyme extract and 3 mL of 0.15 M catechin
(Sigma Chemical Inc., St. Louis, MO, USA), measuring the change in absorbance at a
wavelength of 420 nm every min for 10 min. The activity of the two enzymes is expressed
in the units of absorbance change per min (∆A·min−1).

2.5. Cell Culture

RAW264.7 mouse macrophages were purchased from the Bioresources Collection
and Research Center (BCRC) of the Food Industry Research and Development Institute
(Hsinchu, Taiwan). The cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
(Thermo Fisher Scientific Inc., Waltham, MA, USA), containing 10% fetal bovine serum
(FBS) (Thermo Fisher Scientific Inc., Waltham, MA, USA) and NaHCO3 (Merck KGaA,
Darmstadt, Germany), and placed in a 37 ◦C incubator containing 5% carbon dioxide (CO2)
for growth.

2.6. Cell Viability Assay

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTS) assay is a
method for evaluating the toxicity of target substances to cells. Cells were seeded in a
96-well plate at 1 × 104 cells per well (cells·mL−1), allowed to grow for a day, and then
were treated with LPS (2 µg·mL−1) and the broccoli extract and allowed to react for a
further 24 h. The medium was then changed and CellTiter 96® AQueous (Promega Co.,
Madison, WI, USA) One Solution was added, followed by the incubation of the cells for
1 h. Then, the change in absorbance was measured at a wavelength of 490 nm.

2.7. Measurement of Nitric Oxide (NO) Production

NO production was indirectly assessed by measuring the nitrite levels in the cultured
media and serum determined by a colorimetric method based on the Griess reagent (Bio-
Vision, Milpitas, CA, USA). Briefly, the cells were seeded in a 24-well plate at 1 × 105 cells
per well (cells·mL−1). After culturing for 24 h, the positive control group and the treatment
group were first activated with LPS and treated with DMEM (Thermo Fisher Scientific
Inc., Waltham, MA, USA) or the broccoli extract. The cells that were not activated with
LPS for 24 h served as the control group. A total of 100 µL of cell culture medium was
added to a 96-well plate and a similar volume of Griess reagent was added. The mixture
was allowed to react at room temperature for 10 min, and the absorbance was measured at
a wavelength of 550 nm. NaNO2 (Sigma Chemical Inc., St. Louis, Louis, MO, USA) was
used as a standard to plot a standard curve, and the inhibitory effect was expressed as a
percentage.

2.8. Measurement of PGE2 Content

Cells were seeded in a 24-well plate at 1 × 105 (cells·mL−1) cells per well, and allowed to
grow for 24 h. The medium was changed and LPS and the broccoli extract (5, 10, 20, 40, and
60 ppm) were added and allowed to react for a further 24 h. The Prostaglandin E2 ELISA Kit
(Cayman Co., Ann Arbor, MI, USA) commercial kit was used to determine the PGE2 content
of the RAW264.7 macrophage supernatants, as per the manufacturer’s instructions.

2.9. Expression Levels of iNOS and COX-2
2.9.1. Total Cellular RNA Extraction

RAW264.7 macrophages were seeded onto a 24-well plate and cultured for 24 h. The
medium was removed, and the samples were treated with different concentrations (5, 10, 20,
40, and 60 ppm) of broccoli extract for one day, depending on the experimental treatment,
and washed twice with 1 × PBS. An appropriate amount of Trypsin-EDTA was added to
detach the cells, and the cells were collected in a microcentrifuge tube and centrifuged at
500× g for 5 min. The supernatant was removed, and 1-thioglycerol/homogenization solu-
tion and lysis buffer were sequentially added to the cell suspension as per the instructions
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of the Maxwell® RSC simplyRNA Cells Kit (Promega Co., Madison, WI, USA). Total RNA
was extracted using the Maxwell® RSC Instrument.

2.9.2. RT-PCR Analysis

Extracted RNA was reverse transcribed into cDNA using GoScriptTM Reverse Tran-
scription Mix (Promega Co.„ Madison, WI, USA) and oligo (dT) primers, and then PCR
was performed using GoTaq® Green Master Mix (Promega Co., Madison, WI, USA). The
resulting product was subjected to gel electrophoresis in 1% agarose (Amresco Inc., Solon
Ind. Pkwy., Solon, OH, USA) and 0.003% HealthyView nucleic acid stain (Genomics, Taipei,
Taiwan) for analyzing the size of the specific fragments, and GeneTools 4.3.7 software was
used to quantify and compare the fragments in the gel. The following primers were used:
iNOS forward, 5′-AAT GGC AAC ATC AGG TCG GCC ATC ACT-3′, reverse, 5′-GCT GTG
TGT CAC AGA AGT CTC GAA CTC-3′; COX-2 forward, 5′-GGA GAG ACT ATC AAG
ATA GT-3′, reverse, 5′-ATG GTC AGT AGA CTT TTA CA-3′; β-actin forward, 5′-TCA TGA
AGT GTG ACG TTG ACA TCC GT-3′, reverse, 5′-CCT AGA AGC ATT TGC GGT GCA
CGA TG-3′ (Mission biotech, Taipei, Taiwan).

2.9.3. GSH/GSSG Ratio

The GSH/GSSG-Glo™ assay (Promega Co., Madison, WI, USA) was used to measure
the ratio. RAW264.7 cells were cultured in a 96-well plate containing a medium. After
3 h, the old medium was removed, and either DMEM (control group), 2 µg·mL−1 LPS
(positive control group), or broccoli extract with different concentrations of SFN were
added, and the cells were cultured for 20 h. Total glutathione reagent (50 µL·well−1) or
oxidized glutathione reagent (50 µL·well−1) was added to each well and shaken for 5 min.
In addition, the glutathione standard was diluted into 8 different concentrations by a
2-fold serial dilution method, and the total glutathione reagent (50 µL·well−1) was added.
Luciferin generation reagent (50 µL·well−1) was added to each treatment group and the
standard group and mixed well and incubated at room temperature for 30 min. Next, the
luciferin detection reagent (100 µL·well−1) was added and allowed to stand for 15 min,
and the luminescence was measured (integration time = 0.3 s). The GSH/GSSG ratio is
calculated as follows: ratio GSH/GSSG treated = (µM total glutathione treated – (µM GSSG
treated × 2))/µM GSSG treated.

2.9.4. Statistical Analyses

XLSTAT statistical software was used for analysis of variance (ANOVA). Differences in
the means between the groups of data were analyzed using Tukey’s test (Tukey’s Honestly
Significant Difference Test, Tukey’s HSD). The significance level was kept at p < 0.05.
Statistical results are expressed in lowercase English letters. Two sets of data marked
with completely different letters indicate a statistically significant difference; duplicate or
identical letters indicate a lack of a statistically significant difference between the data.

3. Results and Discussion

The calibration curves of sulforaphane (SFN) and erucin (ERN) were established by
HPLC analysis. The R2 value of SFN and ERN was 0.9994 and 0.9998, respectively, and
the elution time was 16 min and 35 min, respectively. Figure 1 displays the SFN and ERN
metabolite content of broccoli treated under different conditions. In the untreated broccoli
samples, the SFN content was measured to be 35.59 mg·100 g−1, and the ERN content
was 10.30 ± 0.21 mg·100 g−1. After microwave and hot water treatment, the content is
significantly reduced by at least 70%. However, in the high-pressure treatment group, the
SFN content increased significantly when the pressure range was kept between 200 and
400 MPa and increased with increasing pressures and treatment times. The highest content
was achieved in the group that underwent treatment at 400 MPa for 15 min, obtaining
the highest SFN content of 154.79 ± 7.64 mg·100 g−1. When the pressure was increased
to 600 MPa, the SFN content decreased. Similarly, the highest ERN content was achieved
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in the group with treatment at 400 MPa for 15 min, obtaining the highest ERN content
of 109.86 ± 7.45 mg·100 g−1. When the pressure was increased to 600 MPa, there was a
significant decrease in ERN content as the treatment time was increased.
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Both SFN and ERN are isothiocyanates that are primarily produced by the glucosinolates–
myrosinase system. According to the literature, hot water soaks into cruciferous crops dur-
ing the cooking process, resulting in a 90% loss in glucosinolate and isothiocyanate content.
Microwave treatment also destroys myrosinase activity, which prevents glucosinolates
from being converted into isothiocyanate and lowers their content [28,29]. In the present
study, broccoli was treated with a non-thermal, high hydrostatic pressure of 400 MPa
for 15 min. The contents of both the isothiocyanates, SFN and ERN, in the broccoli were
significantly increased, but their content decreased when the pressure reached 600 MPa.
A study by Westphal et al. (2017) [5] indicated that an increase in pressure can promote
the disintegration of plant cell structures, releasing large quantities of myrosinase, which
then interacts with the glucosinolates to increase the isothiocyanate content. A study by
Eylen et al. (2009) [17] showed that myrosinase enzyme begins to inactivate with increasing
pressures. The rate of myrosinase inactivation increases when the pressure is increased
over 500 MPa, which reduces the amount of isothiocyanate produced.

All data are presented as the mean ± SD (n = 3). The same symbols, noted as a
superscript after the letter, means that the ANOVA performed is in the same group. Bars
carrying different letters are statistically different (p < 0.05).

Figure 2 indicates the changes in the functional components of broccoli after high-
pressure treatment. TPC is the most significant component before and after high-pressure
treatment. The initial TPC of broccoli was 4.73 ± 0.23 GAE mg·g−1. After high-pressure
treatment, the content increased to 7.28 ± 0.26 GAE mg·g−1, an increase of about 1.5-fold.
The content of flavonoids and vitamin C were not significantly altered after high-pressure
treatment, indicating that high-pressure processing can result in better nutrient retention in
foods. Vinicio et al. (2017) [30] reviewed numerous kinetic studies reporting the HPP effects
of phytochemicals focused on microstructural changes and found the effects of HPP on the
concentration of phenolic compounds are not clear and may either increase, decrease, or
not be affected by HPP. This might be due to the large and complex phenolics family that
exists in many forms in plants, some found as soluble conjugated glycosides, and some
found as insoluble forms typically bound to structural components of the polysaccharides
or proteins of the cell wall [31,32]. Different forms of phenolic compounds may react
differently under high-pressure treatments. Disruption of the cellular structure causes the
compartments to release their contents, and the disassociation of the phenolic compounds
from the bound polysaccharides or proteins is generally hypothesized to play a major role.
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However, the mechanisms by which phytochemicals are released from plant cells remain
mostly unknown [30]. Liu et al. (2020) [33] reviewed the current state of knowledge on the
internal factors that influence cell wall polysaccharides and polyphenol interactions. In that
article, many advanced instrumental analysis methods (ITC, TSC, DLS, NTA, NIR, NMR,
CLSM, etc.) were also introduced for the discovery of the exact interaction mechanism,
through studies of their morphology, chemical composition, and molecular architecture.
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Hence, the content of flavonoids and vitamin C were not significantly altered by the
high-pressure treatment of broccoli, whereas TPC increased, indicating that a high hydro-
static pressure is effective in maintaining the heat-sensitive components. Comparisons
based on the contents of vitamin C and isothiocyanates showed that these two functional
components exhibited different tendencies, suggesting that the increase in isothiocyanate
content could be unrelated to vitamin C levels. The results of the present study are similar
to those of a study by Prasad et al. (2009) [34], in which high pressures were used to
extract these components from longan peels. Since high-pressure treatments can disrupt
the hydrophobic bonds in the cellular walls and cell membranes, thereby increasing the
rates of substance transfer and facilitating the penetration of solvents into cells, this leads
to an increase in the phenolic content. Rodríguez-Roque et al. (2015) [17] and Landl et al.
(2010) [35] indicated that vitamin C is a substance that is sensitive to environmental changes,
and its stability is easily affected by the presence of oxygen, heat, and heavy metals. High-
pressure treatment not only involves no heat, but also inhibits the activity of oxidases,
greatly reducing the loss of vitamin C. In addition, Tola and Ramaswamy (2015) [36] also
indicated that high-pressure processing does not destroy the covalent, hydrophobic, or
ionic bonds present in small molecule components, resulting in better nutrient retention
in food.

With respect to the analysis of enzymatic activities, the activities of the MYR, APX,
POD, and PPO enzymes were analyzed, and the results are indicated in Table 1. The activity
of MYR after high-pressure treatment was significantly higher than in the untreated group,
regardless of the blanching process, indicating that high-pressure processing can effectively
increase MYR activity. As a comparison with isothiocyanate content, these two values
exhibited a similar tendency of change, suggesting that high-pressure stimulation of MYR
activity increases isothiocyanate content. There was no significant difference in APX activity
after blanching, but after high-pressure treatment, the APX activity exhibited an increasing
tendency. This was not consistent with the values obtained for the vitamin C content,
suggesting that the increase in isothiocyanate content might not be related to changes in
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APX activity. The activities of PPO and POD were significantly reduced after blanching and
high-pressure treatment, indicating that both processing methods could inhibit oxidase
effectively and preserve food quality.

Table 1. Changes in enzyme activity in broccoli before and after high-pressure treatment.

Non-Blanched Blanched

Non Processed HPP Processed Non Processed HPP Processed

MYR (µmol·g−1·min−1) 165.75 ± 3.75 b 267.25 ± 28.75 c 123.50 ± 2.00 a 250.75 ± 15.75 c

APX (mM·min−1·mg−1 protein) 0.142 ± 0.002 a 0.324 ± 0.004 b 0.112 ± 0.011 a 0.361 ± 0.026 b

PPO (∆A·min−1) 0.0067 ± 0.0003 d 0.0049 ± 0.000 c 0.0041 ± 0.0001 b 0.0025 ± 0.0001 a

POD (∆A·min−1) 0.161 ± 0.007 d 0.148 ± 0.015 c 0.043 ± 0.002 b 0.021 ± 0.004 a

All data are presented as the mean ± SD (n = 3). Different letters in the same row indicate significantly different results (p < 0.05). MYR:
myrosinase; APX: ascorbate peroxidase; PPO: polyphenol oxidase; POD: peroxidase. The activity of the PPO and POD is expressed in the
units of absorbance change per min (∆A·min−1).

The activity of the enzyme myrosinase after high-pressure treatment was significantly
higher than in the untreated group, and this increase in activity exhibited a tendency
similar to the change in isothiocyanate content, indicating that high-pressure processing can
promote myrosinase activation and thereby increase isothiocyanate production. Wang et al.
(2016) [37] and Okunade et al. (2015) [38] applied high-pressure treatment to measure the
myrosinase activity in Brussels sprouts and mustards, and their results were similar to that
of the present study. Furthermore, Wang et al. (2016) [37] indicated that myrosinase activity
is altered based on the environmental pH and that high-pressure treatment affects the
ionic balance in food, suggesting that environmental pH is more suitable for myrosinase
survival and thus improves the overall activity. The effects of high-pressure processing on
the enzymes’ activities are complex and depends a lot on the matrix composition of the
tested samples. Wang et al. (2018) [39] studied the high-pressure effects on myrosinase
activity and glucosinolate preservation in seedlings of Brussels sprouts and proposed
that the effect depends on myrosinase activity and cell permeabilization. The measurable
increase of myrosinase activity and content of isothiocyanates can be explained by the
interplay of the increased contact between the glucosinolates and myrosinase via membrane
permeabilization, induced by the high pressure and availability of myrosinase.

When compared to other enzymes, there were no significant differences in the APX
activity levels before and after blanching. This result is in accordance with a previous
study by Vicente et al. (2006) [40] in heat-treated strawberries. Their study indicated that
heat and oxidative stress induced an increased expression of the gene apx1 upstream of
APX, causing the activity of APX to be retained after heat treatment. APX activity was
significantly increased after high-pressure treatment. This was not consistent with the
vitamin C content changes, suggesting that an increase in isothiocyanate content might not
be related to changes in APX activity. Although the APX enzyme plays an important role
in vitamin C metabolism, the measurable content of vitamin C in HPP processed fruits and
vegetables is variable due to many possible mechanisms, such as the enhanced extraction
of bioactive compounds and the cells’ rupture that releases their cytosol content, caused by
the compression effect of the high pressure [41].

POD and PPO are oxidases commonly found in plant cells that primarily use phenolic
compounds as substrates. When these two enzymes interact with phenolic compounds,
brown colored substances are formed, causing enzymatic browning of plants. In addi-
tion, peroxidases are known to oxidize lipids, causing unpleasant odors that affect food
quality [42]. After high-pressure treatment of broccoli, the POD and PPO activities were
significantly reduced by 51% and 39%, respectively. According to previous studies by
Denoya et al. (2015) [43] and Fang et al. (2008) [44], high-pressure techniques can reduce
the activity of these enzymes by altering the structures of these proteins, and hence the
activities of POD and PPO are significantly reduced after high-pressure processing.
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Figure 3 shows the effect of the broccoli extract on the viability of RAW264.7 macrophages.
The control group was not induced by LPS or the given sample treatment, so its survival rate
was 100%. The LPS induction and sample treatment resulted in a higher cell viability compared
to the control group (Figure 3A). When different concentrations of SFN broccoli extract were
added to the cells without the effect of LPS, cell viability after treatment at every concentration
was significantly higher than that of the control group (Figure 3B). With LPS induction, cell
viability was not reduced by the increased extract concentration and was significantly higher
than that of the control group (Figure 3C).
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Figure 3. Cell survival rate. (A) Effects of the untreated group and high-pressure treated group.
�Con: control (not LPS induced); �P-C: positive control (LPS induced); �N-HPP: LPS induction
+ Non HPP untreated group; �HPP: LPS induction + high-pressure group, 400 MPa, 15 min. (B)
Effects of the broccoli extracts of different SFN concentrations without LPS induction. �Con: Control;
�HPP-5 (not LPS induced + 5 ppm broccoli extract). (C) Effects of the broccoli extracts of different
SFN concentrations. �Con: control (not LPS induced); �LPS:(LPS induced); �HPP-5 (LPS induced
+5 ppm broccoli extract). All data are presented as the mean ± SD (n = 3). Different letters in the
same row indicate significantly different results (p < 0.05).
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LPS is a polysaccharide present in the cell wall of Gram-negative bacteria. Its structure
contains lipid A, which is a source of endotoxin and can activate macrophages and cause
inflammation [45]. After LPS-induced inflammation, the cell viability was not decreased be-
low that of the control group. According to Brandenburg et al. (2010) [46], exposure to low
concentrations of LPS did not lead to cell death, but instead stimulated cell viability, so the
cell viability of the positive control group was higher than that of the control group. When
the broccoli extract was added to the cells, the viability of the treatment group was higher
than that of the control group regardless of whether inflammation was induced, indicating
that broccoli extract is not toxic to cells. This result is consistent with those of a study by
Hwang and Lim (2014) [12] in which different SFN concentrations (7.8–1000 mg·mL−1) of
the broccoli extract were added to RAW264.7 inflammatory cells. In addition, Guerrero-
Beltrán et al. (2010) [47] indicated that SFN could enhance cytoprotection by inducing
nuclear translocation of the Nrf2 protein, thereby improving viability.

The effect of broccoli extract addition to RAW264.7 inflammatory macrophages, and
specifically its effects on nitric oxide production, are shown in Figure 4. After the inflamma-
tory cells were treated with broccoli extract, the amount of NO produced was significantly
lower than in the positive control group, indicating that the extract has anti-inflammatory
potential. After high-pressure treatment, the effect of the extract on inhibiting NO produc-
tion was improved 1.3-fold compared to the untreated group (Figure 4A). Using SFN as an
indicator, the broccoli extract was diluted to 5, 10, 20, 40, and 60 mg.mL−1 and added to
the inflammatory cells. Figure 4B indicates that the inhibitory effect of the extract is at its
best when the concentration of SFN is 60 mg.mL−1 and the NO content is reduced by 85%
compared to the positive control group.
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Figure 4. Nitric oxide production. (A) Untreated group and high-pressure treated group. �Con:
control (not LPS induced); �LPS: (LPS induced); �N-HPP: LPS induction + Non HPP untreated
group; �HPP: LPS induction + high-pressure group, 400 MPa, 15 min. (B) Effects of the broccoli
extracts of different concentrations. �Con: control (not LPS induced); �P-C: positive control (LPS
induced); �HPP-5 (LPS induced + 5 ppm broccoli extract). All data are presented as the mean ± SD
(n = 3). Different letters in the same row indicate significantly different results (p < 0.05).
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NO is an important biological indicator in cells that can regulate the physiological
processes associated with inflammation [48]. Treatment of cells with LPS causes an in-
flammatory response, which promotes upregulation of iNOS in macrophages affected by
the inflammatory response, leading to a massive increase in the production of NO [49].
In the present study, the NO content in the cells was significantly reduced when treated
with broccoli extracts with different SFN concentrations, with higher SFN concentrations
yielding better inhibitory effects. The results of the present study are similar to those of
Subedi et al. (2019) [50], in which glial cells were treated with purified SFN. This study
indicated that SFN can effectively downregulate iNOS expression, thereby decreasing NO
production. Yang et al. (2007) [51] applied SFN to retinal microglia in which inflammation
was induced by LPS. The NO content decreased significantly when the concentration of
SFN was increased between 1.25 and 10 µM. Furthermore, it was observed that the changes
in iNOS expression were proportional to the NO content. These studies suggest that SFN
primarily reduces iNOS expression and NO production, thereby delaying inflammation.

All data are presented as the mean ± SD (n = 3). Different letters in the same row
indicate significantly different results (p < 0.05).

A pre-LPS induction and a post-LPS induction group were used to simulate the
treatment and prevention, respectively. Figure 5 shows the effect of the broccoli extract
on the prostaglandin E2 (PGE2) content in RAW264.7 inflammatory macrophages. After
LPS induction, the PGE2 content of the cells increased significantly, indicating that the
cells were in an inflamed state. After the addition of broccoli extract, the high-pressure
broccoli extracts inhibited PGE2 production compared to the untreated group (Figure 5A).
Regardless of the LPS induction strategy done first or later, once the broccoli extract was
diluted, the inhibitory effects on PGE2 was reduced both before and after LPS induction,
and the PGE2 content doubled compared to pre-dilution, indicating that the concentration
of SFN in the broccoli extract must be higher than 60 mg·mL−1 in order for the inhibitory
effect to be significant (Figure 5B).

PGE2 is one of the most abundant prostaglandins in the human body and is involved
in many physiological and pathological processes, including cancer and inflammation [52].
Upon LPS induction, COX is rapidly activated in cells, prompting the conversion of
large amounts of arachidonic acid into prostaglandins (PG), including PGI2, PGE2, and
other molecules, which lead to inflammation. A large amount of PGE2 is present after
LPS-induced inflammation. The PGE2 content is significantly reduced after addition of
high-pressure-treated broccoli extracts, and this effect is greater than in the untreated
group. However, when the extract is diluted to different SFN concentrations, the inhibitory
effect on PGE2 exhibited a decreasing tendency. Park et al. (2019) [53] treated cells with
LPS-induced inflammation with broccoli extracts and found that the PGE2 content was sig-
nificantly reduced, which is similar to the findings of the present study. Qi et al. (2016) [54]
used LPS to induce lung injury in BALB/c mice that were previously treated with SFN and
found that the PGE2 content in these mice were significantly reduced, indicating that SFN
has the potential to delay inflammation. In addition, these two studies also indicated that
the amounts of PGE2 produced are correlated with the COX-2 expression levels, suggesting
that SFN primarily inhibits PGE2 by reducing COX-2 expression.

Figure 6 shows the effect of broccoli extracts on iNOS and COX-2 in inflammatory
cells. After the cells were treated with broccoli extracts, the expression level of iNOS was
lower than in the positive control group, with the post-induction group, treated with a SFN
concentration of 60 mg.mL−1, exhibiting the best inhibitory effect on iNOS, around 61%.
With regards to COX-2 expression, the changes in expression levels were similar to that in
iNOS, and the pre-LPS induction group exhibited a significant concentration-dependent
effect, with expression decreasing with increasing SFN concentration. In addition, both in-
duction treatment strategies exhibited the best inhibitory effects on COX-2 gene expression
at a concentration of 60 mg.mL−1, and the inhibitory effects were measured to be 46% and
35%, respectively.
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Figure 5. PGE2 content. (A) Untreated group and high-pressure-treated group. �C: control, �P-C:
positive control (LPS induced); �N-HPP: LPS induction + Non HPP untreated group; �HPP: LPS
induction + high-pressure group, 400 MPa, 15 min. (B) Broccoli extracts of different concentrations,
pre-/post-LPS treated. �C: control (not LPS induced); �P-C: positive control; �5-B broccoli extracts
5 ppm, pre-LPS treated; �5-A broccoli extracts 5 ppm, post-LPS treated. All data are presented as the
mean ± SD (n = 3). Different letters in the same row indicate significantly different results (p < 0.05).

iNOS is an upstream enzyme that produces nitric oxide, and COX-2 is a pivotal
enzyme for the production of PGE2. Inflammation stimulates increased expression of
both enzymes and promotes production of large amounts of inflammatory cytokines [55].
Many studies have found that excessive expression of iNOS and COX-2 causes massive
production of inflammatory factors such as NO and PGE2. SFN can effectively inhibit
the expression of these two proteins, thereby regulating inflammatory response [56–59].
In the present study, applying high-pressure-treated broccoli extracts to inflammatory
macrophages had the best inhibitory effect on iNOS or COX-2 when the SFN concentration
was 60 mg.mL−1. Comparisons based on the results of iNOS and COX-2 inhibition with
NO production and PGE2 content showed that the changes in iNOS and NO production
were correlated, which is consistent with the results of the aforementioned studies, but
the COX-2 and PGE2 content were different. Cells contain two COX isoenzymes, namely,
COX-1 and COX-2. COX-1 functions primarily as a housekeeping gene and can stabilize
the physiological functions of cells. COX-2 is generally considered to be activated by
inflammation. However, studies related to neurodegenerative diseases and neuroinflam-
mation have found that the expression levels of COX-1 is associated with the production of
PGE2 and inflammatory cytokines in microglia, showing that COX-1 not only stabilizes cell
physiology, but also promotes inflammation [60,61]. In addition, Qin et al. (2016) [62] and
Zhou et al. (2012) [52] found that the mechanism of SFN inhibition of PGE2 content might
be achieved through regulating the expression of microsomal prostaglandin E synthase
1 (mPGES-1) downstream of COX-2, rather than by inhibiting COX-2 expression. These
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studies suggest that, in addition to COX-2, the factors affecting the synthesis of PGE2 are
also regulated by COX-1 and mPGES-1, resulting in differences in the COX-2 expression
levels and PGE2 content.
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The antioxidant effect of broccoli was evaluated by the ratio of reduced to oxidized
glutathione (GSH/GSSG) in cells. Figure 7 shows that the GSH/GSSG ratio of the control
group not induced by LPS was 9.90, whereas this ratio (5.99) was significantly reduced in
the positive control group treated with only LPS. In the LPS pre-induction group, the ratio
was significantly higher than that of the positive control group when the SFN concentration
was 5 mg.L−1 and 10 mg.L−1. The antioxidant effect was best when the SFN concentration
was 10 mg.L−1, with a GSH/GSSG ratio of 9.41.

Glutathione (GSH) is an important indicator of oxidative/nitrative stress in organ-
isms. It can metabolize ROS and RNS to clear potentially toxic oxidation products and
reduce oxidative and nitrative damage in cells. In addition, GSH is also a coenzyme of
glutathione peroxidase, which protects the sulfhydryl group of this enzyme from oxidation
and preserves its activity [63]. Oxidation of GSH yields glutathione disulfide (GSSG), and
the alterations in the ratio between these two are associated with redox balance in cells.
Hence, the GSH/GSSG ratio is often used as an indicator to evaluate the degree of cellular
oxidation [64]. In our present study, the GSH/GSSG ratio was significantly reduced, which
is consistent with the results of a previous study by Yamada et al. (2006) [65] regarding n
dendritic cells induced with LPS. The literature indicates that ROS is generated in large
quantities when cells are in an inflamed state, which reduces the GSH/GSSG ratio. When
treated with broccoli extracts with different SFN concentrations, the antioxidant effect is
best at an SFN concentration of 5 mg.L−1 or 10 mg.L−1, which is consistent with the results
of studies by Kim et al. (2003) [66] and Heiss et al. (2001) [67], who respectively used
HepG2-C8 cells and RAW264.7 macrophages for analyzing oxidative stress. After treatment
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with low concentrations of SFN, the GSH content in the cells increased with increasing
time in culture, and the antioxidant capacity of the cells was significantly improved.
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4. Conclusions

This study demonstrated that high-pressure treatment could effectively increase the
isothiocyanate content in broccoli. Specifically, the best results were achieved with pro-
cessing conditions of 400 MPa for 15 min. The mechanism for this change is primarily due
to the high-pressure processing strategy, which stimulates myrosinase activity, thereby
increasing the efficiency of the glucosinolate hydrolysis and increasing the isothiocyanate
content. With regards to the functional components, high-pressure processing did not
affect the vitamin C or flavonoid content in broccoli, and increased the TPC. When com-
pared to traditional thermal processing, high-pressure processing can prevent the loss of
heat-sensitive components. In addition, the activity of PPO and POD in broccoli tended to
decrease after being subjected to high-pressure treatment, indicating that this processing
technique can help inhibit oxidase activity and maintain food quality. With respect to
cellular experiments, the varying concentrations of the broccoli extracts applied to the
cells did not affect the viability of the RAW264.7 macrophages. Further evaluation of its
anti-inflammatory and antioxidant effects showed that broccoli extracts could effectively
inhibit NO production, PGE2 content, and iNOS and COX-2 protein expression levels.
At low concentrations, SFN significantly increased the GSH content and reduced GSSG
production, indicating that broccoli has the potential to delay inflammation and reduce
oxidative stress. In conclusion, high-pressure processing of broccoli not only adds value
to fresh food and provides increased nutritional value, but also allows it to be used as a
raw material or additive for the development of healthy foods, in so doing maximizing the
utilization value of broccoli.
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