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Abstract: Microneedles have emerged as a novel transdermal delivery tool that enables the delivery
of various products such as drugs, vaccines, or cosmetic ingredients. Although the demand for solid
microneedles composed of biocompatible polymer is increasing, the manufacture of microneedles
using poly-lactic acid (PLA) with rapid drug-releasing is yet to be established and the process is
still in its infancy. Here, we propose a novel strategy for the fabrication of PLA solid microneedles
which enable a drug to be burst-released based on a solvent-casting process. This approach offers
extreme simplicity, broad geometric capability, cost-effectiveness, and scalability based on high
fidelity-replicas. It was verified that microneedles of various heights (250–500 µm) could be fabricated
with appropriate mechanical strength to penetrate the stratum corneum layer of skin. By adding
sugar in the composition of PLA microneedle, it was observed that both hydrophilic and hydrophobic
drugs can be rapidly released within 30 min. Our burst drug-releasing PLA microneedle having both
characteristics of solid microneedle and soluble microneedle and its fabrication approach based on
solvent-casting will contribute to getting microneedle technology close to commercialization and
beyond existing technical limitations.

Keywords: microneedle; poly-lactic acid (PLA); solid microneedle; transdermal delivery; solvent-casting

1. Introduction

The skin is the largest and most accessible organ of the body, with a surface area
of 2 m2 in adults. Various types of exogenous molecules can be delivered into the body
through the skin using what is generally termed a transdermal delivery system (TDS). The
transdermal delivery of exogenous molecules is strictly limited by the target molecule’s size
(<500 Da) and the balance between hydrophilicity and hydrophobicity (log P = 1–3) [1,2].
To overcome this drawback, special methodologies are required that can achieve efficient
transdermal delivery.

Among the various methods used for transdermal delivery (such as sonophoresis,
electrophoresis, or iontophoresis) microneedles have received great attention. These novel
systems comprise miniaturized needles (length = 150–1500 µm) with diverse geometries.
They have the potential to overcome the limitations of conventional approaches. Micronee-
dles enable the delivery not only of small molecules, but also of macromolecules such as
antibodies. Hydrophilic or hydrophobic drugs can also be delivered though the micro-holes
that these microneedles physically create in the stratum corneum [3]. Such penetration
generally does not trigger pain or severe bleeding, thereby enabling self-application with
high patient compliance. These advantages have led to the use of microneedles in a variety
of applications, such as pharmaceuticals, medical devise sensors, and cosmetics [2]. For this
reason, some microneedle-based products are commercially available under various claims,
and few microneedle-based drugs are also under clinical trials [4]. It is expected that the
microneedle-based drug delivery system market will approach $1.2 billion with CAGR
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(compound annual growth rate) of 6.6% by 2030 [5]. Microneedles are generally classified as
either (a) solid microneedles that are used to form micro-holes in the skin as pretreatment
(sometimes with a drug coated substrate), (b) hollow microneedles for the delivery of
liquid flowing continuously through fine channels, or (c) soluble dissolving microneedles
that comprise a solidified drug substrate [6,7]. Solid microneedles have been made using
materials such as metal, silicon, and various polymers so as to achieve sufficient mechanical
strength. However, some materials such as silicon or metal can constitute a safety risk to
user based on insufficient evidence against their biocompatibility or a concern regarding
granulomas when they remain in the body [8,9]. In recent years, various biodegradable
and biocompatible polymers such as polystyrene, polyvinyl pyrrolidone, polycarbonate,
poly-lactic acid (PLA), and poly(lactic-co-glycolic acid) (PLGA) [10] have been used to fab-
ricate solid microneedles. Among these materials, PLA has been widely used in biomedical
engineering applications across a diverse range of formulations, including films, sheets,
microspheres, implants, and plates [11,12].

However, solid microneedles require an external drug supplier or coating process,
unlike soluble or hollow-type microneedles. For this reason, a diverse range of approaches
have been studied, including robust and efficient coating technologies, combining external
drug reservoirs, and loading target drugs into the solid microneedle’s structure itself to
ensure its sustained release. It has been demonstrated that drugs can be loaded into
microneedles comprising PLGA or PLA matrixes, with such systems demonstrating a
sustained release of the target drug [13–16]. This approach generally requires more than
24 h or even 20 d for the effective delivery of the target drug [15,16]. Though the delayed
sustained-release is suitable for hormone-type drugs, it could limit the patient compliance
due to a long time of application, especially for a prompt vaccination or a cosmetic use.
In other words, a more rapid drug-releasing microneedle a with shorter application time,
along with a fabrication approach which is technically simple and reliable, is required.

Here, we introduce bursting, drug-releasing PLA microneedles and detail their fabri-
cation using a solvent-casting method that is compatible with mass production. Briefly, we
dissolved an appropriate ratio of amorphous poly(D, L-lactide), the target drug, and sugar
in dimethyl sulfoxide (DMSO), before pouring this into a polydimetylsiloxane (PDMS)
microneedle mold. We analyzed the drug release profiles according to the composition and
explored the temporal characteristics of drug release. We also examined our microneedles’
practical transdermal delivery for both hydrophilic and hydrophobic drugs. Bursting,
drug-releasing PLA microneedles have the potential to greatly improve patient compliance
and solve current issues regarding storage and packaging. Furthermore, by developing
the abovementioned fabrication approach, we hope to contribute not only to cosmetic or
pharmaceutic industries, but also to further scientific discoveries and applications regard-
ing microneedles.

2. Materials and Methods
2.1. Fabrication of Microneedles

Resomer® R Poly(D,L-lactide) series (203R, 205R, 207R), which have been used in
medical devices and tissue engineering due to their biodegradable, biocompatible, and
bioresorbable characteristics, were used in this study [17]. Three types of Resomer® R,
203R, 205R, and 207R, were prepared. According to manufacturers, Resomer® 203R, 205R,
and 207R have the range of inherent viscosity (IV) of 0.25–0.35, 0.55–0.75, and 1.3–1.7,
respectively. Before the solvent-casting process, PLA was degassed under vacuum for 1 h
to eliminate water. The dried PLA was mixed with solvents in various concentrations
and mixed gently until complete dissolution. The viscous PLA solution was centrifuged
for 2 min with 2000 rpm to eliminate bubbles and to avoid air entrapment during casting
process. (Centrifugal degassing procedure) The solution was poured into a polydimethyl-
siloxane (PDMS) mold having diverse pyramid-structure geometries with heights of 250,
300, 350, and 500 µm and an aspect ratio of 2. The center-to-center distance of each mi-
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croneedle structure is 400, 600, 600, and 1000 µm for microneedle arrays of 250, 300, 350,
and 500 µm height.

The PDMS prepolymer solution (Sylgard 184) mixed with curing agent was poured
over a metal master mold (LG Electronics, Pyeongtaek, Korea) and cured overnight in an
oven at 50 ◦C. The inverse replica of the PDMS mold was removed from the metal master
mold, and used as the negative-mold for the PLA microneedles. The prepared PLA solution
was cast on the PDMS negative-mold, vacuumed for 30 min, and dried overnight at 50 ◦C.

After overnight drying, the “dried” PLA structure was removed from the PDMS mold.
The PLA microneedle arrays were washed using distilled water, and dried under ambient
conditions at room temperature.

2.2. Characterization of the Microneedles

The mechanical property and strength of the microneedles was measured using a tex-
ture analyzer TA. XTplusC (Stable Micro System, Godalming, UK). Briefly, the microneedle
arrays were attached to the bottom of a mechanical sensor, and the sensor was moved
axially at the test speed of 0.1 mm/s with trigger force of 10 g. The single microneedle
structure was measured at the test speed of 1.2 mm/min with a trigger force of 0.003 N. The
microneedle structure was observed under an optical microscope (Leica DM 1000, Leica,
Solms, Germany) and a scanning electron microscope (SEM, S-4800, Hitachi, Tokyo, Japan).
The measured mechanical strength of the microneedle array was 200 µm of strain.

2.3. Skin Penetration Test

To investigate whether PLA microneedles having a height of 250 µm can be applied
to human skin multiple times, the microneedle array was applied to a human volunteer
(one of the authors, male, 29 years old) under gentle thumb pressure. A 12.5% solution so
gardenia blue color (extracted from the rubiaceous plant gardenia fruit) was poured on
the skin for 15 min, and then washed out. The stained pores of the stratum corneum were
observed under an optical microscope. This study was approved by the Ethics Committee
of the LG H&H Institutional Review Board (LGHH-20200709-AA-03). Prior to participation
in the study, human test subject was informed of possible side effects and consented to
participate in the study.

2.4. Transdermal Delivery In Vitro Using Franz-Type Diffusion Cells

A porcine skin membrane having the dimensions 2.5 × 2.5 cm was purchased (Mi-
cropig Franz Cell Membrane, Apures, Pyeongtaek-si, Korea). Before the experiment, the
skin membrane was immersed in PBS (Phosphate buffered saline pH 7.4, Gibco, Waltham,
MA, USA) and incubated for 2 h. In the following experiment, the surface of the stratum
corneum was wiped with a paper tissue to get rid of the extra PBS. For the application
of microneedles, the array was inserted into the skin under gentle thumb pressure. The
reservoir was filled with PBS. The diffusion cells were tightly assembled with clamps and
placed in an incubator at 37 ◦C and 50% relative humidity (RH). To quantify the target
molecule in the stratum corneum, epidermis, and dermis, respectively, the porcine skin was
tape-stripped three times and heated at 90 ◦C for 50 s. After separation of the epidermis
and dermis, each compartment was homogenized with PBS and centrifuged. The clear
supernatants were recovered and analyzed using photoluminescence spectroscopy (Var-
ioskan™ LUX, Thermofisher, Waltham, MA, USA) to quantify the FITC and an Ascorbic
Acid Assay Kit (L-Ascorbate, K-ASCO, Megazyme, Bray, UK) to quantify the vitamin C.
The amount of retinol was analyzed by HPLC. Detailed analysis followed the previous
literature [18].

For the transdermal delivery of ascorbic acid and FITC, ascorbic acid and FITC were
prepared with concentration of 25% and 50,000 ng/mL, respectively. A 25% solution of
vitamin C was titrated to pH 3.2 with KOH.



Pharmaceutics 2022, 14, 1758 4 of 15

3. Results and Discussion
3.1. Fabrication of the Microneedles

Since the 1970s, PLA has been approved by the US Food and Drug Administration
(FDA) for food and pharmaceutical applications with renewability, biocompatibility, and
process capability as prime benefits [11]. It is known that PLA degrades inside the body
by hydrolysis of the ester-bond back bone and enzymatic process, and its degradation
in the human body and later excretion was also verified [19]. In particular, fabrication
using PLA enables design of complex and sophisticated items such as tissue scaffolds.
Recently PLA has also been used for the fabrication of microneedles based mainly on
thermoforming [20]. However, the micro molding of PLA based on thermoforming shows
some disadvantages such as requiring the heating system to maintain a temperature
above 160 ◦C, limited resolution, and perturbation of the quality and molding efficiency
depending on the operation conditions. It also produces excess polymer waste due to the
nature of the process.

First, we developed the fabrication process for PLA microneedle using solvent casting
under low temperature which can be further compatible with the fabrication of the burst
drug-releasing microneedle. A schematic diagram of the fabrication process is shown
in Figure 1a. As described there, the PDMS was used as a negative mold for the PLA
microneedles. Our fabrication method is based on micro molding which has been widely
used for fabrication of microneedles in the last few decades [21]. Previous research showed
that some organic solvents cause deformation or shrinkage of the PDMS, so an appro-
priate solvent should be considered for applications in which PDMS is utilized (such as
microfluidics, chemical reactors, and solvent-casting-based scaffolds [22]. In addition,
whether the solvent is bio-friendly and bioavailable without causing any harm to human
was also considered for our study, even if excess solvent remains after drying. Based on
these criteria, we chose three solvents, acetone, dimethylformamide (DMF), and, dimethyl
sulfoxide (DMSO). Previous pioneering research, which examined the compatibility of
various organic solvents with PDMS, also verified that the three solvents mentioned above
do not show significant shrink or deformation of PDMS when they were applied on it [22].

We fabricated microneedles 300 µm high by varying the kinds of solvents, the molecu-
lar weight of PLA, and the weight percentage of PLA in the solvent (10–20%). According to
a previous report, polymer microneedles having higher molecular weight exhibit greater
mechanical strength, as one might expect [23].

We observed that, with a higher concentration, the higher molecular weight of PLA
resulted in higher viscosity. Excessively viscous polymer solution makes it difficult to fill the
micron sized-PDMS molds, which leads to failure of the micro molding. Figure 1b shows
our observations when the microneedle structure is fabricated under various conditions,
and Figure 1c showed the mechanical strength of some leading candidates. As mentioned in
the method part, the mechanical strength of the microneedle array was measured at 200 µm
of strain. It was observed that microneedle arrays were not successfully fabricated when
using acetone as dissolving solvent. This was due to excessive bubbles generated during the
drying process. In the case of dimethylformamide, low viscosity and low surface tension
of the PDMS surface were observed. These hindered the sophisticated micro molding of
the microneedle array by causing overflow of the PLA solution from the mold by external
vibration or shock. Based on these observations, a solution of Resomer 207S in DMSO
(15 wt%) was selected for further experimentation. In the scanning electron microscopy
(SEM) image analysis, the successful fabrication of PLA microneedle of 250~500 µm height
was observed (Figure 1d). DMSO is regarded as a non-toxic and biocompatible solvent
at low concentrations, and has been used in drug formulations for that reason [24]. In
contrast, dimethylformamide (DMF) is a potent liver toxin that may cause serious health
issues including abdominal pain, weakness, dizziness, and alcohol intolerance [25]. We
expect that this form of microneedle fabrication based on DMSO-casting will be applicable
to the sophisticated and versatile design of microneedles, including for the arrow head or
undercut versions, in the future [26].
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under various conditions (solvent, PLA molecular weight, weight % in solution). In the force-distance
curve, the force at 200 µm was measured and noted in the table. Unit; Force (N)/array. (c) The
leading candidates of fabrication conditions. The data originates from (b). (d) Scanning electron
microscopy (SEM) image for microneedle array fabricated by Resomer 207S in DMSO with 15%. Scale
bar (white) shows 100 µm. (e) Residual of DMSO during drying. The residual DMSO percentage was
calculated in the following manner: 100 × [DMSO weight theoretically calculated (0 min) − (Weight
at 0 min − Weight at each time point)]/DMSO weight theoretically calculated (0 min). The solution
of Resomer 207S in DMSO with 15% was prepared in PDMS mold and dried. (f) Biodegradability
of PLA microneedle. The PLA microneedle (Resomer 207S in DMSO with 15%) was incubated in
proteinase K–contained PBS at 37 ◦C. Before each measurement of weight, the microneedle array was
washed using distilled water and dried to eliminate the water. ** significantly different (p < 0.05);
* significantly not different (p > 0.05) Student’s t test was performed.

In addition, we observed how much DMSO solvent remains during the drying process
(Figure 1e). After 330 min, ~98% of the DMSO was evaporated. This observation excludes
the possibility of harmful effect from residual DMSO in the PLA microneedles. Considering
that only a small portion of the microneedle tips of a microneedle array penetrates the skin,
it can be seen that the amount of residual DMSO (which could potentially infiltrate the
punctured skin) is negligible.

PLA has been widely used in 3D scaffolds in tissue engineering and implanted devices
due to its biocompatibility and biodegradability. We examined how PLA microneedle
arrays degrade or are hydrolyzed under near-physiological conditions (Figure 1f). The
degradation of PLA was studied under various conditions. Proteinase K is known to
catalyze the degradation of PLA effectively in previous studies was used for evaluation of
biodegradability [27,28]. Interestingly, the higher the molecular percentage of PLA was in
the casting solution, the higher degradation rate the PLA microneedle arrays had. After
23 days of incubation, the microneedle arrays made with 5%, 10%, and 15% casting solution
showed the residual weight ratio of 91.39%, 82.72%, and 86.39%, respectively. Previous
studies showed that the PLA concentration in a solution with organic solvent for preparing
film or scaffolding affects the porosity and pore-size of the cavities in the PLA-based
structure [29,30]. It was observed that porosity and pore size regulate the hydrolysis and
degradation of PLA [31,32]. It seems that the differences in biodegradability in relation to
the PLA concentration is due to differences in pore size or porosity in the structure. Further
research on the structure of PLA scaffolds, especially of porosity during the drying process
following solvent-casting seems to be necessary.

3.2. Mechanical Characteristics of the Microneedles

To investigate whether the PLA microneedles fabricated using the solvent-casting
method are appropriate for application to human skin, we measured the mechanical
strength of the microneedle arrays. The results are shown as force-displacement curves in
Figure 2a–c. A PLA microneedle array 300 µm high was tested using a texture analyzer.
As shown in Figure 2a, fracture, or “needle failure” was not observed. Fracture refers to
the point of drastic change in the force-displacement curve reflecting the practical morpho-
logical change of the structure [33]. This observation is consistent with previous studies of
thermoplastic polymer microneedles. Some inflection points were observed in the graphs,
but the curvature at these points (0.08 and 0.21 mm) was not significant. We fabricated
hyaluronic acid-based dissolving microneedles based on our previous work, and analyzed
their mechanical characteristics [18]. As opposed to the force-displacement curve of PLA
microneedles, needle failure was observed with the dissolving microneedles (Figure 2b). In
previous reports, it was observed that the minimum force required for a single microneedle
to penetrate the skin is 0.058 N, which ensures that our PLA microneedles have enough
mechanical strength to penetrate human skin [31].
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Figure 2. Mechanical characteristics of PLA microneedle. (a) Force-displacement curve of single
PLA needle. Texture analyzer sensor moved axially at the test speed of 1.2 mm/s with trigger force
of 0.003 N. (b) Force-displacement curve of single hyaluronic acid-based dissolving microneedle.
Same analysis condition was applied. (c) Force-displacement curve of PLA microneedle array having
various heights of 250, 300, and 350 µm. (d) Single needle compression test with 0.1 N. Scale bar,
125 µm. (e) Compression test of microneedle array with 5 N (0.06 N/needle). Scale bar, 125 µm.

In the texture analysis of the microneedle array, there was no significant difference
between microneedle arrays with heights of 250, 300, or 350 µm (Figure 2c).

In a compression test of a single PLA microneedle subjected to 0.1 N, the tip of the
microneedle structure (~5% of total height) was slightly bent, but without significant defor-
mation of the overall structure (Figure 2d). This observation is similar to the compression
test of microneedle array with 5 N (0.06 N/needle) of compression force (Figure 2e). It is
noteworthy that 0.058 N is necessary to penetrate skin, and that a PLA microneedle does
not exhibit critical deformation at 0.058 N.

3.3. Applications to Micro-Needling and Other Combined-Platforms

Microneedling, the process of repetitively puncturing the skin with a solid micronee-
dle, has been studied in the past few decades. It has been utilized for the treatment of acne
vulgaris, androgenetic alopecia, scars (atrophic acne, hypertrophic scars, or keloids), or
melisma [34,35]. As indicated by reports on the processes of percutaneous collagen induc-
tion and reconstruction of epidermis or dermis mediated by microneedling it has also been
used for skin rejuvenation [35]. This has resulted in various types of personal homecare
devices, such as microneedle-rollers or stamps. A recent in-depth investigation on the
molecular characterization of microneedling effects revealed that morphological changes
in the skin are mediated by a number of processes. These include upregulation of genes
associated with tissue remodeling and wound healing, epithelial proliferation and differen-
tiation, immune cell recruitment, changes in heat-shock proteins, and downregulation of
pro-inflammatory cytokines and antimicrobial peptides [36]. Advanced understanding of
microneedling is expected to draw widespread attention in diverse fields in the future.

We investigated whether the PLA microneedle structure would remain intact after
multiple penetrations into human skin (Figure 3a). Skin penetration efficiency was mea-
sured when a microneedle array with height of 250 µm was used to penetrate human
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skin multiple times. The penetration efficiency was measured by dividing the number
of stained punctured holes by the estimated number of holes that could be produced by
the microneedles. It was observed that the penetration efficiency exceeds 90% in every
application of microneedle until eight insertions of the same needle array (Figure 3a). There
was slight flushing and edema after application of the PLA microneedles. However this
condition disappeared within a few hours (data not shown). The severity and degree of
symptoms was not different from an individual insertion during serial insertions.

After removing the microneedle array from the skin during each application, the
microneedle structure was observed under an optical microscope (Figure 3b). The same
area of the PLA microneedle array was observed each time. The tips of the microneedles
(~5% of total height) were bent after the two insertions, but overall, the structure was
intact without any fractures or crack as indicated in the previous single needle compression
test in Figure 2a. It was observed that microneedle structure remained intact without any
significant deformation after 10 insertions. Although PLA material is biodegradable, any
PLA remaining could (rarely) cause a foreign body reaction and severe inflammation [32].
It can be concluded that our PLA microneedle exhibits appropriate mechanical strength
and other characteristics, and does not leave behind any residual solid tips that could cause
harmful effects, even after multiple applications of the same device. When considering
the practical application of the PLA microneedles in various ways, not only a coating-
based platform but also reservoir-mediated platforms were of interest. For this reason, we
investigated whether our PLA microneedle could be applied in combination with a sponge
(Polyurethane, PU) type reservoir and a sheet mask. We also considered how efficiently
these platforms promoted transdermal delivery into porcine skin.

First, we performed the Franz diffusion cell experiment after applying the sponge type
reservoir combined with a PLA microneedle patch. Microneedles having heights of 250, 350,
and 500 µm were used. Details of the experimental procedures are described in the methods
Section 2. As expected, the application of microneedles promoted transdermal delivery of
the FITC (as described in Figure 3c) by formation of micro-holes in the skin. Application
of 250 µm PLA microneedles combined with PU foam showed a 3.3-fold increase of
transdermal delivery of FITC. Compared to a negative control (topical application of FITC
solution to the porcine skin), the amount of FITC delivered to the dermis and Franz cell
reservoir was dramatically increased. This implies that the micro-pores and channels
generated on the skin promote efficient delivery of drug molecules. It is noteworthy that
a previous study showed that porcine skin has a stratum corneum (SC) that is 20–26 µm
thick and an epidermis 30–140 µm thick [30]. The use of 350 and 500 µm PLA microneedle
arrays both improved the transdermal delivery of FITC (5.6-fold and 6.6-fold, respectively).
No significant differences in the delivery efficiency of 350 and 500 µm microneedles were
observed. This observation implies that microneedles of greater length may not always
result in higher transdermal delivery efficiency.

Previous reports have paid attention to the role of vitamin C in the skin. Vitamin
C is known to be involved: (1) in collagen formation by acting as a co-factor for the
proline and lysine hydroxylases; (2) as a potent antioxidant as a scavenger of free radicals;
(3) in the inhibition of melanogenesis; and (4) in the differentiation or proliferation of skin
component cells such as keratinocytes and fibroblasts [37]. Evidence about the variability
and roles of vitamin C in intrinsic skin aging and extrinsic skin aging induced by ultraviolet
radiation is still emerging [38]. For that reason, topical application of vitamin C in a
cosmetic formulation has been proposed as an effective approach for protecting against
intrinsic or UV-induced photoaging, while transdermal delivery of vitamin C has been
challenging due to numerous factors. In this work, we tried to deliver vitamin C using a
sheet mask soaked in a 25% solution. Previous studies showed that skin occlusion (covering
of skin by tape, sheeting, or any impermeable dressing material) can increase transdermal
delivery efficiency by increasing stratum corneum hydration, and possibly by altering the
intracellular lipid organization [39]. The results of some research suggest that increase
of the skin surface temperature and blood flow by skin occlusion could also affect the
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transdermal delivery efficiency. Sheet masks, also called “facial masks” or “mask-packs”
in other cultural spheres, are widely used examples of one of the important categories in
cosmetics and offer a skin occlusion effect.
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Figure 3. Applications micro-needling and other combined-platforms. (a) Penetration efficiency of
PLA microneedle on the human skin. Same microneedle array was applied on the different sites of
upper ventral forearm. After removal of microneedle from the skin, the pores generated on the stratum
corenum were stained. Scale bar, 400 µm. (b) Optical microscopy image for PLA microneedle after each
insertion during multiple-applications. Scale bar, 125 µm. (c) Applications of the PLA microneedle
combined with PU reservoir-type patch. FITC solution (50,000 ng/mL) was injected on the PU sponge
contained in hydrocolloid patch. After 16 h, the porcine skin, and the solution of Franz-cell reservoir
were analyzed. (d) The PLA microneedle of which the length is 250 µm was applied the porcine skin.
After removal of the microneedle array, the facial mask sheet soaked with the vitamin C 25% solution
was applied on the needle-treated area. After 3 h, the vitamin C contents in skin substructures and
Franz-cell reservoir was analyzed. The data represent the average of n = 3 replicate experiments.
Standard deviation bars are shown. * Significantly different (Student’s t-test, p < 0.05).
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As in previous studies regarding the occlusive effect on transdermal delivery, the
application of a sheet mask increased the delivery of vitamin C into skin 1.9-fold compared
to application of a topical solution (Figure 3d). A dramatic increase (three-fold) of the
vitamin C in the dermis was observed. Interestingly, application of a sheet mask and PLA
microneedle (specifically, application of a sheet mask on porcine skin pretreated with a
microneedle array) dramatically increased the transdermal delivery of vitamin C. There
was a 12.9-fold and 6.8-fold increase of vitamin C delivery compared to that of the negative
control (topical solution application) and sheet-mask-alone group, respectively. It is note-
worthy that the amount of vitamin C delivered into the epidermis was not significantly
different between the three groups, as if the epidermis was saturated. A similar result was
also observed in the previous sponge-patch experiment. Previous studies performing Franz
diffusion cell experiments indicate that the amounts of drugs (or target molecules) tend to
become saturated in skin tissue, and some simulation also studies showed that the drug
concentration in the epidermis reached a plateau within about 3 h [40,41].

3.4. Burst-Based Drug Release by Sugar-Containing PLA Microneedle Fabricated via
Solvent Casting

As mentioned before, a solid microneedle system requires a drug-coating process on
either the needle’s structure or the external drug supplying system. Here, we attempted
to “load” the drug into the needle’s structure itself, with the intention that it would be
released during the application of the needle to the user’s skin. For this purpose, we added
to the PLA-DMSO solution and verified whether or not microneedles were fabricated.

We observed that three kinds of sugars were dissolved in the PLA/DMSO (15 wt%)
solution within 2 wt%. At >2 wt% of sugar, we observed that sugar began to precipitate.
Compared to sucrose and trehalose, glucose exhibited a more rapidly bursting drug release
profile (Figure 4a). When the sugar content in the PLA/DMSO casting solution was low
(0.25–0.5%), the release of FITC was limited. When the sugar content in the casting solution
exceeded 0.5%, however, it was able to significantly release FITC. Sugar contents of 0.25,
0.5, 1, and 2% resulted in total matrix solid ratios (PLA:sugar) of 1:0.17, 1:0.33, 1:0.67, and
1:1.33, respectively.

As shown in Figure 4b (enlarged version of Figure 4a), most of the drug was released
within 30 min, which enabled a “burst-drug release”. Interestingly, this rapid kinetics seems
to be similar to those that have previously been obtained for dissolving microneedles [33,42].

Measuring the mechanical strength of the trehalose-containing PLA microneedle
(Figure 4c) revealed that the strength decreased with increasing sugar content, but not
significantly. Moreover, we did not observe any critical deformation or fractures.

Scanning electron microscopy (SEM) analysis revealed that the PLA matrix had a
porous structure (Figure 4d). Based on a previous study into the relationship between
porosity and drug release from a polymer matrix [43], we conclude that the formation of
pores on the PLA matrix drove and accelerated drug release. Interestingly, we observed
that smaller pores were generated inside these outer pores, which seemed to contribute to
long-term sustained release under some specific conditions (Figure 4e). We did not observe
this “pore in the pore” structure at samples prepared with lower sugar contents.

Next, we analyzed and characterized the pores on the surfaces of PLA microneedles
(Figure 4f). The average pore area was 53.35

µm2 and the average Feret’s diameter (maximum) was 8.68 µm2. The two-dimensional
porosity (pore area/surface area) was 33.9%.

Although the pore-forming ability of trehalose was similar to that obtained in a
previous study [15], our approach exhibited a significantly different scale of release kinetics.
In our research, trehalose achieved rapid drug release within 0.5 h, while in a previous
study trehalose released the target drug from its PLGA matrix after 10 d [15]. The different
pore sizes also seemed to affect the overall drug release kinetics (8.68 µm [our study] vs.
<1 µm [ref. [15]]).
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Figure 4. Burst drug-releasing PLA microneedle. (a) FITC-releasing pattern according to the kind of
sugar and the composition of the casting solution (0.25–2%). (b) FITC-releasing pattern of trehalose-
containing PLA microneedle (1% trehalose in casting solution; same data from panel (a)). (c) Force-
displacement curves of single PLA needle arrays with different trehalose compositions. (d) SEM
image for microneedle array containing trehalose. Scale bar for top row, 100 µm; Scale bar for lower
row, 50 µm. (e) Pore formation inside outer pore (scale = 10 µm). (f) Characterization of surface pores;
“Pore area” refers to two-dimensional area of pores on surface. Histograms show pore area (left) or
Feret diameter (right). Scale bar, 50 µm. Transdermal delivery of FITC (g) and retinol (h) into porcine
skin using burst drug-releasing PLA microneedle. Franz cell diffusion was performed, and target
drugs were quantified using fluorescence spectrophotometer and HPLC.
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When comparing other similar studies for the rapid-release or delivery of drug cargo
by rapid dissolution of a specific matrix, our drug-release system shows significantly
more rapid kinetics (e.g., antibody delivery mediated by burst dilution of magnesium
particles (~15 min for 50% of drug release) [44], including a PLGA/PLA matrix rapidly
separated by bubble (~5 s for application, ~15 days for 50% of drug release from ma-
trix) [16], exosome-loaded microneedles (~4 days for 50% of matrix dissolution) [13], and a
programmed burst-drug release based on PLGA shell (30 min for application, ~10 days
for burst drug release from matrix) [14]. To investigate how the target drug was released
from the microneedle matrix during actual application to porcine skin, we loaded the
model drugs, FITC, and retinol into 500 µm-high PLA microneedles. Briefly, we inserted
the drug-loaded microneedles into porcine skin for 0.5 and 4 h, respectively, and then
quantitatively analyzed the amount of each drug.

Regarding the transdermal delivery of FITC, we observed that FITC was rapidly re-
leased from the microneedle and delivered into the skin within 1 h of application. The total
amounts of FITC delivered for the negative control (NC) and after 0.5 and 4 h were 853.87,
1906.20, and 2641.36 ng, respectively (NC refers to the needless-PLA/trehalose/FITC ma-
trix). The delivery of FITC for the NC group appears to have occurred through residual
moisture on the skin surface dissolving the trehalose and enabling the FITC to effuse out.

One of the distinguishing features was the molecular distribution between applications
after 0.5 vs. 4 h. We observed decreased amount of FITC in the epidermis over time,
suggesting that FITC diffused from the epidermis to the dermis and the reservoir as time
passed. There was no significant difference in the total amount of FITC delivered between
0.5 and 4 h after application, implying that our PLA/sugar microneedle does not require
more than 0.5 h of application time.

Retinol, which is a lipophilic vitamin A derivative, has been widely used as a cosmetic
ingredient to improve the appearance of skin by reducing fine lines and wrinkles. How-
ever, its poor water solubility and restricted transdermal delivery mean that specialized
formulations are required. During the fabrication of our PLA microneedles, based on the
DMSO-solvent casting process, we found that retinol was readily soluble in the DMSO-
PLA-trehalose solution. We applied retinol-loaded PLA microneedles to porcine skin and
characterized the transdermal delivery in the same manner as FITC. In total, we found that
413.7 and 506 ng of retinol were delivered 1 and 4 h after application, respectively. The
needleless array (NC) delivered 102.4 ng of retinol in total. Due to its lipophilicity, we ob-
served that less retinol was effused from the needle-lees array driven by residual moisture
on the skin surface, in contrast to the delivery of FITC. Likewise, the amount of retinol in
the dermis and reservoir increased with increasing application time, while its concentration
in the epidermis did not change. In the delivery of retinol, the epidermis therefore seems to
be a “rate-limiting step”, supporting the prior conclusion that the epidermis and dermis
are only critical barriers for hydrophobic species [45].

Taking everything into account, our sugar-containing PLA microneedles exhibited
the characteristics of both soluble and solid microneedles, including: (1) high mechanical
strength of solid microneedles. As shown in Figure 2b (hyaluronic acid-based soluble mi-
croneedle) and Figure 4c, the prepared sugar-containing microneedles exhibited a similar
mechanical strength to that of a PLA solid microneedle, with an approximately 45-fold
higher stiffness than a soluble microneedle (slope = ∆F/∆displacement); (2) rapid drug
release kinetics similar to soluble microneedles. Considering that soluble microneedles
can have a wide range of dissolving times depending on the material (2 min–8 h) [46], our
system requires a relatively short drug release time. Previous studies have highlighted that
most soluble microneedles suffer from critical issues regarding physicochemical instability.
Temperature and humidity can both significantly affect the mechanical characteristics of
soluble microneedles during not only fabrications but also packaging and storage. Hu-
midity is the most critical governing factor for mechanical stability due to the hygroscopic
properties of said needles; low humidity results in the microneedle structure becoming
more fragile, while high humidity results in a reduced mechanical strength due to them be-
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coming “soggy”. For this reason, the extensive application of such microneedles in hot and
humid countries still remains a hurdle, with high-stability packaging being investigated
as a possible solution [47]. Our bursting drug-releasing PLA microneedles can overcome
these practical issues regarding storage, packaging, and shipping, thereby increasing the
applicability of microneedle platforms.

4. Conclusions

Microneedles have emerged as an appealing technology for effective transdermal
delivery by filling the gap between topical applications and traumatic hypodermic needle
injection. In particular, the demand for solid microneedles able to penetrate the stratum
corneum effectively and create pores in the skin tissue is also increasing in the pharmaceu-
tical and cosmetic industries. Here, we describe an effective approach to the fabrication
of drug-releasing PLA solid microneedles using a solvent-casting method that enables a
burst drug-releasing within 30 min. This method has advantages including great simplicity,
broad geometric capability, and cost-effectiveness. Using high fidelity-replicas of micronee-
dle arrays, this approach also exhibits good scalability, which is the most important virtue
for mass-production in actual industries. It was verified that microneedle arrays having
various lengths of needles (250–500 µm) could be fabricated with adequate mechanical
characteristics. It was also shown that multiple applications of a microneedle array on
human skin is feasible without any critical deformation or cracking of the needle structure.
With respect to drug-releasing kinetics, our system exhibited quite rapid drug release of
both hydrophilic and hydrophobic drug, which is comparable to a soluble microneedle.
For this reason, our system possesses advantages for both solid microneedles and soluble
microneedles, strong mechanical strength, and efficient drug delivery in limited applica-
tion time. These advantages will help to overcome current issues regarding packaging or
shipment due to the susceptibility to external force or humidity and also to improve the
patient compliance.

As a promising fabrication approach compatible with mass-production, our PLA
microneedle system will not only contribute to microneedle science, but also allow mi-
croneedles to get closer to eventual commercialization.
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