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Abstract: Monitoring the current operation status of the power system plays an essential role in the
enhancement of the power grid for future requirements. Therefore, the real-time state estimation
(SE) of the power system has been of widely-held concern. The Kalman filter is an outstanding
method for the SE, and the noise in the system is generally assumed to be Gaussian noise. In the
actual power system however, these measurements are usually disturbed by non-Gaussian noises
in practice. Furthermore, it is hard to get the statistics of the state noise and measurement noise.
As a result, a novel adaptive extended Kalman filter with correntropy loss is proposed and applied
for power system SE in this paper. Firstly, correntropy is used to improve the robustness of the
EKF algorithm in the presence of non-Gaussian noises and outliers. In addition, an adaptive update
mechanism of the covariance matrixes of the measurement and process noises is introduced into
the EKF with correntropy loss to enhance the accuracy of the algorithm. Extensive simulations are
carried out on IEEE 14-bus and IEEE 30-bus test systems to verify the feasibility and robustness of
the proposed algorithm.

Keywords: correntropy loss; extended Kalman filter; adaptive update mechanism; power system
robust state estimation; non-Gaussian noises

1. Introduction

The power system state estimation (SE) is the foundation and core of the energy management
system, and it is indispensable for power system safety, reliability, quality and economic operation [1].
SE is usually divided into static state estimation (SSE) and forecasting-aided state estimation (FASE),
FASE is also called dynamic state estimation in some studies [2]. SSE can grasp the real-time operating
state of the power system, and FASE can predict the operating trend of the system. The power system
is a quasi-steady state system and the state information of buses will change with the change of loads.
The SSE cannot consider the impact of the change of system loads on system status information,
while the FASE with the function of analyzing and predicting the operation trend of the system is
required. Therefore, research on power system forecasting-aided state estimation (PSFASE) is of great
significance [3–5].

At present, the achievements of FASE are mainly based on different Kalman filters and their
modifications. The original Kalman filtering algorithm can only solve linear problems, and it loses its
advantage when facing complex nonlinear systems like a power system. Subsequently, an extended
Kalman filter (EKF) was proposed in [6], which can linearize the nonlinear measurement function
by Taylor series and can be applied in the nonlinear system. In [7], EKF has been used to solve
the PSFASE. Considering the adaptability of the algorithm is poor when the power system sudden
load changes, an adaptive EKF was proposed in [8]. To enhance the robustness of the algorithm
when bad data exists in the measurement data, the robust EKF was proposed in [9]. A new robust
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generalized maximum-likelihood-type EKF is developed in [10] which can bound the influence of the
disturbances. To avoid first-order approximation errors of the EKF, which may be large under strong
nonlinearities of the model, the iterated EKF (IEKF) [11] has been proposed as an alternative method.
The IEKF iteratively linearizes the functions of nonlinear system to compensate for the higher order
terms. To improve the stability of algorithm when the system model involves uncertainty, the H∞
EKF was proposed in [12] which quotes the robust control theory. To summarize, the EKF and its
modifications make a great breakthrough in the optimization of the nonlinear system and widely
applied for the PSFASE due to its simplicity, high computational efficiency and superior performance
in highly nonlinear systems.

Although EKF can solve the nonlinear problem, these methods ignore the influence of higher
order terms in the process of linearization and increase the computational complexity because it needs
to calculate Jacobian matrix. For resolving the above challenge, the unscented Kalman filter (UKF) was
developed in [13] to approximate the nonlinear distribution by sampling method to solve the nonlinear
problem. In [14], a UKF based power system dynamic state estimation was proposed. However,
all these approaches mentioned above have suffered from several important defects, limiting them
from being adopted for PSFASE. To be specific, they cannot handle: 1) the non-Gaussian process and
observation noises of the system nonlinear dynamic models, and 2) the unknown noise covariance
matrices. In the actual power grids, the non-Gaussian process and observation noises are ubiquitous
and hence the inappropriate noise covariance matrices will lead to imprecise estimation results.

The traditional EKF and UKF methods are derived based on mean square error (MSE) which
is optimal under Gaussian assumption. Therefore, the SE methods based on the original EKF and
UKF will show un-robustness when the system suffers from the non-Gaussian noises, that is, the state
cannot be estimated correctly. To overcome the influence of non-Gaussian noise, a novel maximum
correntropy criteria (MCC) [15–19] has been developed in an information theoretic learning (ITL)
methodology for non-Gaussian signal processing. At present, a novel robust EKF based on the MCC
(called MCC-EKF) was developed in which the MSE was substituted by the MCC to solve estimation
issues in non-Gaussian noise environments [20–22]. In this paper, the MCC-EKF is firstly used to design
a robust SE method to suppress the interference of non-Gaussian noise. In addition, a novel adaptive
update mechanism of the predicted error covariance matrix and measurement noise covariance matrix
is introduced into the MCC-EKF, and an adaptive MCC-EKF (called AMCC-EKF) method is proposed
to enhance the tracking ability of the original MCC-EKF. The performance of the proposed AMCC-EKF,
MCC-EKF, UKF and EKF for PSFASE are tested in this paper. Experimental results illustrate that the
proposed algorithm performs better than other algorithms with respect to the estimation accuracy
under the non-Gaussian circumstances.

The remainder of this paper is organized as follows. In Section 2 we briefly review the correntropy
and extended Kalman filter. In Section 3 we derived the proposed AMCC-EKF algorithm and in
Section 4 the proposed algorithm is applied to PSFASE. Section 5 gives the simulation results. Finally,
Section 6 concludes with a summary of the main findings of this paper.

2. Preliminaries

2.1. Maximum Correntropy Criteria

Given two random variables X and Y, the correntropy is defined as

Vσ(X, Y) = E[Gσ(X− Y)] =
x

x,y
Gσ(x− y)dFX,Y(x, y) (1)
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where E[·] denotes the expectation operator, FX,Y(x, y) is the joint distribution function of X and Y,
and Gσ(·) represents a shift-invariant Mercer kernel, with bandwidth σ. In this paper, we use the
following Gaussian kernel

Gσ(x− y) = exp

(
−‖x− y‖2

2σ2

)
(2)

Correntropy can be used as a cost function to develop novel robust adaptive filtering
algorithms [23–25]. In practice, only finite samples of the variables X and Y are given, and the joint
probability density function is unknown in general. Hence the sample mean estimator of corrrentropy
is used as

V̂σ(X, Y) =
1
N

N

∑
i=1

Gσ(xi − yi) (3)

where N is the number of samples. And the performance surface of the maximum square mean (MSE)
and correntropy are shown in Figure 1. It is can be seen that correntropy is local whereas MSE is global.
By global, we mean that all the samples in the joint space will contribute appreciably to the value of
the similarity measure while the locality of correntropy means that the value is primarily dictated by
the kernel function along the x = y line. Therefore, correntropy of the error can be used as a robust
cost function for adaptive systems training, which will be called the MCC. MCC has the advantage
that it is a local criterion of similarity and it should be very useful for cases when the measurement
noise is nonzero mean, non-Gaussian, with large outliers [19].
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2.2. Review of Extended Kalman Filter

The extended Kalman filter, a derivation of Kalman filter, is developed to resolve the problem
of nonlinear system by Taylor series. Consider a nonlinear system by the nonlinear state and linear
measurement functions:

xk = f (xk−1) + wk−1 (4)

yk = Hkxk + vk (5)

where xk ∈ Rn denotes a n-dimensional state vector at time step k, yk ∈ Rm denotes a m-dimensional
measurement vector at time step k, f (·) represents the vector-valued function and Hk stands for the
observation matrix, wk and vk are process and measurement noises respectively, which are generally
assumed to be uncorrelated with zero mean and covariance matrices. For EKF, the measurement noise
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vk is also assumed to be a zero mean Gaussian white noise sequence while the MCC-EKF avoids the
Gaussian assumption of vk.

E
[
wk−1wT

k−1

]
= Qk (6)

E
[
vkvT

k

]
= Rk (7)

In general, extended Kalman filter includes the following two steps:
(1) predict: the prior mean and covariance matrix are given by:

x̂k|k−1 = f
(

x̂k−1|k−1

)
(8)

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 + Qk−1 (9)

where x̂k|k−1 denotes the predicted state vector at time (k−1). Fk−1 denotes a Jacobian matrix of f (·),

and is described as Fk−1 =
∂ f (x̂k−1|k−1)

∂xk
.

(2) update: the gain matrix of extended Kalman filter can be obtained as

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1
(10)

the posterior state is equal to the prior state plus the innovation weighted by the gain matrix of
extended Kalman filter

x̂k|k = x̂k|k−1 + Kk

(
yk −Hkx̂k|k−1

)
(11)

Additionally, the iterative formula for the posterior covariance is as follows

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)
T + KkRkKT

k (12)

3. Adaptive Extended Kalman Filter With Correntropy Loss

3.1. Extended Kalman Filter with Correntropy Loss

The traditional EKF based on MSE loss and it is not robust when the system noise is non-Gaussian.
To overcome the influence of non-Gaussian noise, a novel maximum correntropy criteria (MCC) has
been developed in ITL. In [15], the MCC-EKF was developed by using the MCC to replace the MSE,
which may perform much better in non-Gaussian noise environments. The main reason is that the
correntropy contains second and higher order moments of the error, that is, the correntropy in ITL
involves all even moments of the error which can be obtained by Taylor expansion [15].

For the nonlinear model given by (4) (5) and expression (8) (9), we can obtain[
x̂k|k−1

yk

]
=

[
I

Hk

]
xk + qk (13)

We assumed that the state vector xk and process noise wk and measurement noise vk are non-zero
correlation respectively.

Where I is the n× n identity matrix, and qk can express as

qk =

[
−
(

xk − x̂k|k−1

)
vk

]
(14)
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With

E
[
qkqT

k
]

=

[
Pk|k−1 0

0 Rk

]

=

[
Bp,k|k−1BT

p,k|k−1 0
0 Br ,kBT

r,k

]
= BkBT

k

(15)

where Bk can be computed by Cholesky decomposition of E
[
qkqT

k
]
. Left multiplying both sides of (13)

by B−1
k, we have

Dk = Wkxk + ek (16)

where Dk = B−1
k

[
x̂k|k−1

yk

]
, wk = B−1

k

[
I

Hk

]
, ek = B−1

k vk. Since E
[
ekeT

k
]
= I, the residual error ek is

white.
Then, we define the following cost function JL(xk) based on MCC

JL(xk) =
1
L

L

∑
i=1

Gσ(di,k −wi,kxk) (17)

where di,k is the i-th element of Dk, wi,k is the i-th row of Wk, and L = m + n is the dimension of Dk.
Under the MCC, the optimal estimate of xk is

x̂k = argmax
xk

JL(xk) = argmax
xk

L

∑
i=1

Gσ(ei,k) (18)

where ei,k is the i-th element of ek and

ei,k = di,k −wi,kxk (19)

Hence, the optimal solution can be obtained by solving

∂JL(xk)

∂xk
= 0 (20)

It follows easily that

xk =

(
L

∑
i=1

[
Gσ(ei,k)w

T
i,kwi,k

])−1

×
(

L

∑
i=1

[
Gσ(ei,k)w

T
i,kdi,k

])
(21)

Since ei,k = di,k −wi,kxk, the formula (21) is a of xk and can be rewritten as

xk = g(xk) (22)

A fixed-point iterative algorithm can be expressed as

x̂k,t+1 = g(x̂k,t) (23)

where x̂k,t denotes the state x̂k at the fixed-point iteration t
The Equation (21) can also be expressed as

xk =
(

WT
k CkWk

)−1
×WT

k CkDk (24)
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where Ck =

[
Cx,k 0

0 Cy,k

]
, with

Cx,k = diag(Gσ(e1,k), . . . , Gσ(en,k)) (25)

Cy,k = diag(Gσ(en+1,k), . . . , Gσ(en+m,k)) (26)

Based on formula (24), we can obtain a recursive formula [20]

xk = x̂k|k−1 + Kk

(
yk −Hkx̂k|k−1

)
(27)

where
Kk = Pk|k−1HT

k

(
HkPk|k−1HT

k + Rk

)−1
(28)

Pk|k−1 = Bp,k|k−1C−1
x,kBT

p,k|k−1 (29)

Rk = Br,kC−1
y,k BT

r,k (30)

With the above derivations, the optimal state variable of MCC-EKF algorithm can be obtained by the
formula (25)–(30).

3.2. Adaptive Extended Kalman Filter with Correntropy Loss

The traditional EKF algorithm is usually used under the condition that the statistical characteristics
of state noise and measurement noise of the system are known, but it is unknown in the actual situation.
Therefore, the filtering divergence and inaccurate estimation results may be generated by the influence
of the uncertain factors. Similarity to the EKF, The MCC-EKF algorithm will still suffer from this
problem. In order to improve the accuracy of MCC-EKF algorithm, a covariance matrix adaptive
mechanism is introduced into the MCC-EKF algorithm to continuously estimate and modify the filter
noise statistical characteristics online, and we call the novel algorithm adaptive MCC-EKF algorithm
which can improve the filtering accuracy while filtering by using the information of observation data.
Thus, the optimal value of the estimated state is obtained [26,27]. Now, the covariance matrix adaptive
update mechanism is given.

We define the new information dk that is the error with the actual observation value yk and the
predicted observation value ŷk|k−1 at time k as

dk = yk − ŷk|k−1 = Hkxk + vk −Hkx̂k|k−1 = Hk
_
x k|k−1 + vk (31)

where
_
x k|k−1 = xk − x̂k|k−1 denotes one-step prediction error.

Then, according to the windowing estimation method, the real-time estimation variance of the
new information dk is

Ĉdk
=


k−1

k Ĉdk−1
+ 1

k dkdT
k , k ≤W

1
W

k
∑

i=k−W+1
didT

i , k > W
(32)

where W is the size of the moving window. Since vk and x̂k|k−1 are uncorrelated, we have

Ĉdk
= E

(
dkdT

k

)
= HkPk|k−1HT

k + Rk (33)
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The residual rk at time k is defined as the error with the actual observed value yk and the estimated
observed value ŷk

rk = yk − ŷk

= yk −Hk

[
x̂k|k−1 + Kk

(
yk −Hkx̂k|k−1

)]
= (I−HkKk)dk

=

(
I− HkPk|k−1HT

k
HkPk|k−1HT

k +Rk

)
dk

= RkC−1
dk

dk

(34)

The variance of the residual rk is defined as

Crk = E
(

rkrT
k

)
= RkC−1

dk
Cdk

C−1
dk

Rk = RkC−1
dk

Rk (35)

According to Kalman filtering principle [26–29], the filtering gain is

Kk = Pk|k−1HT
k C−1

dk
= PkHT

k R−1
k (36)

Left multiplying both sides of Equation (36) by Hk, and substitute into Equation (33), we can obtain

HkPkHT
k R−1

k = HkPk|k−1HT
k C−1

dk

=
(
Cdk
−Rk

)
C−1

dk

= I−RkC−1
dk

(37)

Right multiplying both sides of Equation (37) by Rk, we have

HkPkHT
k = Rk −RkC−1

dk
Rk (38)

Combining (35) and (38), we can get the R̂k as follows

R̂k = Ĉrk + HkPkHT
k (39)

Similarly, the new information dk can be used to estimate the variance matrix Q of the state noise,
Right multiplying both sides of Equation (36) by Cdk

KT
k , we have

KkCdk
KT

k = Pk|k−1HT
k C−1

dk
Cdk

KT
k = Pk|k−1HT

k KT
k (40)

Transposing both sides of formula (22) and applying Kalman filtering principle, we can obtain

KkCdk
KT

k = Pk|k−1 − Pk = Fk,k−1PkFT
k,k−1 + Qk−1 − Pk (41)

To keep Q semi-positive, the approximate estimate of Qk−1 can be expressed as

Q̂k−1 = KkĈdk
KT

k (42)

4. Adaptive Extended Kalman Filter With Correntropy Loss for PSDSE

4.1. Power System Dynamic Model

The power system is a nonlinear and complex system. For the FASE of power system, dynamic
equation and measurement equation can be expressed in the following form

xk = f (xk−1) + wk−1 (43)

yk = h(xk) + vk (44)
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where xk denotes the state vector consisting of magnitudes and angles of nodal voltage. The
measurement vector yk comprises of voltage magnitude measurements, real power injection
measurements, reactive power injection measurements, real power flow measurements, reactive
power flow measurements. The noise wk and vk are usually assumed to be Gaussian noise and
independent of each other. Specially, the noise wk is the error of system and the noise vk is the error of
measurement. f (·) represents the function that relates xk−1 to xk and h(·) stands for the measurement
function that relates xk to yk.

In order to determine the dynamic model of power system, it is necessary to identify the model
parameters. The Holt’s two-parameter linear exponential smoothing technique [30], also known as
linear extrapolation method, is most commonly used to calculate the state transition matrix Fk, and in
this paper we use this method as the dynamic model. It can also be used as a simple short-term load
forecasting method. It has the advantages of less storage variables and a faster computation speed,
and it is suitable for online calculation. Employing this method, the state transition function f (·) is
defined as

x̂k+1|k = ak + bk (45)

where
ak = αkx̂k|k + (1− αk)x̂k+1|k (46)

bk = βk(ak − ak−1) + (1− βk)bk−1 (47)

where both αk and βk are parameters lying in the range from 0 to 1, and vectors ak and bk at time k are
obtained as (43) and (44). Linearization of the nonlinear model in formula (43) above can be expressed
as follows

x̂k+1|k = Fkx̂k|k + uk + wk (48)

where Fk =
∂ f (xk)

∂xk
, uk is a nonrandom external actor in the expansion. Combining formulae (48) and

(45), we have
Fk = αk(1 + βk) (49)

uk = (1 + βk)(1− αk)x̂k+1|k − βkak−1 + (1− βk)bk−1 (50)

The composition of the measurement vector yk changes with the measurement method of the
power system. This paper studies the data measured by SCADA system, so h(x) is a nonlinear function.
For bus i, the relationship between the measurement and the state vector as follows [31]

Pi =
N

∑
j=1
|Vi|
∣∣Vj
∣∣(Gij cos θij + Bij sin θij

)
(51)

Qi =
N

∑
j=1
|Vi|
∣∣Vj
∣∣(Gij sin θij − Bij cos θij

)
(52)

Pij = V2
i Gij − |Vi|

∣∣Vj
∣∣(Gij cos θij + Bij sin θij

)
(53)

Qij = −V2
i
(

Bgi + Bij
)
− |Vi|

∣∣Vj
∣∣(Gij sin θij − Bij cos θij

)
(54)

where Pi is the real power injection at bus i, Qi is the reactive power injection at bus i, Pij is the real
power flow between buses i and j, Qij is the reactive power flow between buses i and j, Vi is the voltage
magnitude at bus i, Gij is the conductance of the line between buses i and j, Bij is the susceptance of
the line between buses i and j.

And the Jacobian matrix Hk can be expressed as

Hk =

[
∂Vi
∂θ

∂Pi
∂θ

∂Qi
∂θ

∂Pij
∂θ

∂Qij
∂θ

∂Vi
∂V

∂Pi
∂V

∂Qi
∂V

∂Pij
∂V

∂Qij
∂V

]T

(55)
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Combined with the power system network, the specific elements of the Jacobian matrix Hk are shown as
∂Vi
∂θi

= 0 ∂Vi
∂θj

= 0
∂Vi
∂Vi

= 1 ∂Vi
∂Vj

= 0
(56)



∂Pi
∂θi

= −V2
i Bii −Vi

N
∑

j=1
Vj
(
Gij sin θij − Bij cos θij

)
∂Pi
∂θj

= ViVj
(
Gij sin θij − Bij cos θij

)
∂Pi
∂Vi

= ViGii +
N
∑

j=1
Vj
(
Gij cos θij + Bij sin θij

)
∂Pi
∂Vj

= Vi
(
Gij cos θij + Bij sin θij

)
(57)



∂Qi
∂θi

= −V2
i Gii + Vi

N
∑

j=1
Vj
(
Gij sin θij + Bij cos θij

)
∂Qi
∂θj

= −ViVj
(
Gij cos θij + Bij sin θij

)
∂Qi
∂Vi

= −ViBii +
N
∑

j=1
Vj
(
Gij sin θij − Bij cos θij

)
∂Qi
∂Vj

= Vi
(
Gij sin θij − Bij cos θij

)
(58)



∂Pij
∂θi

= −ViVj
(
Gij sin θij − Bij cos θij

)
∂Pij
∂θj

= ViVj
(
Gij sin θij − Bij cos θij

)
∂Pij
∂Vi

= 2ViGii −Vj
(
Gij cos θij + Bij sin θij

)
∂Pij
∂Vj

= −Vi
(
Gij cos θij + Bij sin θij

) (59)



∂Qij
∂θi

= ViVj
(
Gij cos θij + Bij sin θij

)
∂Qij
∂θj

= −ViVj
(
Gij cos θij + Bij sin θij

)
∂Qij
∂Vi

= −2Vi
(

Bgi + Bij
)
−Vj

(
Gij sin θij − Bij cos θij

)
∂Qij
∂Vj

= −Vi
(
Gij sin θij − Bij cos θij

) (60)

4.2. Adaptive Extended Kalman Filter with Correntropy Loss for Power System Forecasting-Aided State Estimation

Now, we apply this method to PSFASE to solve the problem of non-Gaussian noise and bad
data. For n-bus power system, there are 2n−1 states (contains n voltage amplitudes and n−1 voltage
phase angles) that needs to be estimated. The dynamic model reflects the change law of system state
variables with time. The dynamic model of power system in this paper assumes that the changes in
the system parameters, such as load variations, are very slow. Then, we give the detail procedure of
MCC-EKF algorithm for PSDSE.

(1) Select the appropriate initial parameters: a proper kernel bandwidth σ and a small positive ε; Set
an initial state value x̂0|0 and corresponding covariance matrix P0|0; Let k = 1;

(2) Use Equations (8) and (9) to calculate the x̂k|k−1 and Pk|k−1, and obtain the Bp,k|k−1 by
Cholesky decomposition;

(3) Let k = 1 and x̂k|k,0 = x̂k|k−1, where x̂k|k,t stands for the estimated state at the fixed-point iteration k;

(4) Calculate the state transition function using (45)–(47) and the Jacobian matrix Hk using (51)–(60);
(5) Get the estimates state x̂k|k,t by Equations (61)–(69);

x̂k|k,t = x̂k|k−1 + K̃k

(
yk −Hkx̂k|k−1

)
(61)



Entropy 2019, 21, 293 10 of 18

With
K̃k = P̃k|k−1HT

k

(
HkP̃k|k−1HT

k + R̃k

)−1
(62)

P̃k|k−1 = Bp,k|k−1C̃
−1
x,kBT

p,k|k−1 (63)

R̃k = Br,kC̃
−1
y,k BT

r,k (64)

C̃x,k = diag(Gσ(ẽ1,k), . . . , Gσ(ẽn,k)) (65)

C̃y,k = diag(Gσ(ẽn+1,k), . . . , Gσ(ẽn+m,k)) (66)

ẽi,k = di,k −wi,kx̂k|k,t−1 (67)

R̃k = Rk

(
HkPk|k−1HT

k + Rk

)−1
Rk + HkPkHT

k (68)

Q̃k = Kk

(
HkPk|k−1HT

k + Rk

)
KT

k (69)

(6) Compare the estimation of the current step and the estimation of the last step. If (70) holds, let
x̂k|k = x̂k|k,t and continue to 7). Otherwise, t + 1→ t , and go back to 5);∣∣∣∣∣∣x̂k|k,t − x̂k|k,t−1

∣∣∣∣∣∣∣∣∣∣∣∣x̂k|k,t−1

∣∣∣∣∣∣ ≤ ε (70)

(7) Moreover, the posterior matrix is updated as (71), k + 1→ k and go back to 2).

Pk|k =
(

I− K̃kHk

)
Pk|k−1

(
I− K̃kHk

)T
+ K̃kRkK̃

T
k (71)

5. Results

In this section, we perform experiments on the standard IEEE 14-bus and IEEE 30-bus test system
to verify the effectiveness and superiority of the proposed algorithm compared with the EKF, UKF,
A-EKF and MCC-EKF algorithms. We use the 50 time-sample intervals, which were obtained by
running successful load flows under different loading conditions to simulate the slow dynamics of the
power system. The variation of loads can be divided into linear and nonlinear variation, among which
the linear variation means the whole observed time interval with 50 samples are changes follow a linear
trend of 10% and the nonlinear variation denotes the whole observed time interval with 50 samples
changes follow a random fluctuation of 5%. The convergence tolerance threshold of all algorithms is
0.001. In addition, all free parameters of the algorithms mentioned above are selected such that each
algorithm can achieve its optimal performance.

The mean absolute error (MAE) and root mean square error (RMSE) are utilized to evaluate the
performance of each method. In addition, the overall performance is one of the indices for evaluating
the performance of the state estimation algorithms, and it can be defined by

Ji =

N
∑

i=1

∣∣∣ŷi
k − yi

k

∣∣∣
N
∑

i=1

∣∣∣yi
k − yi

k

∣∣∣ (72)

where ŷi
k is the estimated measurement vector at time index k for bus i, yi

k denotes the true
measurements and yi

k represents the measurement vector with noises. The MAE, RMSE and the over
performance will be used to verify the available of the proposed method in the following experiments.
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5.1. Case 1: Gaussian Measurement Noise Environment

In general, the measurement noise is assumed for Gaussian noise, and we first evaluate the
proposed algorithm in the normal environment. Loads are changed according to the above specified
linear trend. The average overall performance of all algorithms in standard IEEE 30-bus is given
in Table 1. From the results, we know that (1) both EKF, UKF and A-EKF algorithms have good
performance in this case; (2) the adaptive mechanism can improve the estimation accuracy; (3) the
performance of MCC-EKF is slightly better than that of EKF and UKF and the proposed AMCC-EKF
performs better than other algorithms which illustrate that on the one hand, the correntropy is
robust for the noise, on the other hand, the adaptive mechanism The adaptive mechanism makes the
algorithm have stronger tracking performance by updating the predicted error covariance matrix and
measurement noise covariance matrix.

Table 1. The average overall performance of all algorithms in standard IEEE 30-bus.

EKF UKF A-EKF MCC-EKF AMCC-EKF

Index J (p.u.) 0.39 0.29 0.31 0.25 0.16

5.2. Case 2: Gaussian Mixture Measurement Noise Environment

In this case, we evaluate the performance of the proposed algorithm under the non-Gaussian
measurement noise circumstance. The measurement of noise is modeled by the mixed Gaussian
distribution which is defined as

(1− θ)N(µ1, υ2
1) + θN(µ2, υ2

2) (73)

where N(µi, υ2
i )(i = 1, 2) denotes the Gaussian distributions with mean values µi and variances σ2

i ,
and the θ is the mixture coefficient. In this simulation, the mean values µ1 and µ2 both are set at zero,
the variances σ2

1 and σ2
2 are set at 1 and 80 respectively, and the mixture coefficient θ is set at 0.25. The

overall performance of all algorithms in standard IEEE 14-bus and IEEE 30-bus test system are shown
in Figures 2 and 3, respectively. One can observe that the performance of EKF, UKF and A-EKF is
significantly worse under the Gaussian mixture measurement noise environment, while the MCC-EKF
has good performance because of it is insensitive to the non-Gaussian noise. Moreover, we see that the
performance of the proposed AMCC-EKF is better than the original MCC-EKF algorithm. In addition,
the average overall performance of all algorithms in standard IEEE 14-bus and 30-bus systems are
given in Tables 2 and 3, respectively.
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Figure 2. The overall performance of all algorithms in standard IEEE 14-bus under Gaussian mixture
measurement noise environment.
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Figure 3. The overall performance of all algorithms in standard IEEE 30-bus under Gaussian mixture
measurement noise environment.

Table 2. The average overall performance of all algorithms in standard IEEE 14-bus under Gaussian
mixture measurement noise environment.

EKF UKF A-EKF MCC-EKF AMCC-EKF

Index J (p.u.) 0.53 0.41 0.49 0.33 0.23

Table 3. The average overall performance of all algorithms in standard IEEE 30-bus under Gaussian
mixture measurement noise environment.

EKF UKF A-EKF MCC-EKF AMCC-EKF

Index J (p.u.) 0.55 0.41 0.48 0.32 0.24

In addition, we further analyze the tracking performance of the algorithm from the perspective of
accurately estimating the voltage amplitude and phase angle of bus at each time. Specifically, loads are
changed following a linear trend of 10%. The true voltage amplitude and voltage angle of no.3 bus in
IEEE 30-bus test system and the estimated values of each algorithms are shown in Figures 4 and 5,
respectively. We know that the estimated value of the proposed AMCC-EKF algorithm is close to the
true value than other algorithms.
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Figure 4. The true voltage amplitude of no.3 bus in IEEE 30-bus test system.
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Figure 5. The voltage angle of no.3 bus in IEEE 30-bus test system.
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This result proves that the AMCC-EKF has both a higher accuracy and filtering capacities than the
corresponding EKF, UKF, A-EKF and MCC-EKF algorithm under the Gaussian mixture measurement
noise environment.

5.3. Case 3: Laplace and Gaussian Mixture Measurement Noise Environment

In this case, we test the universality of the proposed algorithm under the mixed Gaussian and
Laplace noises environment. The noise model can be represented as

v(n) = (1− a(n))A(n) + a(n)B(n) (74)

where a(n) is an independent and identically distributed binary process with an occurrence probability
0 ≤ c ≤ 1. In this simulation, c is set at 0.5, A(n) is a noise obey the Laplace distribution with
zero-mean and unit variance, and B(n) denotes another noise process with Gaussian distribution with
zero-mean and variance 0.55. The noise processes A(n) and B(n) are mutually independent and they
are both independent of a(n). The obtained overall performance of all algorithms in IEEE 14-bus
and IEEE 30-bus test system are displayed in Figures 6 and 7, respectively. One can see that the EKF,
UKF and A-EKF still show worse performance in presence of the Laplace and Gaussian mixture noise.
In addition, we can obtain the same conclusion with the Section 5.2 that the MCC based methods
(MCC-EKF and AMCC-EKF) are robustness in this case, and the proposed AMCC-EKF algorithm
can achieve the best performance. The average overall performance of all algorithms in standard
IEEE 14-bus and 30-bus system are shown in Tables 4 and 5, respectively. The results illustrate the
outstanding properties of the AMCC-EKF for SE again.
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Figure 6. The overall performance of all algorithms in standard IEEE 14-bus under Laplace and
Gaussian mixture measurement noise environment.
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Table 4. The average overall performance of all algorithms in standard IEEE 30-bus under Laplace and
Gaussian mixture measurement noise environment.

EKF UKF A-EKF MCC-EKF AMCC-EKF

Index J (p.u.) 0.65 0.48 0.53 0.36 0.28

Table 5. The average overall performance of all algorithms in standard IEEE 30-bus under Laplace and
Gaussian mixture measurement noise environment.

EKF UKF A-EKF MCC-EKF AMCC-EKF

Index J (p.u.) 0.59 0.52 0.46 0.38 0.23

Furthermore, to test the effect of load change on the proposed algorithm, we changed the linear
variation trend of load and consider 10%, 20%, 30%, respectively. The mean absolute error and root
mean square error of voltage angle of no.3 bus in IEEE 30-bus in different variation trend of load are
shown in Figures 8 and 9, respectively. It can be seen from the bar chart that although the error of the
proposed algorithm increases with the linear variation trend of the load, the error of the proposed
algorithm is minimal compared with other methods.
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Figure 8. The mean absolute error of voltage angle of no.3 bus in IEEE 30-bus in different variation
trend of load.
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Figure 9. The root mean square error of voltage angle of no.3 bus in IEEE 30-bus in different variation
trend of load.

5.4. Case 4: the Nonlinear Variation of Loads

Now, from the analysis above, we consider this case that the loads change follows a random
fluctuation of 5%. The other settings are the same as those of Case 2. The true value of voltage
amplitude and angle of no.3 bus in IEEE 30-bus test system and estimated value of other algorithms
are shown in Figures 10 and 11, respectively. It can be seen from the figure that even in the case of
nonlinear variation of loads, the estimated value of the proposed AMCC-EKF algorithm is closest to
the true state value.
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Figure 10. The true value of voltage amplitude of no.3 bus in IEEE 30-bus test system and estimated
value of other algorithms when the loads change follows a random fluctuation.
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Figure 11. The true value of voltage angle of no.3 bus in IEEE 30-bus test system and estimated value
of other algorithms when the loads change follows a random fluctuation.

To further demonstrate the superiority of the algorithm numerically, the MAE and RMSE of
voltage amplitude of no.3 bus in IEEE 30-bus are shown in Table 6, and the results of the proposed
AMCC-EKF algorithm is better than other algorithms.

Table 6. The MAE and RMSE of voltage amplitude of no.3 bus in IEEE 30-bus.

EKF UKF A-EKF MCC-EKF AMCC-EKF

MAE 0.06 0.05 0.05 0.03 0.01
RMSE 0.25 0.21 0.23 0.18 0.12

5.5. Case 5: in Presence of Outliers

Now, measurement in the presence of outliers at sample time 30 is considered in this case and
assuming that no measures are taken to verify and identify the bad data under Gaussian mixture
measurement noise environment. In this case, four state estimation algorithms are adopted for
simulation, resulting in the overall performance index changes of state estimation filter as shown in
Figure 12. Firstly, we know that all algorithms are affected by outliers. In the presence of outliers,
the filtering performance index will increase and the estimation accuracy will decrease. Secondly,
the EKF, UKF, A-EKF and MCC-EKF algorithms are greatly affected by bad data at sample time 30.
Although the proposed AMCC-EKF algorithm is also affected to some extent, but the filtering average
performance index still fluctuates below 0.33, and the filtering estimation value is relatively correct.
The average overall performance of all algorithms in standard IEEE 30-bus are given in Table 7.



Entropy 2019, 21, 293 16 of 18

Entropy 2018, 20, x FOR PEER REVIEW  17 of 19 

 

correct. The average overall performance of all algorithms in standard IEEE 30-bus are given in Table 
7. 

 
Figure 12. The overall performance of all algorithms in standard IEEE 30-bus in presence of outliers. 

Table 7. The average overall performance of all algorithms in standard IEEE 30-bus in presence of 
outliers. 

 EKF UKF A-EKF MCC-EKF AMCC-EKF 
Index J (p.u.) 0.56 0.46 0.48 0.36 0.24 

6. Conclusions 

In this paper, a novel AMCC-EKF algorithm is developed to address the power system state 
estimation problem, and its effectiveness and robustness are verified by some scenarios under non-
Gaussian noise environments. First, the actual power system is very susceptible to non-Gaussian 
noise and the MCC-EKF is employed to design a robust state estimation approach at first. Second, it 
is difficult to calculate the noise statistics in the most actual situation, and hence the adaptive MCC-
EKF (AMCC-EKF) is proposed by introducing the adaptive mechanism into the MCC-EKF algorithm 
to continuously update the covariance matrix to improve the accuracy of the estimation results. We 
perform experiments on the IEEE 14 and 30 bus systems to test the performance of the proposed 
AMCC-EKF method, and the simulation results demonstrate that the filtering performance and 
estimation accuracy of the AMCC-EKF algorithm for state estimation is better than EKF, UKF, A-EKF 
and MCC-EKF methods and the estimation results are relatively stable in the presence of outliers. 

7. Patents 

This work was supported by the Natural Science Basic Research Plan in Shaanxi Province of 
China (No.2017JM6033), Scientific Research Program Funded by Shaanxi Provincial Education 
Department(No.17JK0550), in part by National Natural Science Foundation of China (No.51877174), 
the opening project of State Key Laboratory of EIPE18201 and the State Key Laboratory of Advanced 
Optical Communication Systems Networks, China. 

Author Contributions: For research articles with several authors, a short paragraph specifying their individual 
contributions must be provided. The following statements should be used “conceptualization, X.X. and Y.Y.; 
methodology, X.X.; software, X.X.; validation, X.X., Y.Y. and Z.Z.; formal analysis, X.X.; investigation, X.X.; 
resources, X.X.; data curation, X.X.; writing—original draft preparation, X.X.; writing—review and editing, X.X.; 
visualization, X.X.; supervision, X.X.; project administration, X.X.; funding acquisition, Y.Y.”, please turn to the 
CRediT taxonomy for the term explanation. Authorship must be limited to those who have contributed 
substantially to the work reported. 

Funding: Please add: “This research received no external funding” or “This research was funded by NAME OF 
FUNDER, grant number XXX” and “The APC was funded by XXX”. Check carefully that the details given are 
accurate and use the standard spelling of funding agency names at https://search.crossref.org/funding, any 
errors may affect your future funding. 

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time,i

J(
in

 p
.u

.)

 

 
EKF
UKF
A-EKF
MCC-EKF
AMCC-EKF

Commented [cx6]: Please complete the highlight part. 

Figure 12. The overall performance of all algorithms in standard IEEE 30-bus in presence of outliers.

Table 7. The average overall performance of all algorithms in standard IEEE 30-bus in presence
of outliers.

EKF UKF A-EKF MCC-EKF AMCC-EKF

Index J (p.u.) 0.56 0.46 0.48 0.36 0.24

6. Conclusions

In this paper, a novel AMCC-EKF algorithm is developed to address the power system state
estimation problem, and its effectiveness and robustness are verified by some scenarios under
non-Gaussian noise environments. First, the actual power system is very susceptible to non-Gaussian
noise and the MCC-EKF is employed to design a robust state estimation approach at first. Second, it is
difficult to calculate the noise statistics in the most actual situation, and hence the adaptive MCC-EKF
(AMCC-EKF) is proposed by introducing the adaptive mechanism into the MCC-EKF algorithm
to continuously update the covariance matrix to improve the accuracy of the estimation results.
We perform experiments on the IEEE 14 and 30 bus systems to test the performance of the proposed
AMCC-EKF method, and the simulation results demonstrate that the filtering performance and
estimation accuracy of the AMCC-EKF algorithm for state estimation is better than EKF, UKF, A-EKF
and MCC-EKF methods and the estimation results are relatively stable in the presence of outliers.
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