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Aim: Immunomodulatory mechanisms contributing to angiogenic inhibition in renal tumors are not
well characterized. We report associations between efficacy and tumor-associated immune cells and
mRNA/miRNA expression in patients from AXIS. Materials & methods: Immunohistochemistry (n = 52) and
mRNA/miRNA expression analyses (n = 72) were performed on tumor samples. Results: In axitinib-treated
patients, higher CXCR4 and TLR3 expression, respectively, was associated with longer progression-free sur-
vival (hazard ratio; 95% CI: 0.3; 0.1–0.8 and 0.4; 0.2–0.9) and showed interaction with treatment (p = 0.029
and p < 0.001); lower CCR7 expression was associated with objective response (odds ratio: 0.1; 95% CI:
0.01–1.0) and longer overall survival (hazard ratio: 3.9; 95% CI: 1.4–10.3). Conclusion: CCR7, CXCR4 and
TLR3 expression levels may be prognostic/predictive of clinical benefit with axitinib.
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Axitinib is a potent and selective tyrosine kinase inhibitor (TKI) of VEGFR 1–3 [1]. VEGFRs are implicated in
pathologic angiogenesis, tumor growth and metastatic progression of cancer. Axitinib has been shown to potently
inhibit VEGF-mediated endothelial cell proliferation and survival [1].

Axitinib is approved in many countries across the globe for second-line treatment of advanced renal cell
carcinoma (RCC) [2]. In the AXIS trial, median progression-free survival (PFS) was significantly longer in axitinib-
versus sorafenib-treated patients (hazard ratio [HR]: 0.67, 95% CI: 0.54–0.81; p < 0.0001) [3]. Recently, the
combinations of axitinib plus avelumab or axitinib plus pembrolizumab were approved by the US FDA and the
European Commission for first-line treatment of advanced RCC [4,5].

Significant progress has been made in the identification of prognostic biomarkers in patients with metastatic
RCC (mRCC), but no predictive markers of efficacy have been identified for targeted agents such as axitinib in
this population [6]. Recent studies focused on evaluating expression levels and signatures of potential genes mRNA
and miRNA that might help identify patients with mRCC who are most likely to benefit from antiangiogenic
therapy [7,8].

Unsupervised analysis of gene expression data identified four robust clear-cell RCC (ccRCC) subtypes (ccrcc1–
ccrcc4) that were associated with different responses to sunitinib [9]. These ccrcc1–4 subtypes were related to
previously identified molecular classifications [10,11], which may extend to correlation of response to other VEGFR
TKIs and/or immunomodulatory drugs based on molecular typing of the tumors [9]. Other gene expression analyses
identified prognostic signatures composed of targets/pathways that regulate angiogenesis and immune response in
mRCC [8,12].
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Potential miRNA signatures for patient stratification were also identified [13,14]. miR-99b-5p was identified by
comprehensive miRNA profiling and revealed a statistically significant correlation with clinical outcome; however,
this failed to be confirmed in a subsequent analysis utilizing a more quantitative approach [7].

Using data from the AXIS trial, the objectives of these post hoc analyses were to assess potential associations
between tumor-infiltrating lymphocytes (TIL; CD3+ cells) and tumor-associated macrophages (TAM; CD68+

cells) and clinical efficacy in axitinib-treated patients with mRCC; and explore mRNA expression levels for genes
and potential signatures associated with angiogenesis and tumor immune infiltration and miRNAs that have been
previously shown to indicate sensitivity/resistance to VEGFR TKIs in mRCC tumor tissue [7,13,14] and their
association with clinical outcomes.

Materials & methods
Patients & study design
Details on AXIS trial design and eligibility criteria were previously reported [3]. In brief, AXIS was a two-arm,
randomized, open-label, multicenter Phase III study of axitinib versus sorafenib in patients aged ≥18 years
with clear-cell mRCC who progressed after one prior first-line regimen containing sunitinib, bevacizumab plus
interferon-alfa, temsirolimus or cytokines (ClinicalTrials.gov identifier: NCT00678392).

Patients were stratified by Eastern Cooperative Oncology Group performance status (ECOG PS) and type of
prior therapy and randomized (1:1) to receive axitinib (5 mg twice daily) or sorafenib (400 mg twice daily). The
primary end point was PFS and secondary end points included objective response rate and overall survival (OS).

Tumor tissue samples
Archival anonymized, formalin-fixed, paraffin-embedded tumor tissue samples of patients enrolled in the AXIS trial
were collected as part of an optional additional research component of the study and those with adequate informed
consent were used for biomarker analysis. Only a small subset of tumor samples from the overall study population
was available for analysis. Tumor tissue from axitinib-treated patients analyzed for mRNA and miRNA expression
were also analyzed by immunohistochemistry (IHC). Analyses were conducted in a blinded fashion with respect to
clinical response and demographic information.

Immunohistochemistry
IHC assays for CD3 (mouse clone LN10; Leica Microsystems Inc, IL, USA) and CD68 (mouse clone KP1; Dako,
CA, USA) were designed and validated as a laboratory-developed test using Clinical Laboratory Improvement
Amendment (CLIA) guidelines. Pathology review of the slides generated from the tumor blocks was conducted
according to Good Laboratory Practice in a CLIA and College of American Pathologists-certified facility (Mosaic
Laboratories, CA, USA).

Slides were scanned using an Aperio ScanScope R© CS system (Aperio, CA, USA) to produce photomicrographs.
The percentage of positive cells ([number of positive cells/total number of cells] × 100) and the density of positive
cells (number of positive cells/mm2) was measured.

RNA & miRNA expression
Analyses for mRNA and miRNAs expression levels were performed using the validated HTG EdgeSeq Oncology
Biomarker Panel and miRNA Whole Transcriptome Assay (HTG Molecular Diagnostics Inc, AZ, USA). Target
genes, miRNA and housekeeping genes evaluated are presented in Supplementary Table 1. Tumor content and
tissue necrosis were assessed by a board-certified pathologist and estimated as the number of malignant cells as
a percentage of all cells. Acceptance criterion for analysis was set at >70% tumor content and <20% necrosis;
macro-dissection was performed if values were outside these parameters. Sequencing was performed on an Illumina
NextSeq 500 Sequencer (Illumina Inc, CA, USA). Results were reported if samples passed predefined quality check
parameters for each assay. Gene expression data were quantile normalized and log2 transformed (HTG Molecular
Diagnostics).

Statistical analyses
Objective responses were categorized as responders (complete response [CR] and partial response [PR]) and non-
responders (stable disease [SD] and progressive disease [PD]). Wilcoxon rank-sum test was applied for continuous
expression comparison and Fisher’s exact test for association between response categories defined by Response
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Table 1. Patient demographics and baseline characteristic, by cohort.
Characteristic IHC cohort mRNA cohort miRNA cohort

Axitinib (n = 52) Axitinib (n = 34) Sorafenib (n = 33) p-value† Axitinib (n = 33) Sorafenib (n = 32) p-value†

Age, mean (StD) 58.3 (11.0) 56.8 (11.2) 58.3 (7.8) �0.999 56.3 (11.0) 58.1 (7.8) �0.999

Sex: 0.776 0.775

– Male 38 (73) 25 (74) 26 (79) 24 (73) 25 (78)

– Female 14 (27) 9 (26) 7 (21) 9 (27) 7 (22)

Race: 0.203 0.202

– White 47 (90) 30 (88) 30 (91) 29 (88) 29 (91)

– Asian 4 (8) 4 (12) 1 (3) 4 (12) 1 (3)

– Black 0 0 2 (6) 0 2 (6)

– Other 1 (2) 0 0 0 0

ECOG PS: 0.615 0.798

– 0 27 (52) 20 (59) 22 (67) 20 (61) 21 (66)

– 1 25 (48) 14 (41) 11 (33) 13 (39) 11 (34)

MSKCC criteria risk
group:

0.053 0.077

– Poor 22 (42) 13 (38) 4 (12) 12 (36) 4 (13)

– Intermediate 18 (35) 13 (38) 19 (58) 13 (39) 19 (59)

– Favorable 12 (23) 8 (24) 10 (30) 8 (24) 9 (28)

Data represented as n (%), unless otherwise stated.
†Axitinib-treated vs sorafenib-treated.
ECOG PS: Eastern Cooperative Oncology Group performance status; IHC: Immunohistochemistry; MSKCC: Memorial Sloan Kettering Cancer Center; StD: Standard deviation.

Evaluation Criteria in Solid Tumors and biomarker stratum using the median value as a cutoff point. OS and PFS
were compared using the Kaplan–Meier method between treatment arms and between biomarker strata using the
median value as a cut-off point. Percent tumor changes from baseline were compared between the biomarker strata
with median value as cut-off point using Wilcoxon rank-sum test. Pearson correlation coefficients and p-values were
provided for CD68 mRNA expression versus CD68 immunohistochemistry results (percentage of positive cells and
density of positive cells) for axitinib-treated patients. Samples from slides and blocks were analyzed together due to
the limited sample size within each treatment arm.

For IHC analysis, a Cox model was applied to PFS in multivariate analysis to adjust for appropriate baseline
covariates: prior medications, baseline ECOG PS, time from diagnosis to treatment, liver and bone involvement,
number of metastatic sites, corrected calcium and for levels of LDH, neutrophils, hemoglobin and ALP. For
significant (p < 0.05) results via Kaplan–Meier analysis, receiver operating characteristics (ROC) analysis was used
to generate a ROC curve to further assess potential utility as patient selection markers. ROC analysis of PFS was
performed at 2, 4, 6 and 8 months.

Due to differences observed in mRNA and miRNA expression between slides and blocks, median values are
calculated for slides and blocks separately. For mRNA/miRNA expression analysis and correlations to clinical
outcome, the Wilcoxon rank-sum test was stratified by slides and blocks using the van Elteren test and the Fisher’s
exact test was stratified by slides and blocks using the Cochran–Mantel–Haenszel test. In this exploratory analysis,
significant (p < 0.05) biomarkers were selected based on the raw two-sided p-value without controlling for false
discovery rate.

Results
Patients
Of 723 patients enrolled in AXIS, 52 axitinib-treated patients were evaluable for IHC analysis. Patient
demographics and baseline characteristics were similar to those in the entire AXIS population (Table 1) [3]. Mean
age was 58.3 (standard deviation: 11.0) years and most patients were male (73.1%), white (90.4%) and all had an
ECOG PS of 0 (51.9%) or 1 (48.1%). Overall, 23.1, 34.6 and 42.3% of patients had favorable, intermediate and
poor risk, respectively, based on Memorial Sloan Kettering Cancer Center (MSKCC) criteria.

For the mRNA and miRNA analyses, 67 (34 and 33 patients in the axitinib and sorafenib arms, respectively) and
65 (33 and 32 patients in the axitinib and sorafenib arms, respectively) patients were evaluated. The demographics
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Figure 1. Kaplan–Meier curve of PFS according to median CD68+ cells/mm2.
*Log rank test. Median = 0.08 cells/mm2.
HR: Hazard ratio; PFS: Progress-free survival.

Table 2. Multivariate analysis of association of CD68+ cell density and progress-free survival (immunohistochemistry
cohort).
Covariate Two-sided p-value HR (95% CI)

CD68+ cell density, cells/mm2, ≥ median vs � median 0.032 0.5 (0.2–0.9)

Neutrophils, � ULN vs ≤ ULN 0.003 8.2 (2.0–33.3)

Final model constructed by backward elimination process with a 5% level of selection.
HR: Hazard ratio; ULN: Upper limit of normal.

for gender, race and ECOG PS were similar to the IHC analysis cohort (Table 1). No significant differences in the
demographic and baseline characteristics were observed between the treatment arms in either the mRNA or miRNA
analysis sets. However, the MSKCC prognostic group factors approached significance in the mRNA analysis set
(p = 0.053), with more patients in the poor-risk group in axitinib-treated patients (38.2%) compared with those
in the sorafenib-treated group (12.1%; Table 1).

Tumor-infiltrating immune cells in axitinib-treated patients
The presence and clinical correlation of TILs (CD3+) and TAMs (CD68+) were investigated in archival tumor
tissue of axitinib-treated patients by IHC. Median values for cell density were 399.5 cells/mm2 for CD3+ cells and
0.08 cells/mm2 for CD68+ cells. There was no significant difference between responders versus nonresponders in
cell density of CD3+ (mean: 601.2 vs 531.1 cells/mm2; p = 0.811) or CD68+ (mean: 0.11 vs 0.10 cells/mm2;
p = 0.425). There was no significant difference in the frequency of response category according to median cut-point
stratum (< vs ≥) for density of either CD3+ cells or CD68+ cells (CR + PR: 20.0 vs 23.1%, SD + PD: 80.0 vs
76.9% for CD3+ cells and CD68+ cells, respectively).

A CD68+ ≥median for cell density was associated with longer median PFS compared with <median (12.0 vs
3.7 months; HR: 0.4; log-rank p = 0.008; Figure 1). Prediction of PFS was most accurate for patients who received
≥2 months of axitinib treatment using CD68+ cell density (sensitivity: 83%, specificity: 87%; area under the
ROC curve: 0.809). Multivariate analysis of CD68 expression levels in predicting PFS demonstrated that presence
of CD68+ cells ≥median (5.21%) and CD68+ cell density >median (0.08 cells/mm2) significantly predicted
longer PFS, after adjusting for important baseline covariates (Table 2). There was a slight trend (p < 0.2), but
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Table 3. mRNA association with objective response.
Gene Treatment CR + PR, n (%) SD + PD, n (%) Odds ratio† (95% CI) p-value‡

CCR7 Axitinib n 7 27 0.11 (0.01–1.00) 0.026

� Median 6 (37.5) 10 (62.5)

≥ Median 1 (5.6) 17 (94.4)

ITGA4 Axitinib n 7 27 0.10 (0.01–0.98) 0.026

� Median 6 (37.5) 10 (62.5)

≥ Median 1 (5.6) 17 (94.4)

VHL Axitinib n 7 27 0.10 (0.01–0.98) 0.026

� Median 6 (37.5) 10 (62.5)

≥ Median 1 (5.6) 17 (94.4)

ESM1 Sorafenib n 4 27 – 0.044

� Median 4 (25.0) 12 (75.0)

≥ Median 0 (0.0) 15 (100.0)

GSK3B Sorafenib n 4 27 – 0.036

� Median 4 (26.7) 11 (73.3)

≥ Median 0 (0.0) 16 (100.0)

NOTCH1 Sorafenib n 4 27 – 0.044

� Median 4 (25.0) 12 (75.0)

≥ Median 0 (0.0) 15 (100.0)

TLR3 Sorafenib n 4 27 – 0.023

� Median 4 (28.6) 10 (71.4)

≥ Median 0 (0.0) 17 (100.0)

VHL Sorafenib n 4 27 – 0.044

� Median 4 (25.0) 12 (75.0)

≥ Median 0 (0.0) 15 (100.0)

Median values are calculated for slides and blocks separately within each treatment. List of mRNA evaluated is provided in Supplementary Table 1; only associations with p-values �0.05
are reported in the table.
†An odds ratio �1 is in favor of �median group and an odds ratio �1 is in favor of ≥median group.
‡Two-sided unadjusted p-value based on Fisher’s exact test.
CR: Complete response; PD: Progressive disease; PR: Partial response; SD: Stable disease.

no significant difference in median OS in patients with CD68+ cell density ≥median versus <median (22.6 vs
17.8 months; HR: 0.6; p = 0.173).

Additionally, a correlation was observed for CD68 protein (% positive cells and cell density) and CD68 mRNA
expression (R = 0.477; p = 0.004 and R = 0.399; p = 0.020, respectively) in axitinib-treated patients.

Gene expression analysis of angiogenic & immunomodulatory targets within mRCC
Expression analysis of genes that have been implicated in regulation of angiogenesis and immune modulation in
mRCC was performed in archival tumor tissue from axitinib- or sorafenib-treated patients. The median values
for each gene/miRNA (reported separately for slides and blocks) with correlation to clinical outcomes are shown
in Supplementary Table 2. In axitinib-treated patients, lower expression levels (<median) of CCR7, ITGA4 and
VHL were associated with objective response (CR + PR; p = 0.026 for all; Table 3). In sorafenib-treated pa-
tients, lower expression levels (<median) of ESM1 (p = 0.044), GSK3B (p = 0.036), NOTCH1 (p = 0.044),
TLR3 (p = 0.023) and VHL (p = 0.044) were associated with objective response (Table 3).

Significant associations of mRNA expression levels with PFS and OS within each treatment arm are summarized
in Table 4. In particular, in axitinib-treated patients, higher expression levels (≥median) of CXCR4 were associated
with longer PFS compared with <median (9.0 vs 2.8 months; HR: 0.3, 95% CI: 0.1–0.8; p = 0.011). Higher
expression levels (≥median) of TLR3 in axitinib-treated patients and lower expression levels (<median) in sorafenib-
treated patients were associated with longer PFS (HR: 0.4, 95% CI: 0.2–0.9; p = 0.023 and HR: 3.9, 95% CI:
1.4–10.7; p = 0.005, respectively; Table 4). Additionally, longer OS (HR: 3.0, 95% CI 1.1–8.0; p = 0.022; Table 4)
was observed in sorafenib-treated patients who had lower expression levels (<median) of TLR3. Finally, lower
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Table 4. mRNA association with progression-free survival and overall survival within each treatment arm.
Gene Treatment Median (months) p-value† HR (95% CI)

< Median (95% CI) ≥ Median (95% CI)

PFS

CXCR4 Axitinib 2.8 (1.4–6.5) 9.0 (2.8–15.7) 0.011 0.3 (0.1–0.8)

PGF Axitinib 2.8 (1.4–6.5) 7.7 (2.9–14.1) 0.017 0.4 (0.2–0.9)

PRKCA Axitinib 9.0 (4.5–14.1) 2.8 (1.4–6.2) 0.048 2.3 (1.0–5.2)

TLR3 Axitinib 4.5 (1.7–6.5) 9.0 (2.7–15.7) 0.023 0.4 (0.2–0.9)

TLR3 Sorafenib 11.9 (3.4–27.5) 4.5 (1.6–6.1) 0.005 3.9 (1.4–10.7)

OS

CCR7 Axitinib 32.4 (20.0–NR) 13.3 (6.8–18.5) 0.005 3.9 (1.4–10.3)

PTPN11 Axitinib 17.6 (7.0–22.0) NR (7.0–NR) 0.020 0.4 (0.1–0.9)

CCL2 Sorafenib 34.5 (18.9–34.5) 15.0 (10.9–25.4) 0.019 3.1 (1.2–8.4)

MMP-2 Sorafenib NR (19.4–NR) 15.7 (10.9–26.8) 0.032 2.8 (1.0–7.4)

NF2 Sorafenib 17.3 (10.7–20.7) 34.5 (15.0–34.5) 0.035 0.4 (0.1–1.0)

TLR3 Sorafenib 34.5 (20.2–34.5) 15.0 (10.7–26.8) 0.022 3.0 (1.1–8.0)

Median values are calculated for slides and blocks separately within each treatment. List of mRNA evaluated is provided in Supplementary Table 1.
†Log-rank two-sided test unadjusted p-values.
HR: Hazard ratio; NR: Not reached.

expression levels (<median) of CCR7 in axitinib-treated patients was associated with longer OS (HR: 3.9, 95%
CI: 1.4–10.3; p = 0.005; Table 4).

In addition, a significant interaction effect with treatment was observed for the expression levels of both CXCR4
and TLR3 and PFS (p = 0.029 and p < 0.001, respectively), as well as for the expression levels of CD163 and PFS
(p = 0.036) and OS (p = 0.048) even though the main treatment effects did not reach significance (Figure 2A &
B).

Targeted miRNA expression analysis within mRCC
Expression analysis of miRNAs that have been implicated in mRCC and could have prognostic value in response
to antiangiogenic therapy was performed in archival tumor tissue from axitinib- or sorafenib-treated patients.
In axitinib-treated patients, expression levels (≥median) of miR-192-3p and miR-99B-5p were associated with
objective response (p = 0.011 for both). Median PFS was longer in patients with higher expression levels (≥median)
of miR-133A-3p versus <median (10.5 vs 2.8 months; HR: 0.4, 95% CI: 0.1–0.9; two-sided p = 0.022). Median
PFS was longer in patients with higher expression levels (≥median) of miR-143-5p versus <median (7.7 vs
2.8 months; HR 0.4, 95% CI: 0.2–1.0; two-sided p = 0.037). No miRNA included in these analyses was associated
with differences in OS within either treatment arm.

Lower expression levels (<median) of miR-183-5p trended toward a shorter PFS in axitinib-treated patients
versus sorafenib-treated patients (4.7 vs 6.5 months; HR: 2.4, 95% CI: 0.9–6.8; two-sided p = 0.088; Figure 2A).
Higher expression levels (≥median) of miR-183-5p trended toward a longer PFS in axitinib-treated patients versus
sorafenib-treated patients (6.5 vs 2.8 months; HR: 0.6, 95% CI: 0.3–1.2; two-sided p = 0.134); the interaction
p-value between treatment arms was significant (p = 0.048). Median OS in patients with higher expression
levels (≥median) of miR-221-5p was shorter in axitinib-treated patients versus sorafenib-treated patients (14.4 vs
26.8 months; HR: 2.4, 95% CI: 1.0–5.9; two-sided p = 0.045; Figure 2B); interaction p-value 0.041.

Discussion
The highly angiogenic nature of RCCs has led to multiple approvals of antiangiogenic therapies for patients with
advanced RCC. More recent data have shown expression of angiogenic factors and those involved in immune
infiltration (e.g., T cells) within these tumors may regulate response and resistance to both antiangiogenic agents
and immune checkpoint inhibitors [8]. A role for immune infiltration in RCC tumor progression, coupled with
the reduced immune-suppressive properties of axitinib compared with other antiangiogenic agents [15], supported
combination of axitinib with immune checkpoint-blocking therapies that have been recently approved for first-
line treatment in mRCC [16–18]. Biomarker analyses performed from these studies defined molecular features that
differentiate therapy-specific outcomes in first-line advanced RCC [19]. However, the mechanisms by which axitinib
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is supporting potential immune/angiogenic responses remain largely unclear. In this study, tumor immune cell
infiltration (CD68 and CD3) and gene/miRNA expression were evaluated in correlation with clinical outcomes in
axitinib- or sorafenib-treated patients in the AXIS trial.

Higher levels of CD68+ cells, which are indicative of TAMs, were significantly associated with longer PFS in
axitinib-treated patients in this study. One interpretation would be that tumors with high angiogenic status via local
TAM-mediated VEGF secretion [20] are sensitized to axitinib therapy. Further supporting this, higher expression
levels (≥median) of CXCR4, which is induced by HIF-1α within hypoxic conditions, are required for migration
of myeloid progenitor (i.e., CD68+) and tumor cells [21] and contribute to neovascularization [22]; these higher
expression levels were also associated with longer PFS in these patients. These results might seem inconsistent with
previously published results showing that an increase in TAMs contributes to an immunosuppressive and pro-
angiogenic environment [23–25] as a mechanism of resistance to antiangiogenic treatments. However, the favorable
efficacy observed in this study could indicate potential predictive value of these biomarkers via increased sensitization
to anti-VEGFR TKIs.

An alternative hypothesis may be that regimen containing axitinib sensitizes TAMs to a M1 (tumor-killing)
phenotype, represented by the pan-macrophage marker CD68 and induces the innate immune system. Higher
expression levels of TLR3, which can induce a proinflammatory M1 phenotype [26] and stimulate Th1 responses that
mediate antitumor activity [27] were found to be associated with longer PFS in this study. Additionally, lower levels
of CD163, which is an M2 marker, trends with longer OS in axitinib-treated versus sorafenib-treated patients in
this study. However, further characterization of the macrophage activation states (M1 vs M2) and their localization
within the tumor microenvironment [28], should be explored in future studies of patients with mRCC treated with
axitinib.

Interestingly, although our analysis showed correlation between CD68 mRNA and CD68 protein expression,
the mRNA analysis did not demonstrate an association between CD68 mRNA expression levels and outcomes.
However, genes with known prognostic value in mRCC based on protein expression (i.e., VHL) showed clinical
associations within the analyses, further supporting a connection between RNA and protein expression and RNA
platform used. Differences between certain mRNA and IHC protein analyses (i.e., CD68) may be attributed to
the small sample size and slightly different sample population, as well as to the fact that mRNA is more prone to
degradation during specimen handling and storage.

The IHC analysis of TILs within this study showed no efficacy associations with CD3 expression levels. Markers
for tumor-infiltrating immune cells more specific than CD3 (e.g., CD4, CD8, PD-L1) may be more informative
of treatment outcomes [8,29–31]. Indeed, a recent study reported that patients with tumors expressing CD8+ cells
≥median and those with CD8 expression ≥median at baseline had longer PFS in the arm treated with combination
axitinib/avelumab [19].

Genes that play a dual role within immune and tumor cells, in other words, CCR7 and TLR3, were identified
as correlating with clinical outcome. Lower expression (<median) levels of CCR7 were shown to be associated
with better response and longer OS in axitinib-treated patients. This is consistent with the role of CCR7, which is
expressed by various subset of immune cells and plays a role in cancer cell migration and metastasis formation [32]

and similar to findings in another retrospective study that showed high tumoral CCR7 expression correlated with
potential lymphatic involvement and poor prognosis in patients with mRCC treated with TKIs [33]. TLR3 was
associated with longer PFS in both treatment arms. Higher TLR3 expression levels were associated with longer PFS
in axitinib-treated patients, whereas lower TLR3 expression levels were associated with longer PFS in the sorafenib-
treatment arm, which was supported by the comparison between treatment arms. TLR3 has been shown to induce
both tumor and endothelial cell apoptosis while potentially enhancing tumor-infiltrating innate immune cells and
T-cell function [34,35]. However, TLR3 has also been shown to induce tumor cells to undergo a metabolic switch
to adapt to hypoxia within the tumor microenvironment [36]. Therefore, potential differences between treatment
arms may be attributed to the multi-kinase nature of these TKIs. These results suggest that expression of TLR3
may have a role in mRCC and potentially be a predictive biomarker for axitinib treatment.

There were limited clinical correlations in our analysis of miRNA expression. Higher expression levels of miR-
99B-5p were associated with objective response, which was similar to previous profiling studies of patients with
ccRCC treated with antiangiogenic TKIs [7]. The other miRNA targets that were associated/trended with clinical
outcomes included miR-133A-3p, miR-143-5p, miR-183-5p and miR-221-5p, which have all been previously
described in patients with advanced RCC [13,14]. Interestingly, miR-183 [37], miR-133A [38], miR-143 [39] and miR-
221 [40] have been shown to play a role in either innate immune responses and/or immune cell function – suggesting
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that perhaps their role in regulating the immune system correlates with responses observed to antiangiogenic TKIs
in patients with mRCC.

There are limitations for this analysis, in that the biomarker cohort evaluated is a small, convenience subset of
the entire patient population and tumor tissue samples were analyzed as part of a retrospective exploratory study,
after completion of the trial. Therefore, the preliminary findings of this study should be further investigated in
larger cohorts to determine whether these would be potential biomarkers for patients with mRCC treated with
axitinib or VEGFR TKIs. Furthermore, the study design does not allow to distinguish predictive from prognostic
potential. This would require samples to be assessed from untreated patients or from patients treated with drugs
that have a different mechanism than axitinib.

Conclusion
Higher CD68+ cell density is associated with longer PFS; prediction for PFS was strongest for patients who received
≥2 months of axitinib treatment. There were no efficacy associations with CD3+ levels. Lower (<median) CCR7
expression levels were associated with better response and OS in axitinib-treated patients. In patients treated with
axitinib versus sorafenib, lower CXCR4 expression levels (<median) were associated with shorter PFS, whereas
higher TLR3 expression levels (≥median) were associated with longer PFS, which suggests that these may be
potential biomarkers for RCC treatment selection; however, this requires further evaluation in larger and more
contemporaneous studies.

Summary points

• The highly angiogenic nature of renal cell carcinoma (RCC) has led to approval of multiple antiangiogenic
therapies for patients with advanced RCC, including the introduction in 2012 of axitinib for second-line
treatment of advanced RCC.

• The highly immunogenic nature of RCC was also the foundation for initiation of two Phase III trials of axitinib in
combination with the immune checkpoint inhibitors avelumab and pembrolizumab. These combinations
(axitinib/avelumab and axitinib/pembrolizumab) have been recently approved for first-line treatment of
advanced RCC.

• Biomarker analyses performed from these combination studies defined molecular features that differentiate
therapy-specific outcomes in first-line advanced RCC. However, the mechanisms by which axitinib is contributing
to potential immune/angiogenic responses in advanced RCC remain largely unclear.

• We investigated associations between tumor-associated immune cells (CD3+ and CD68+) and mRNA/miRNA
expression with clinical outcomes in a subset of patients from the axitinib pivotal trial, AXIS.

• Our results showed that higher CD68+ cell density was associated with longer progression-free survival, whereas
there were no efficacy associations with CD3+ levels. CCR7, CXCR4 and TLR3 expression levels were associated
with efficacy and may be potential biomarkers for RCC treatment selection; however, this requires further
evaluation in larger prospective study.
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