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Background: With the unveiling of new mechanisms and the advent of new drugs, the
prognosis of diffuse large B-cell lymphoma (DLBCL) becomes promising, but some
patients still progress to the relapse or refractory stage. Necroptosis, as a relatively
novel programmed cell death, is involved in the development of multiple tumors. There are
no relevant studies on the prognostic significance of necroptosis in DLBCL to date.

Methods: We identified the differential necroptosis-related genes (NRGs) by comparing
the DLBCL and normal control in GSE12195 and GSE56315 datasets. TCGA DLBC and
GSE10846 containing clinical information and microarray expression profiling were
merged as the entire cohort. We performed consensus clusters based on NRGs and
two clusters were obtained. Kaplan–Meier (K-M) survival analysis, GSVA, GO, KEGG, and
ssGSEA were used to analyze the survival, function, and immune microenvironment
between two clusters. With LASSO and proportional hazard model construction, we
identified differentially expressed genes (DEGs) between NRG clusters, calculated the risk
score, established a prognostic model, and validated its value by calibration and ROC
curves. The entire cohort was divided into the training and test cohort, and GSE87371
was included as an external validation cohort. K-M, copy number variation, tumor
mutation burden, and drug sensitivity were also analyzed.

Results: We found significant differences in prognosis between the two NRG clusters.
Cluster A with a poor prognosis had a decreased expression of NRGs and a relatively
suppressed immune microenvironment. GSVA analysis indicated that cluster A was
related to the downregulation of the TGF-b signaling pathway and the activation of the
Notch signaling pathway. The risk score had an accurate predictive ability. The nomogram
could help predict the survival probability of DLBCL patients in the entire cohort and the
external validation cohort. The area under the curve (AUC) of the nomogram, risk score,
and International Prognostic Index was 0.723, 0.712, and 0.537, respectively. g/d T cells
and Macrophage 1 cells decreased while Macrophage 2 cells and Natural Killer resting
cells increased in the high-risk group. In addition, the high-risk group was more sensitive
to the PI3K inhibitor and the PDK inhibitor.
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Conclusion: We explored the potential role of necroptosis in DLBCL from multiple
perspectives and provided a prognostic nomogram for the survival prediction of DLBCL.
Necroptosis was downregulated and was correlated with an immunosuppressed tumor
microenvironment and poor prognosis in DLBCL. Our study may deepen the
understanding and facilitate the development of new therapy targets for DLBCL.
Keywords: necroptosis, diffuse large B-cell lymphoma, prognosis, tumor microenvironment, biomarker
INTRODUCTION

The important role of apoptosis in the initiation and
development of tumors has been well documented in previous
studies (1–4). However, when apoptotic resistance occurs,
necroptosis could be a possible alternative. Necroptosis is a
type of programmed cell death that is similar to necrosis and
apoptosis. It is mainly induced by tumor necrosis factor a
(TNFa) and the CD95 receptor/Fas ligand complex and
recruited via TNFR1, leading to various binding forms of
receptor-interacting serine/threonine-protein kinase 1 (RIPK1),
RIPK3, and mixed lineage kinase ligand (MLKL) and causing cell
death eventually (5, 6). Among them, RIPK3 and MLKL matter
most. Necroptosis participates in the human development and
maintenance of homeostasis as well as tumorigenesis. However,
the role of necroptosis in tumors is very complicated, and some
viewpoints believe that the cell death caused by necroptosis
triggers adaptive immunity (7). However, the relationship of
necroptosis itself with tumors or with its immune regulation is
not clear so far. On the one hand, necroptosis key regulators are
usually downregulated in some cancer cells, suggesting that
tumors can escape from death by inhibiting the necroptosis
pathway. For example, RIPK3 was significantly decreased in
breast cancer (8, 9), colorectal cancer (10), acute myeloid
leukemia (AML) (11), and melanoma (12). Increased driver
gene mutations in AML mice after RIPK3 knockout promoted
leukemogenesis and poor prognosis (11). These studies suggest
that RIPK3 may play an antitumor role, but in some other
tumors, the expression of necroptosis-related genes (NRGs) is
elevated to inhibit their growth. In ovarian cancer treated by
cisplatin, disease-free survival time is prolonged in the high
MLKL expression group (13). Pancreatic cancer patients with
higher expression of MLKL had higher overall survival (OS) and
progression-free survival rates (14). Shikonin inhibited lung
metastases by inducing RIPK1- and RIPK3-dependent
necroptosis in osteosarcoma (15), or regulated the production
of reactive oxygen species (ROS) through RIPK3 to inhibit tumor
cell proliferation and metastasis (16). Furthermore, RIPK3
promoted TNF-induced ROS by activating multiple enzymes
and the ROS bursts inhibited metastasis by killing cancer cells
(17). It is also nonnegligible that excessive necroptosis-related
factors can, in turn, promote tumorigenesis and metastasis.
RIPK1 was upregulated in glioblastoma, which related to poor
prognosis (18). In pancreatic cancer, RIPK1, RIPK3, FADD, and
MLKL were all increased, accompanied by accelerated cancer cell
growth (19).
2

Diffuse large B-cell lymphoma (DLBCL) is the most
common type of non-Hodgkin’s lymphoma (NHL). It can be
subdivided into several types based on its origin or genes. The
RCHOP regimen has been a classic therapy for DLBCL and has
prolonged the survival time to a great extent. The emergence of
many new treatments like chimeric antigen receptor T-cell
therapy also benefits the patient. Nonetheless, DLBCL
remains incurable, and thus, more efforts are needed to
confront the challenge.

The current understanding of the relationship between
necroptosis and lymphoma is still under exploration. MLKL
mRNA inhibits lymphoma growth in mice with human
adaptive immunity (20). Locatelli et al. found that the
combination of Givinostat (a histone deacetylase inhibitor)
and Sorafenib (an RAF/MEK/ERK inhibitor) promoted the
production of ROS continuously and activated necroptotic
cell death in Hodgkin’s lymphoma (HL) (21). Casagrande
et al. also suggested that Trabectedin promoted the
necroptosis of HL (22). In NHL, a single-nucleotide
polymorphism (SNP) of RIPK3 has been uncovered (23).
Immunotoxin containing saporin-S6 was cytotoxic, which
could be partially prevented by necrostatin-1 (a necroptosis
inhibitor) (24). The function of bortezomib is clear in myeloma.
Bhatti et al. reported that bortezomib combined with Smac
mimetics BV6 could increase the phosphorylation of MLKL
and induce NHL cell death (25). Koch et al. found that after the
knockout of MLKL in Burkitt’s lymphoma (BL), necroptosis
induced by zVAD-fmk was forbidden. Moreover, the activity of
MLKL was associated with promoter methylation (26). These
studies indicate that necroptosis played a role in lymphoma, but
the association between necroptosis and DLBCL is scarce.
There was on ly one ar t i c l e tha t ment ioned tha t
Thymoquinone promoted the development of necroptosis in
DLBCL and was more selective than chemotherapeutic
agents (27).

In summary, the current understanding of the role of
necroptosis in DLBCL remains very superficial, and there is no
literature that reveals the relationship between NRGs and
DLBCL prognosis. Therefore, we collected all the current genes
related to necroptosis and the data from public databases, and
used a bioinformatics approach to investigate the underlying
function of necroptosis in DLBCL. We developed a prediction
model based on these genes and clinical characteristics and tried
to clarify the relationship between necroptosis and the immune
tumor microenvironment (TME) surrounding DLBCL. Our
study initially explored the potential mechanisms of NRGs in
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DLBCL, showed drug sensitivity for patients in different risk
groups, and provided clinicians with a more accurate survival
prediction model.
MATERIALS AND METHODS

Data Downloading and Screening
We retrieved the raw transcriptome profiling and clinical data of
DLBCL patients and cell lines from The Cancer Genome Atlas
(TCGA; https://portal.gdc.cancer.gov/) and the Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo). The data
without survival time were removed from the data. Expression
profiling by microarray of DLBCL and normal B-cell lines was
obtained from the GSE12195 (73 DLBCL samples versus 20
normal tonsil samples) and GSE56315 (55 DLBCL samples
versus 33 normal tonsil samples) datasets with Affymetrix
Human Genome U133 Plus 2.0 Platform. Forty-eight DLBCL
samples from TCGA DLBC and 305 from GSE10846 (with
Affymetrix Human Genome U133 Plus 2.0 Platform) with
complete transcriptional and clinical data were preserved for
later analysis. Then, we merged the transcriptional expression of
TCGA DLBC and GSE10846 into one dataset and identified it as
the entire cohort after the removal of the batch effect using the
“limma” package (28). Batch effects were corrected by the
ComBat algorithm in the sva package (29). The entire cohort
was divided into the training and test cohorts equally by the
“caret” package (30). Furthermore, GSE87371 including 223
patients with Affymetrix Human Genome U133 Plus 2.0
Platform was attained as an external validation cohort. We also
downloaded simple nucleotide variant (SNV) data of DLBCL
from TCGA DLBC, and copy number variation (CNV) data
from UCSC Xena (https://xenabrowser.net/datapages/).

Cluster Analysis of the Entire Cohort
Based on the Necroptosis-Related Genes
We searched “necroptosis” in PubMed (https://pubmed.ncbi.
nlm.nih.gov/) and filtered out 198 NRGs from several articles
(5, 6, 31, 32). All NRGs are listed in Supplementary Table 1.
With the help of the “limma” and “reshape2” packages (33), we
compared the expression of DLBCL and normal cell lines and
identified 118 NRGs in GSE12195 and GSE56315. Among the
118 NRGs, 103 NRGs were identified as the shared genes in the
entire cohort. Then, we performed Cox analysis and found 25
NRGs that were correlated with survival (p < 0.05) using the
“limma”, “survival” (34), and “survminer” packages (35). To
explore their connections, the gene network and protein–protein
interaction (PPI) were generated by the “igraph” package (36)
and STRING (https://cn.string-db.org/). Based on the 25 NRGs,
two clusters (named NRG clusters) were defined by the
“ConsensusClusterPlus” package. We also drew the Kaplan–
Meier (K-M) survival analysis curve using the “survival” and
“survminer” packages. Principal component analysis (PCA)
plotted by the “limma” and “ggplot2” packages (35) could
assess the precision of NRGs. Heatmap including clusters and
various clinical data was drawn using the “pheatmap” package
Frontiers in Oncology | www.frontiersin.org 3
(37). Furthermore, we ran the “GSVA” (38) and “GSEABase”
packages (39) to clarify the relationship of function and immune
cells with 25 NRGs.

Identification and Assessment of the
Differentially Expressed Genes in
NRG Clusters
The univariate analysis of differentially expressed genes (DEGs)
associated with prognosis in NRG clusters was performed using
the “limma” package. For these DEGs, we conducted Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis using the “clusterProfiler” package
(40). Later, to make it more accurate, we obtained 24 DEGs after
the Least Absolute Shrinkage and Selection Operator (LASSO)
regression and Cox proportional hazard model construction by
the “survival”, “survminer”, and “timeROC” packages (41). The
risk score of each sample was calculated based on the expression
of the DEGs. The risk score = Coef1*Exp1 + Coef2*Exp2 +…+
Coef24*Exp24. The entire cohort was subdivided into low- and
high-risk groups by the median value of risk score. We then drew
the K-M curve, risk curve, and survival status curve of the entire,
training, test, and external validation cohort by “pheatmap”. In
order to estimate its predictive value, we drew the receiver
operating characteristic (ROC) curve at 1, 3, and 5 years using
the “survival”, “survminer”, and “timeROC” packages.
Meanwhile, cluster analysis was performed again based on the
DEGs using the “ConsensusClusterPlus” package (42) and the K-
M curve of two clusters (named DEG clusters) was made using
the “survival” and “survminer” packages. The Sankey diagram
between NRG clusters, risk score, DEG clusters, and clinical
information was drawn using “limma”, “ggpubr” (https://CRAN.
R-project.org/package=ggpubr), and “ggalluvial” (https://CRAN.
R-project.org/package=ggalluvial).

Construction and Evaluation of Nomogram
To improve the accuracy of the current prognosis score system,
we performed univariate and multivariate Cox regression
analysis of risk score and clinicopathological characteristics
using the “survival” package. The factors with p-value < 0.05
were contained to draw the nomogram, calibration curve, and
ROC curve using the “survival” package. As there were two
regimens in the dataset, we divided them into the CHOP and
RCHOP groups and drew the ROC curves. To evaluate the
stability of the predictors in the nomogram, we perform
collinearity diagnosis by SPSS.

Tumor Mutation Burden, CNV, Immune
Infiltration, and Drug Sensitivity Analysis
Between Low- and High-Risk Groups in
the Entire Cohort
We performed the “maftools” package (43) to show the TMB and
used “Rcircos” (44) to identify the CNV and its location on the
chromosome for all NRGs in TCGA DLBC. To determine the
immune cells related to DEGs and risk score, CIBERSORT
algorithm was employed. The TMB was mapped and evaluated
by the “maftools” package between the low- and high-risk
June 2022 | Volume 12 | Article 904614
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groups, so as the TMB and risk score. To figure out whether the
risk score affected drug selection, we used the “pRRophetic”
package (45) to pick out the targeted drugs between the low- and
high-risk groups.

Statistical Analysis
All analyses were conducted by using the R software (version
3.4.0) and SPSS software (version 24.0). The references of all
packages were all cited. K-M and Cox regression were used to
identify the prognosis-related NRGs. We compared statistical
differences between the two groups by the Wilcoxon test. We
performed survival analysis by the K-M method and analyzed
the difference of OS by log-rank test. LASSO and the Cox
proportional hazard model were used to identify the most
significant genes. We performed univariate and multivariate
analysis and built the nomogram by the Cox regression
method. The sensitivity and specificity of the nomogram were
implemented by the calibration curve and the area under the
curve (AUC) of the ROC curve. Collinearity analysis was
achieved by the collinearity diagnosis. Statistical significance
was defined as p < 0.05 (unless otherwise specified).
RESULTS

The Genetic Mutation Landscape and the
CNV Location of NRGs in DLBCL
The clinical characteristics of the GEO and TCGA datasets are
summarized in Table 1. The expression, genetic mutation
landscape, and the CNV location of NRGs in DLBCL are
shown in Figure 1. There were 118 NRGs that were
significantly differentially expressed between normal cells and
DLBCL (p < 0.05) (see Supplementary Figure 1). Among the
118 NRGs, 34 of them were mutated in 59.46% (22/37) of
Frontiers in Oncology | www.frontiersin.org 4
DLBCL samples (Figure 1A). STAT3 was the most frequent
mutated NRGs (14%) followed by TNFAIP3, FAS, and STAT6
(11%, 8%, and 8%, respectively). It was not hard to find that the
missense mutation was the most common mutation variant, and
C>T was the highest SNV class. As for the CNV, nearly all of
them were revealed as gain or loss after CNV analysis
(Figure 1B). CDKN2A, TNFAIP3, BACH2, and MAP3K7
were the most deleted NRGs while FASLG, GLUL, PLA2G4A,
and USP21 gained the most. Then, we mapped the exact location
of the CNV alteration on chromosomes (Figure 1C), which
mainly enriched in chromosomes 1, 2, and 9. We identified 25
NRGs according to the gene expression, survival time, and
follow-up status by Cox analysis. The K-M curve based on 25
genes is shown in Supplementary Figure 2. Moreover, the gene
network is shown in Figure 1D. The size of each circle indicated
its significance in DLBCL. The right part of the circle represented
its role in DLBCL. Purple meant it was a risk factor while green
meant it was favorable. The line between genes indicated that
they were correlated with each other (p < 0.0001). Meanwhile, we
also explored the relationship between the proteins encoded by
the NRGs (Figure 1E). CASP8 could interact with other
proteins greatly.

Establishment and Analysis of the
NRG Clusters
According to the 25NRGs, we established theNRG clusters from the
TCGA DLBC and GEO datasets using the “ConsensusClusterPlus”
package (Figure 2A). To evaluate the prognosis value of the cluster,
we drew the K-M curve, PCA, and heatmap (Figures 2B–D).
Figure 2B shows that cluster A had a worse outcome than B
(p < 0.001). PCA could easily distinguish cluster A from cluster B.
The link between gene expression, NRG clusters, and clinical
characteristics is shown in Figure 2D. Moreover, we exploited the
KEGGpathway and immune cells based on the 25NRGs by gene set
TABLE 1 | The clinical characteristics of the GEO and TCGA datasets.

Characteristics Training cohort (GSE10846) TCGA DLBC Validation cohort (GSE87371)

Sample size 305 48 221
Age, years mean (SD) 60.43 (15.21) 56.27 (13.80) 56.71 (16.08)
Gender
Female 134 26 105
Male 171 22 116

Stage
1 50 8 29
2 94 17 42
3 68 5 35
4 93 12 115

unknow – 6 –

≥2 Extranodal sites 23 – –

ECOG PS>1 75 – –

LDH>ULN 146 – –

Cell of origin
GCB 133 – 84
Non-GCB 172 – 137

Overall survival
Time, years mean (SD) 3.36 (3.04) 3.69 (3.98) 2.92 (1.47)
Death 122 9 53
June 202
TCGA, The Cancer Genome Atlas; ECOG PS, The Eastern Cooperative Oncology Group performance score; ULN, upper limit of normal; GCB, germinal center B-cell-like subtype.
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variation analysis (GSVA) and single-sample Gene Set Enrichment
Analysis (ssGSEA) as well (Figures 2E,F). In cluster A, the
downregulated genes were enriched in the TGF-b signal pathway
and metabolism of glucose, amino acid, and lipid while the
overexpressed genes were enriched in the Notch signal pathway,
metabolism, and transductions (Figure 2E). As for the immune cells
in cluster A, activated dendritic cells (DCs), CD56dim natural killer
cells (NK cells), myeloid-derived suppressor cells (MDSCs),
monocytes, and plasmacytoid DCs were upregulated while
activated CD4+T cells, g/d T cells, immature B cells, mast cells, NK
Frontiers in Oncology | www.frontiersin.org 5
cells, neutrophils, regulatory T cells, type 17 helper T cells, and type 2
helper T cells were downregulated (Figure 2F).

Identification and Assessment of the DEGs
Between the NRG Clusters
To understand the potential significance between the two
clusters based on NRGs, we then used the “limma” and
“clusterProfiler” packages to clarify the underlying function of
DEGs. GO pathway analysis showed that the DEGs were
enriched in neutrophil activation, neutrophil-mediated immunity,
A

B

D E

C

FIGURE 1 | The genetic landscape of NRGs in DLBCL. (A) The tumor mutation burden frequency and classification of NRGs in DLBCL. (B) The copy number variation
(CNV) frequency of NRGs in DLBCL. The height represents the alteration frequency. (C) The location of the CNV alteration on chromosomes. (D) The gene interaction
network of NRGs in DLBCL. The circle size indicates its significance. The right part of the circle represents its role, purple for risk factor and green for favorable. The line
between genes means they were correlated with each other (p < 0.0001). (E) The protein–protein interaction encoded by NRGs in DLBCL by STRING.
June 2022 | Volume 12 | Article 904614
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neutrophil degranulation, T-cell activation, mononuclear cell
differentiation, and lymphocyte differentiation in biological
process (BP) (Figure 3A). The DEGs were mainly involved in the
PI3K-Akt signal pathway, cytokine–cytokine receptor interaction,
endocytosis, the chemokine signal pathway, the JAK-STAT3 signal
pathway, and the NOD-like receptor signal pathway in KEGG
analysis (Figure 3B). There were 24 DEGs between the NRG cluster
(Figure 3C and Supplementary Table 2). We divided the entire
cohort into two DEG clusters (Figure 3D and Supplementary
Frontiers in Oncology | www.frontiersin.org 6
Figure 3). K-M showed a significant difference between the DEG
clusters (C, D) (p < 0.001) (Figure 3E), indicating the potential of
DEGs in DLBCL.

The entire cohort was randomly assigned into the training
cohort and test cohort to examine the predictive potential of
DEGs. After calculating the risk score, we divided the entire
cohort and GSE87371 into the low- and high-risk groups. The
K-M curve suggested a significant difference in the entire cohort,
training cohort, and test cohort (Figures 4A,D,G). The risk
A B

D

E F

C

FIGURE 2 | Establishment and analysis of the NRG clusters. (A) The consensus matrix, delta area, and consensus CDF by cluster analysis based on NRGs. Two
clusters would be best. (B) Kaplan–Meier survival curves of two NRG clusters (p < 0.001). (C) Principal component analysis of NRG clusters. (D) Heatmap of NRG
clusters and clinical data of DLBCL patients. Data of lactate dehydrogenases (LDH) and cell of origin (COO) are missing. (E) KEGG pathway enrichment analysis
between NRG clusters by GSVA. (F) Immune infiltration between NRG clusters by ssGSEA. *p < 0.05, **p < 0.01, ***p < 0.001.
June 2022 | Volume 12 | Article 904614
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curve and survival status curve showed that it could separate the
high-risk group from the other (Figures 4B,E,H). To assess the
prognostic value further, we plotted the ROC curve. The AUCs
were 0.814, 0.812, and 0.815 at 1, 3, and 5 years, respectively, in
the entire cohort (Figure 4C). For the training cohort, the AUCs
were 0.957, 0.964, and 0.977, respectively (Figure 4F). AUCs in
the test cohort were 0.685, 0.641, and 0.668 at 1, 3, and 5 years,
respectively (Figure 4I). In the external validation cohort, the
risk score could distinguish between the low- and high-risk
groups (p < 0.001) (Figures 4J,K) with AUCs of 0.834, 0.834,
and 0.777 at 1, 3, and 5 years, respectively (Figure 4L). These
results elucidated that the DEG-based risk score could perfectly
predict the clinical outcome of DLBCL patients.
Frontiers in Oncology | www.frontiersin.org 7
Construction and Evaluation of the
DEG-Related Prognostic Signature
The univariate and multivariate Cox regression analysis
indicated that age, cell of origin (COO), LDH, and risk score
served as the independent prognostic factors (Figure 5A), and
we constructed the nomogram based on them (Figure 5B). The
nomogram predicted that OS at 1, 3, and 5 years was
approximately close to the observed OS in the calibration
curve (Figure 5C). To assess the factors in the nomogram, we
performed collinearity diagnosis and the results showed that the
collinearity tolerance of each predictor was great than 0.1 and the
variance inflation factor was less than 10. Condition index was
less than fifteen, and the maximum value in the horizontal row
A B

D E

C

FIGURE 3 | Identification and construction of NRG-based DEG clusters. (A) GO and (B) KEGG analysis of the differential genes between two NRG clusters.
(C) LASSO and Cox proportional hazard model construction between NRG clusters. (D) The consensus matrix by cluster analysis based on DEGs. Two clusters
would be best. (E) Kaplan–Meier survival curves of two DEG clusters (p < 0.001). BP, biological process; CC, cellular component; MF, molecular function.
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was not simultaneously greater than 0.5 in the vertical column
(Supplementary Tables 3, 4). These results indicated that there
was no collinearity in the independent predictors. Compared
with the COO plus International Prognostic Index (IPI, scoring
with available data) or IPI alone, the nomogram could
remarkably increase the AUC (the AUC is 0.723, 0.712, 0.552,
and 0.537, respectively), suggesting its vital role in the prognosis
of DLBCL (Figure 5D). Different regimens for DLBCL have an
effect on the prognosis as well. Our results showed that the risk
score could markedly enhance the efficacy in both CHOP and
RCHOP groups (Figures 5E,F).

Immune Cells, CNV, TMB, and Drug
Sensitivity of the NRGs Between Low- and
High-Risk Groups
By comparing the risk score between NRG clusters, we found
that the risk score of cluster A was significantly higher than that
of cluster B (p = 2.3e-06) (Figure 6A). As seen in Figure 6B,
several NRGs showed a significant difference between the low-
and high-risk group. Apart from that, we plotted the Sankey
diagram of NRG clusters, DEG clusters, risk score, follow-up
status, extranodal site, and Ann Arbor stage (Figure 6C).
Frontiers in Oncology | www.frontiersin.org 8
The NRG clusters, DEG clusters, risk score, and follow-up
status corresponded well while the clinical characteristics
varied widely.

The relationship between NRGs and immune cells had been
demonstrated before, and we herein investigated the correlation
between DEGs and immune cells. In Figure 7A, T regulatory
cells (Treg), g/d T cells, and CD4 activated memory T cells
ranked most with the DEGs, correlated with 18/24 (75%), 18/24
(75%), and 17/24 (70.83%) genes, respectively (Figure 7A).
Between the low- and high-risk group, g/d T cells and
Macrophage 1 (M1) were negatively correlated with risk score
while NK resting cells and Macrophage 2 were positively
correlated (Figure 7B).

In addition, the CNV of NRGs in the whole samples had been
displayed above, but they varied between the low- and high-risk
group. As was shown in Figure 7C, IGLV3-1, KMT2D, GHV2-
70, CARD11, HIST1H1E, MYD88, and MCU16 mutated the
most (22%) with 6/9 (66.67%) altered samples in the high-risk
group. Intriguingly, IGLV3-1 had the highest mutation (62%),
followed by CARD11 (50%), GHV2-70 (38%), IGLC2 (38%),
B2M (38%), SOCS1 (38%), and HIST1H1C (38%) with 7/8
(87.5%) altered samples in the low-risk group (Figure 7D).
A
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I

H

J

K

LC

FIGURE 4 | Evaluation of the risk score in the entire, training, test, and external validation cohort. (A, D, G, J) K-M curve of the entire, training, test, and external
validation cohort, respectively. The p-value is <0.001, <0.001, 0.027, and <0.001, respectively. (B, E, H, K) The risk curve and survival status curve of each cohort,
respectively. (C, F, I, L) ROC with AUC at 1, 3, and 5 years of each cohort, respectively.
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Missense mutation was the most common variant classification
in both groups.

TMB was a pivotal part in tumors as well. NRG-related TMB
appeared to be different apparently between the low- and high-
risk groups (Figure 7E). In DEG clusters, NRG-related TMB was
positively related to risk score (Figure 7F).

To testify the therapeutic potential of DEGs, we performed
the correlation of different risk groups with current anti-tumor
drugs. Twenty drugs were discovered between the low- and high-
risk group (Figure 8 and Supplementary Figure 4). We found
Frontiers in Oncology | www.frontiersin.org 9
that NVP-BEZ235 and BX.795 were sensitive in the high-risk
group (Figures 8A,B) while the rest were more sensitive in the
low-risk group.
DISCUSSION

Previously, necroptosis was considered to be an accidental form
of programmed death that was not controlled by molecular
events. However, necroptosis is similar to apoptosis in that
A B

D

E F

C

FIGURE 5 | Construction and estimate of nomogram. (A) The univariate (green) and multivariate (red) Cox regression analysis of clinical characteristics and risk
score. (B) The nomogram integrating COO, age, LDH, and risk score for DLBCL patients. (C) The calibration curve of the nomogram at 1, 3, and 5 years,
respectively. (D) ROC curve of the nomogram, risk score, COO+IPI, and IPI score. ROC curves of the nomogram, risk score, COO+IPI, and IPI score in the CHOP
regimen group (E) and RCHOP regimen group (F). ES, extranodal sites; COO, cell of origin; LDH, lactate dehydrogenases; GCB, germinal center B-cell like; ULN,
upper limit of normal.
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they are largely intertwined in cells and may even overcome
apoptotic resistance by immunity (6). Several studies have shown
that necroptosis is associated with tumors (6, 46). However,
studies on necroptosis in DLBCL are limited. Here, we
established a molecular signature based on NRGs that was
significantly associated with the survival time of DLBCL in
both the entire cohort and the external validation cohort by
bioinformatics methods. The nomogram combined with the
genes and clinical information could largely improve the
efficacy of the prognosis for DLBCL patients. Models that
cover both clinical and gene expression data will accurately
provide instructions for the classification and therapy of
DLBCL patients.

By comparing the expression of NRGs in normal and DLBCL
cell lines, many NRGs with differential expression were
identified. MLKL, which is very specific to necroptosis, is one
of the components for the assembly of the necroptosis complex.
Decreased MLKL is associated with shorter OS in many cancers
(13, 14, 47–49), which may be related to the immune surveillance
of the TME. Since DLBCL is a highly heterogeneous tumor, we
divided the entire cohort into two clusters based on differential
NRGs. In cluster A, most of the NRGs were downregulated and
Frontiers in Oncology | www.frontiersin.org 10
were associated with a poor prognosis, while in cluster B, the
expression was increased and was related with a relatively
favorable prognosis. MLKL, which is very specific for
necroptosis, is one of the components underlying the assembly
of the necroptosis complex. Decreased MLKL was associated
with shorter OS in many cancers (13, 14, 47–49), which was
consistent with our results. Further analysis showed that MLKL
was closely correlated to CASP8 in cluster A. One of the triggers
of necroptosis is that if caspase 8 activity is inhibited, complex IIb
binds RIPK1 to phosphorylate RIPK3 and forms complex IIc
(necroptosome). The necroptosome recruits and phosphorylates
MLKL, resulting in altered conformation, causing MLKL
translocation to the cell membrane, increasing cell membrane
permeability, and leading to cell death finally (5). Hence, we
presumed that the interaction between MLKL and CASP8 was
inhibited, leading to the development of DLBCL. However,
further investigations are required for verification. KEGG
pathway analysis showed that the highly expressed genes in
cluster A with poor prognosis were mainly enriched in the
Notch signaling pathway, while the lowly expressed genes were
enriched in the TGF-b signaling pathway. Notch plays a role in
promoting and maintaining lymphoid malignancies by
A B

C

FIGURE 6 | Connection of risk score and NRG clusters. (A) The relationship of risk score and NRG clusters (p = 2.3×10-6). (B) The differential NRGs between the
low- and high-risk group. (C) Sankey diagram including NRG clusters, DEG clusters, risk score, follow-up status, extranodal site, and stage. *p < 0.05, **p < 0.01,
***p < 0.001.
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regulating relevant signaling pathways (50). The Notch signaling
pathway has been reported to be aberrantly activated in DLBCL
(51), and it has also been found that Notch can interact with the
tumor or stem cell microenvironment via stromal cells (52). Our
study found that the Notch signaling pathway enrichment was
associated with poor prognosis, suggesting that it may promote
tumor development by affecting the necroptosis process of
DLBCL or stromal cells in the TME. The TGF-b signaling
pathway can inhibit tumor cell proliferation (53). In DLBCL,
the pathway was previously reported to be recurrently
Frontiers in Oncology | www.frontiersin.org 11
i n a c t i v a t ed ( 54 ) , bu t in mu l t i p l e mye l oma and
myeloproliferative disorders, TGF-b exerted pro-tumor activity
by inhibiting host tumor immune surveillance. Disruption of
TGF-b signaling pathway could also promote hematologic
tumors by regulating the stroma and immune system (55). Our
study suggested that TGF-b was a tumor suppressor in DLBCL.
However, the specific mechanism remains to be elucidated.

Necroptosis is tightly related to anti-tumor immunity (56).
Werthmöller et al. reported that the combination of the zVAD-
fmk (a pan-cysteine aspartate protease inhibitor) with other
A B

D

E F

C

FIGURE 7 | Identification of immune infiltration and genetic variants underlying the different risk groups. (A) The correlation intensity between DEGs and immune cells.
(B) The relationship of immune cells in risk score. g/d T cell and Macrophage 1 were negatively correlated with risk score while NK resting cell and Macrophage 2 were
positively correlated (p < 0.01). The CNV frequency of (C) high-risk and (D) low-risk groups. (E) The TMB between the low- and high-risk group (p = 0.00074).
(F) The correlation of TMB and risk score (p = 0.0049). *p < 0.05, **p < 0.01, ***p < 0.001.
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therapies (including radiotherapy, chemotherapy, and
thermotherapy) could induce necroptosis in melanoma.
Regulatory T cells (Treg) are reduced and dendritic cells (DC)
and CD8+ T-cell infiltration are increased in anti-immunity,
resulting in significant suppression of tumor growth (57). The
relationship between tumors and immune cells is complicated.
Our study found that the levels of activated CD4+T cells,
eosinophils, g/d T cells, immature B cells, mast cells, NK cells,
neutrophils, regulatory T cells, type 17 T helper cells, and type 2
T helper cells were reduced, while activated DCs, CD56 dim NK
cells, MDSCs, monocytes, and plasmacytoid DCs were increased
in cluster A. We suppose that the expression of NRGs is
downregulated in DLBCL with poor prognosis, leading to a
reduced sensitivity of these cells to TNFa agonism (11).
The reduction of anti-tumor immune cells and the increase
of inhibitory immune cells may result in a disturbed
immune microenvironment and an immunosuppressive state
in DLBCL. The immune microenvironment of DLBCL is distinct
frommelanoma, and with its unique response characteristics and
immune m i c r o env i r onmen t , n e c r op t o s i s - r e l a t e d
immunomodulatory agents need to be explored.

Meanwhile, the risk groups based on DEGs may provide
guidance for drug selectivity. We found that the high-risk group
was more sensitive to both NVP.BEZ235 and BX.795.
NVP.BEZ235 is a targeted drug that inhibits PI3K/mTOR,
and the most enriched KEGG signaling pathway was exactly
PI3K-Akt. This drug has been previously studied in DLBCL cell
lines (58), but the relationship between NVP.BEZ235 and
necroptosis is unclear. BX.795 targeting PDK1 inhibition,
with no relevant research in DLBCL, may provide a potential
direction for follow-up studies. Sorafenib was found to promote
Frontiers in Oncology | www.frontiersin.org 12
ROS production in HL, thus causing necroptotic death (21).
Our study found that the group with relatively abundant NRGs
was more sensitive to it, suggesting that there is some
connection between them.

Of course, there are some limitations to our study. First of all,
the number of genes we obtained was a little bit high, but these
genes were well-analyzed and confirmed to be meaningful. The
second is that our study was based on public databases and has
not been validated by cellular experiments and clinical samples
yet. It would certainly be better if further proof could be
provided. The aim is to further clarify the characteristics of
each cell population in DLBCL by single-cell sequencing.
CONCLUSION

In conclusion, we established a nomogram integrated with clinical
characteristics and gene signature based on NRGs that prompted
the prediction power of DLBCL. The downregulation of NRGs
correlated with a immunosuppressed TME and poor prognosis in
DLBCL. Our work may provide a basis for more in-depth studies
in the future, a reference for drug selection by clinicians, and a
reliable way to predict survival for DLBCL patients.
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