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Women have a higher incidence and prevalence of autoimmune diseases than men, and

85% or more patients of multiple autoimmune diseases are female. Women undergo

sweeping endocrinological changes at least twice during their lifetime, puberty and

menopause, with many women undergoing an additional transition: pregnancy, which

may or may not be accompanied by breastfeeding. These endocrinological transitions

exert significant effects on the immune system due to interactions between the hormonal

milieu, innate, and adaptive immune systems as well as pro- and anti-inflammatory

cytokines, and thereby modulate the susceptibility of women to autoimmune diseases.

Conversely, pre-existing autoimmune diseases themselves impact endocrine transitions.

Concentration-dependent effects of estrogen on the immune system; the role of

progesterone, androgens, leptin, oxytocin, and prolactin; and the interplay between Th1

and Th2 immune responses together maintain a delicate balance between host defense,

immunological tolerance and autoimmunity. In this review, multiple autoimmune diseases

have been analyzed in the context of each of the three endocrinological transitions in

women. We provide evidence from human epidemiological data and animal studies that

endocrine transitions exert profound impact on the development of autoimmune diseases

in women through complex mechanisms. Greater understanding of endocrine transitions

and their role in autoimmune diseases could aid in prediction, prevention, and cures of

these debilitating diseases in women.
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KEY POINTS

• Women undergo three major endocrinological transitions: puberty, pregnancy and menopause.
• These endocrine transitions exert a significant influence on the innate and adaptive immune

system due to the interaction between the hormonal milieu, innate and adaptive immune system
as well as pro- and anti-inflammatory cytokines.

• Concentration-dependent effects of estrogen on the immune system, the role of progesterone,
androgens, leptin, oxytocin and prolactin; and the interplay between Th1 and Th2
immune responses together maintain a delicate balance between defense against pathogens,
immunological tolerance, and autoimmunity.

• Human epidemiological data, animal studies, and mechanistic experiments have demonstrated
a strong link between endocrine transition states in women and development of certain
autoimmune diseases such as multiple sclerosis, systemic lupus erythematosus, type 1 diabetes
mellitus, rheumatoid arthritis, and psoriasis.
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• Greater understanding of endocrine transitions and their role
in autoimmune diseases could aid in prediction, prevention,
and cures of these debilitating diseases in women.

ENDOCRINE TRANSITIONS IN WOMEN
INCREASE THEIR SUSCEPTIBILITY TO
AUTOIMMUNE DISEASES

Introduction
Autoimmune (AI) diseases include over 80 disorders and are
the third most common category of disease in the United States
after cancer and cardiovascular disease, affecting∼5 to 8% of the
population or 14.7 to 23.5 million people (1, 2). While the clinical
manifestations of AI diseases vary in terms of affected tissues,
age of onset, and response to immunosuppressive treatments,
a shared feature of all AI diseases is the contribution of host
immune-mediated responses to tissue injury (3). AI diseases
are the result of a complex interaction between genetic and
environmental factors, and most of these factors have not yet
been definitively identified (4).

Women constitute ∼78% of those affected by autoimmune
diseases, bearing a disproportionate burden of the highmorbidity
associated with these chronic conditions (5–8). Female sex is
a risk factor for polyautoimmunity (9). The “gender gap” in
autoimmunity has been well known for over 20 years (10, 11)
and AI diseases are a leading cause of death among young
and middle-aged women (12). Figure 1 enumerates the gender
differences in prevalence of autoimmune diseases (8, 13–20).

AI diseases have a strong gender-specific component with
female hormones playing a major immunomodulatory role
that depends on their concentration in the bloodstream, the
concomitant levels of other hormones, and the age of the
host (21). Commencing at puberty, women undergo cyclical
hormonal changes until menopause, called menstrual cycle
which makes pregnancy possible (22, 23). Pregnancy and post-
gestational phases are characterized by hormonal fluctuations
that have a long-lasting holistic impact on women’s health
(24). Menopause is a state of reproductive senescence when
menses cease and is preceded by a 3–4 year period of
irregular reproductive function known as the perimenopausal
transition stage (25). In a rat model, which mimics both
endocrine and chronological aging observed in women (26),
perimenopause was characterized by a decline in expression
of genes involved in bioenergetics, as well as differential
regulation of the inflammatory response (26). There is evidence
that the changing hormonal milieu during the menopausal
transition, and its effect on inflammatory processes plays a role
in the increased susceptibility of peri- and post-menopausal
women to autoimmune diseases (Table 1) (27–29). For example,
in women aged around 50 years, neutrophil percentage
dropped whilst lymphocyte percentage rose (30), subjecting
perimenopausal women to increased risk of lymphocyte
mediated autoimmune diseases.

The dynamic hormonal milieu during these transitions is
significant from the perspective of sexual and reproductive
health, but also influences other aspects of female health, such

as susceptibility to infection and autoimmunity, tissue integrity,
ophthalmology, movement, cognition, disability, and overall
quality of life. A better understanding of these transitions and
their association with autoimmune diseases represents a critical
component of women’s health.

Autoimmune Diseases and Endocrine
Transition States
Below five relatively common autoimmune diseases, namely
Multiple Sclerosis, Systemic Lupus Erythematosus, Type 1
DiabetesMellitus, Rheumatoid Arthritis, and Psoriasis, have been
discussed in the context of endocrinological transition states in
women: puberty, pregnancy, and menopause.

Multiple Sclerosis
Multiple sclerosis (MS) is largely prevalent among women of
reproductive age and is less common in men, with twice as
many women affected as men (31). However, disease progression
and neurodegeneration occur more rapidly in men (32). MS is
closely linked to the female reproductive and hormonal cycle,
and the majority of cases of MS in adolescence are observed
post-puberty (33).

Over the past six decades the absolute number of cases of
MS has increased with the increase in the female-to-male sex
ratio among patients. The sex ratio among MS patients was
reported to be 1.4 in 1955 (34), reaching a 2:1 ratio in the 1980s
(35), approaching a ratio of 3:1 in mid-2000s (36, 37) and then
surpassing it in recent years (38–41). MS after 50 years of age
is greater in women and exhibit a more rapidly degenerating
phenotype. Postmenopausal status has been associated with
increased disease severity, even adjusting for disease duration and
type, and earlier age at menopause also appeared to have a strong
correlation with increased disease severity (42).

Puberty
Pediatric MS, defined as MS diagnosis at<8 years of age has been
observed in∼3–5% of MS patients (43–45), while MS onset after
the age of 50 years (known as Late-Onset MS or LOMS) occurs
in ∼5% of patients (46). Pre-pubertal MS onset is uncommon
(47, 48), however, the incidence of MS increases after puberty
(45, 47–49). The sex ratio of MS incidence is approximately
equal in children <13 years of age (pre-pubertal) but increases
to 2.2:1 with double the number of females affected in the 13–
18 years age group (45, 47, 48). Acute demyelinating disorders
(ADS) such as transverse myelitis (50) and acute disseminated
encephalomyelitis (51) are more common among children <10
years of age and show no female preponderance. However,
in women, chronic demyelinating diseases, such as MS and
neuromyelitis optica, are more frequent post-puberty than in
men (33, 45, 47, 48, 50, 51). Ahn et al. (52), reported that female
children with ADS and a later age of menarche were less likely to
be diagnosed with MS. MS patients showed a spike in relapse risk
only during the peri-menarche transition, and a peak in disease
onset was observed 2 years after menarche (53). Earlier age at
menarche has been shown to increase the risk of MS in female
subjects significantly (p-value = 0.00017), while in male subjects
the association between the risk of MS and earlier age at puberty
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FIGURE 1 | Sex differences in prevalence ratio of autoimmune diseases. Autoimmune diseases are significantly more prevalent in women than men.

TABLE 1 | Autoimmune diseases and transition states.

Puberty Pregnancy Menopause

T1DM • Peak incidence between 5 and 7 years and at puberty.

• Greater risk of complications in girls.

• Worsens pregnancy outcome vs. T2DM.

• Thyroid antibodies associated with

Gestational DM but lack predictive value.

• High TSH and thyroid autoimmunity increase

GDM risk.

• Females with T1Dm have higher mortality than

men.

• Microvascular complications in T1DM result in pre-

mature menopause.

• Women bear unequal burden of sequelae of

T1DM vs. men.

SLE • Increase incidence in girls post-puberty.

• ANA titer higher in female children.

• Effect on height higher in males.

• Menarche pushed to higher age.

• Lower E2 levels in pregnant lupus patients

vs. pregnant controls.

• Prolactin levels positively associated with

severity.

• Flares more common with increase

in estrogen.

• Decreased frequency of flares after menopause

but more damage from each flare.

• Sexually dimorphic immune response in the gut

mucosa of males and females.

RA • Earlier age at menarche increases risk. • Pregnancy and breast feeding is protective. • Irregular menstrual cycle increases risk.

• Early age at menopause significantly associated

with RA.

• More joint destruction in post-menopausal

women.

• HRT protective.

MS • Sex ratio rises to 2.2:1 post-puberty.

• Late menarche decreases risk (females-only).

• Pre-pubertal ovariectomy decreases risk.

• Spike in relapse during peri-menarche and incidence

peak post-menarche.

• Higher leptin in females may increase risk.

• Relapse rate reduced during pregnancy but

worsens after delivery.

• Breast-feeding reduces relapse.

• Peak incidence in perimenopausal age group.

• Post-menopausal women have worse symptoms

and higher severity.

• More frequently primary progressive MS than

relapsing-remitting MS in post-menopausal

age group.

Psoriasis • Perimenarchal increase in incidence. • Decreased severity during pregnancy.

• Higher estrogen and higher E2 to

progesterone ratio results in improvement.

• Post-menopausal exacerbation of psoriasis.

• Late onset psoriasis is more common in women

than in men.

was not found to be significant (54). Clinical and epidemiological
observations have led to the conclusion that puberty increases the
risk of MS, with post-pubertal females more likely to develop MS
than post-pubertal males of the same age group.

Pregnancy
A systematic review (55) of 22 publications confirms the
reduction of relapses during pregnancy, due to increased levels

of sex hormones produced (56). MS symptoms also vary during
the menstrual cycle (57). Pregnancy has a protective effect on
MS. For pregnant MS patients, the relapse frequency of MS was
reduced to half during the latter half of pregnancy (18 weeks
gestation and beyond), and during the third trimester the relapse
rate was found to be lower by 70% than in the pre-pregnancy
state (58–63). After delivery,MSworsened, with frequent relapses
in the postpartum period with the highest relapse frequency
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observed to occur within 3 months of delivery (64). In a Danish
study (65), childbirth was found to reduce the risk of MS by
∼46% for 5 years following the pregnancy and pregnancies
terminated early also conferred protective effect on the risk of
developing MS, suggesting that temporary immunosuppression
during pregnancy served to protect pregnant women fromMS in
the period immediately following the pregnancy.

Menopause
A British study published in 2014 (66) reported a peak
incidence of MS in women between the ages of 40 and 55
years (perimenopausal and menopausal age group). The authors
concluded that divergent trends in MS incidence in women and
men were established around puberty (12–16 years) and the
increased MS incidence in women did not converge with the
incidence in men until∼60 years of age (post-menopausal).

Disease progression was comparable among men and women
with Late Onset MS (LOMS), defined as MS diagnosis in
persons over 50 years of age, while in patients with MS
onset at a younger age (<40 years), disease progression was
more rapid among men than among women, although the
disease is more common in women (46). Bove et al. also
noted a greater proportion of men in the LOMS cohort
(female: male ratio of 1.86) than in the Adult Onset MS
(AOMS) cohort (female: male ratio 2.84) cohort (46). This
association suggests that female sex may be a risk factor for
an earlier presentation of MS, during the reproductive years,
or alternatively, that male sex may have a protective effect.
Additionally, misdiagnosis of MS in older patients might be a
common phenomenon (67) and delays in diagnosis up to 4.7
years have been reported (68, 69), due to unusual presentation
of the disease (70).

Common symptoms shared between menopause and
MS include fatigue, urologic, affective, cognitive, and
vasomotor symptoms (71). Declining estrogen levels during
the perimenopausal transition have been associated with
immunological alterations comparable to those observed in
MS, which include increased secretion of pro-inflammatory
cytokines (IL1, IL6, TNF-alpha) and decreased production of
anti-inflammatory cytokines (72). Accelerated cognitive decline
has been associated with menopause; this is suggested to result
from loss of ovarian estrogens leading to impaired brain repair
mechanisms and eventual neurodegeneration (26, 71, 73, 74).
Therefore, menopause may alter the immune, inflammatory, and
neurodegenerative aspects of reproductive aging, independent
of the effects of the MS disease process itself and contribute
to the misdiagnosis or delayed diagnosis of MS in peri- and
post-menopausal women, as described earlier.

In persons with LOMS, it has been observed that the MS
disease type at onset was less frequently relapsing remitting
(80% for LOMS vs. 95% for AOMS in female patients); the
primary progressive course wasmore frequently rapidly evolving,
with fewer relapses or new gadolinium enhancing lesions; and
symptoms more frequently involved motor and coordination
symptoms and less frequently involved visual symptoms,
compared to individuals with AOMS disease (70, 75–78).

Systemic Lupus Erythematosus (SLE)
Systemic lupus erythematosus (SLE) affects a significantly greater
number of women than men (13, 79–81). The Michigan
Lupus Epidemiology and Surveillance Program (81) reported an
increased incidence and prevalence of SLE in women across all
ethnicities. The female to male ratio of SLE incidence was 6:1
and SLE prevalence was 10:1, and incidence rates were higher
in African American female subjects compared to Caucasian
female subjects (81). In late childhood, a trend of increased
incidence of SLE was observed among African American girls
compared to Caucasian girls (81). In the 20–50 year range,
an early incidence peak of SLE has been reported in African
American women but there were no significant differences in SLE
incidence between African American and Caucasian women after
the average age of menopause (81), calculated to be 51 years in
the US (82). Globally, estrogen levels were shown to be higher in
Asian (Japanese) and African (Bantu) women than in Caucasian
women (83) which explains the observation that SLE is more
prevalent in some ethnic groups, such as Afro-Americans and
Asians, since SLE is antibody-mediated and higher estrogen levels
favor antibody-mediated Th2 immune response (84).

A Japanese study (85) stratified patients with SLE by age and
sex distribution and found that the overall female to male ratio of
SLE was 8.2:1. Furthermore, while the prevalence of SLE among
women showed two peaks, between ages 35–39 years and ages
55–59 years, no significant age-dependent peaks were observed
among men (85). An epidemiological study in an 80% Caucasian
population in Minnesota reported that SLE prevalence peaked
between the age 40–49 years (perimenopausal) among women
and then decreased sharply in the 50–59 years age group while
incidence of SLE in women peaks between the ages of 20 and
29 years, and between the ages of 50 and 59 years (79). The
incidence of SLE in men remained low until the 60–69 years age
group, increasing thereafter, with a peak in men >70 years of
age (79). Men >60 years of age have a higher prevalence of SLE
compared to younger men (79). A study published in the UK (13)
supports the hypothesis that transitional states in women may
play a major role in the development of autoimmune diseases
such as SLE. This retrospective cohort study, conducted using
the CPRD, a longitudinal database of UK general practice records
incepted in 1987 and believed to be representative of the UK
population, found that the peak SLE incidence rate was observed
in 40–49 years age group among women (perimenopausal) and
in the 60–69 years age group among men (13), similar to the
Minnesota study (79). The incidence rate of SLE in women fell
sharply in the 60–69 years group (postmenopausal), suggesting
that risk of autoimmune diseases like SLE may decline in the
postmenopausal age group (13, 79).

Puberty
The female-to-male ratio in SLE has been reported to vary
between 2:1 and 6:1 before puberty, 7:1 to 15:1 after puberty, and
3:1 to 8:1 post-menopause (86, 87), suggesting that, in women,
the increase in hormone levels during puberty enhances the
risk of development of autoimmune states. An epidemiological
study from Taiwan (88) noted a substantial increase in the
prevalence of juvenile SLE among Taiwanese girls compared to
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boys of the same age. Prevalence of SLE in girls was 0.65 per
100,000 children at age one, increasing to 6.7 per 100,000 at
age seven, and increasing further to 34.6 per 100,000 at age
15 (88). The prevalence figure for boys was almost zero per
100,000 at ages one and seven, increasing to 7.8 per 100,000 at
age 15 (88). The 7–15 years age group spans the pre-pubertal
and pubertal years for females in Taiwan with the average
age of menarche being 12.1 years (89). The multifold jump in
juvenile lupus prevalence in female subjects is an indication that
endocrinological transition, i.e., puberty, may play an influential
role in immunomodulatory function and correlate with increased
susceptibility to autoimmune diseases during the peripubertal
transition. Titers and prevalence of antinuclear antibody (ANA),
a marker for lupus, increased in children through puberty,
particularly among girls (90).

Patients suffering from Cutaneous Lupus Erythematosus
(CLE), a variant of SLE, demonstrate equal sex distribution with
a female to male ratio of 1:1, but the female to male ratio of CLE
patients rose to 4.5:1 if the disease onset was at or after the age of
12 (91). Different sex ratios have been reported according to the
subtypes of CLE. Acute CLE has the highest female to male ratio
(12:1) while chronic CLE had an almost equal ratio of 1.1:1 (91).
Above observations suggest a role of puberty in the development
of SLE.

Conversely, SLE exerts sexually dimorphic effects young male
and female patients. A study exploring the effect of lupus
on height found that there was a significant (p-value<0.0001)
reduction in the parent-adjusted height z score with time in
girls compared to boys (92). The mean menarche age was higher
among juvenile patients with SLE than in controls (p-value
= 0.0008) despite comparable maternal menarche age in both
groups (93).

Pregnancy
E2 concentrations are abnormally low in pregnant patients
with SLE during periods of increased disease activity, compared
with pregnant women not suffering from SLE (94, 95). Serum
prolactin and disease activity of SLE have been positively
associated in multiple studies (96–100). Abnormally high
prolactin levels during pregnancy in SLE also positively
correlate with disease activity (95, 101). Furthermore, two
double-blind, placebo-controlled human studies have shown
that suppression of prolactin with bromocriptine, which also
increases estradiol concentration (102) reduces SLE disease
activity (103–105). Exacerbation of SLE is more common during
the pre-menstrual period and pregnancy, during which women
experience increased estrogen levels (84). This phenomenon is in
contrast with other autoimmune diseases such as MS, psoriasis
and T1DM, which are mediated by T lymphocytes, while SLE is
a disease mediated by autoantibodies producing-B lymphocytes;
and E2, throughout its concentration range, has been shown to
stimulate antibody production by B cells (106).

Menopause
The female to male incidence ratio of 2.6 is significantly lower in
the late onset SLE group (>50 years age) than in the early onset
SLE group in which the ratio is 13.2 (107). Furthermore, there is

evidence that early age at menarche, oral contraceptive use, early
age at menopause, surgical menopause, and postmenopausal
use of hormones were associated with an increased risk of SLE
(108). Women suffering from SLE and undergoing menopausal
transition show a decreased frequency of exacerbations of
SLE after menopause, a decreased SLE Disease Activity Index
(SLEDAI), but a greater accumulation of damage in the affected
organs from each discrete exacerbation in the postmenopausal
period (109–112).

Type I Diabetes Mellitus (T1DM)

Puberty
Unlike other AI diseases such as MS, RA and SLE, the incidence
and prevalence of type 1 diabetes is slightly higher in men and
boys than in women and girls (113). The epidemiological data
in the International Diabetes Federation Atlas 2013 (6th edition)
indicate there are∼500,000 known cases of children (0–14 years)
with T1DMworldwide and 50–60% of cases are diagnosed before
the age of 15 years (114). A study in the Swedish population (18)
found that there were no differences between the sexes in the
incidence rate of T1DM in children aged between 3 months and
14 years. For both sexes the incidence of type 1 diabetes peaked
twice, first between 5 and 7 years of age, and then at or near
puberty (115). The incidence of T1DM in subjects aged between
15 and 39 years is twice that in men compared to women (115).
There are fewer cases of T1DM in subjects aged 40 years or above,
and in this age group the incidence of T1DM is comparable
between men and women (115). In contrast to the Swedish study,
a Japanese study assessing 77 male and 95 female participants
found that although the incidence of T1DM in the prepubertal
age group was comparable between the sexes, while it was higher
among female subjects in the pubertal age group (116).

While the above observations indicate that globally male
children and adults form the majority of T1DM patients, it is
important to note that girls and women suffer from morbid
sequelae of T1DM more often than males. The development of
T1DM during the pubertal transition in girls is associated with a
range of conditions. Girls suffering from T1DM are at a greater
risk of excessive weight gain and adiposity during puberty, which
may exacerbate insulin resistance (117). Adolescent girls with
T1DM are more prone to hyperandrogenism or polycystic ovary
syndrome phenotype, potentially adding to the cardiovascular
risk profile of these patients (117). End Stage Renal Disease
(ESRD) is a serious complication of T1DM (118). Among female
patients, pubertal onset (onset between 10 and 19 years of age)
of T1DM confers the highest risk of development of ESRD
compared to prepubertal onset of T1DM (onset <10 years
of age) or adult onset of T1DM (onset >20 years of age)
(119). Furthermore, female subjects are at a 29% higher risk of
developing retinopathy as a complication of T1DM compared
to male subjects (120). Young adult women (20–29 years) with
T1DM lose the cardiovascular protection that is otherwise seen
in the general female population, and exhibit similar rates
of ischemic heart disease as those observed in adult men of
18–49 years of age with T1DM (121–123). Increased insulin
resistance has been observed among girls at all Tanner stages
of pubertal development (124) compared to boys at the same
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stages, even adjusting for adiposity, Body Mass Index, waist,
or hip circumference. In peri-pubertal girls with T1DM, lower
sex hormone binding globulin (SHBG) and high free androgen
index (FAI) are associated with higher BodyMass Index Standard
Deviation Scores (BMI-SDS) and higher total daily insulin per
kilogram bodyweight (125, 126).

Therefore, as the evidence above demonstrates, even though
there are more boys with T1DM than girls, girls remain more
susceptible to the sequelae of T1DM and these sequelae are
exacerbated by pubertal onset of T1DM.

Pregnancy
Pregnant women with diabetes mellitus are affected by either
T1DM, T2DM or gestational diabetes (GDM). Pregnancy
outcomes differ depending on the type of diabetes. Pregnant
women with T2DM had lower Hemoglobin A1c (marker of long-
term control of blood glucose) and lower insulin requirements,
lower maternal weight gain, fewer cesarean deliveries, and
gestational age at birth was significantly higher than women
with T1DM (127). While fetal losses occurred in both T1DM
and T2DM groups, intermediate and late term fetal losses
were significantly less common among T1DM patients, and
T1DM patients had significantly more fetal losses due to
congenital anomalies or prematurity compared to T2DMpatients
(128). Furthermore, T1DM patients have a higher incidence
of complications and of poor pregnancy outcomes than those
with T2DM (129). These observations show that while poorly
controlled hyperglycemia is a primary characteristic of both
T1DM and T2DM, pregnancy outcomes are worse among
women with pre-existing T1DM.

Gestational diabetes
Gestational diabetes is defined as an intolerance to glucose
that is first diagnosed or has its onset during pregnancy (130).
Close associations have been documented between GDM and
immune system. An increase in number and proportion of
different subsets of T lymphocytes have been documented in
pregnant women suffering from GDM (131–136). Alterations in
proportion of regulatory T cell (Treg) subpopulations (137) have
also been observed in these women along with reduced function
of immunosuppressive Treg cells (137).

A recent meta-analysis (138) concluded that there was a
significant association between thyroid antibodies and the risk
of GDM but thyroid antibodies measured in the first trimester
in pregnant women lacked predictive value for the risk of GDM.
Furthermore, presence of thyroid antibodies may not increase
the risk of GDM in pregnant women who have a normally
functioning thyroid gland (138), although higher than normal
thyroid-stimulating hormone (TSH) levels (≥2.5 mU/mL) in
pregnant women are associated with GDM (139).

Adiposity-induced inflammation in pregnancy (140), and
antigenic load of the fetus (141) have both been implicated as
causes in the development of GDM but sex steroid may have a
role to play as well (142, 143). It was found that first-trimester
Sex Hormone Binding Globulin (SHBG) values were inversely
associated with an increased risk of the development of GDM that
was diagnosed at 26 to 30 weeks of gestation (144); the association

was independent of the influence of maternal weight and other
important variables that included age, race, and smoking.

Women with autoimmune GDM are more likely than women
with non-autoimmune GDM to show pancreatic autoantibody
positivity (145). Even though both pregnancy with GDM (146)
and healthy pregnancy (147) may be associated with an increased
production of thyroid antibodies and altered thyroid function,
a combination of high TSH and thyroid autoimmunity in early
pregnancy resulted in a 4-fold increase in the risk of GDM, as
well as increasing the risk of adverse pregnancy outcomes (148).
Anti-thyroid peroxidase (anti-TPO) has been detected in ∼10–
16 % of all pregnant women tested (146, 148) and in 80% of
women who were screened specifically for GDM; however only
26% of all women who exhibited anti-TPO in their blood had
a GDM diagnosis according to WHO criteria (149), suggesting
that measurement of anti-TPO antibodies has low specificity for
GDM screening.

Based on these observations it is likely that hormone
fluctuations during pregnancy may play a role in the
development of GDM and subsequent progression to T1DM.

Menopause
No significant differences were observed in age at menopause
in women with T1DM, compared to controls in a 2011 Finnish
study (150). These results contradicted previous studies reporting
an earlier menopause age among women with T1DM, that
claimed an average decrease in reproductive years by 17%
(151). However, the Finnish study did note that patients with
microvascular complications due to diabetes had a significantly
earlier menopause (150). A meta-analysis (123), which included
data from 200,000 participants, found a significant and clinically
meaningful difference in the excess risk of mortality in female
patients with T1DM compared to male patients, particularly in
relation to mortality due to vascular causes. For macrovascular
outcomes, such as cardiovascular and renal disease, the excess
risk of mortality in women compared with men was even
more prominent which could be due to the greater effect
of hyperglycemia and diabetes seen in women than in men
(152, 153).

In conclusion, young girls and women are more likely
to be in a persistent state of poor glycemic control than
young boys and men (154, 155), starting at puberty (124,
156, 157). An additional contributing factor is the disturbance
in the hypothalamic-pituitary-ovarian axis in women, which
triggers a chain of endocrinological events, starting with delayed
menarche, menstrual irregularities and early menopause (158).
As a result, even though the incidence and prevalence of T1DM
in women may be equal to or lower than those reported among
men, women bear an unequal burden of the disease and its
sequelae throughout their lifetime, which is attributable to the
endocrinological milieu unique to women.

Rheumatoid Arthritis (RA)
A study published in 1990 involving 564 patients with RA (159)
reported an overall female tomale incidence ratio of 2.3; however,
with increasing age the female to male ratio decreased from 3.7
before 30 years of age to 1 after the 6th decade of life. The
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study also suggested that the average woman develops the first
symptoms of RA at the time of menopause (159), with a peak age
of RA onset around menopause (160). However, recent studies
have suggested that overall prevalence of RA is four times higher
in women than in men, and female to male incidence ratio of RA
increases with age and is three to five times higher in reproductive
and perimenopausal age group (161, 162) and in three regions in
the world, namely, America, Europe and Western Pacific, over
four out of five RA patients are women (162). Synovial fluid level
of estrogens relative to androgens were found to be significantly
elevated in both male and female patients with RA (163, 164).

Puberty
The polymorphism rs2476601 has been found to be significantly
associated with juvenile RA in female but not in male patients,
with evidence of a genotype-by-sex interaction (165). Early
menarche at age <12 years was inversely associated with RA
(166, 167) and found to be protective factor in one study (168).
A study on an Egyptian population of boys and girls with
juvenile rheumatoid arthritis found no significant difference in
pubertal delay between male and female patients with RA in that
country (169).

Pregnancy
Pregnancy and breastfeeding have been found to be a protective
factor for RA (160, 170–172). The Swedish Nurses’ Health
Study, which was a 26-yearlong follow-up study with more
than 120,000 female participants revealed that breastfeeding for
>12 months was inversely associated with the development of
RA, and demonstrated decreased risk of RA in postmenopausal
women with a history of long-term breast feeding (173).
The effect was dose-dependent and remained significant after
adjustment for smoking and level of education (173). Irregular
menstrual cycles and earlier age at menarche increased the
risk of RA while other reproductive hormonal factors were not
associated with an increased RA risk (173). A study on Chinese
women in Guangzhou, China arrived at a similar conclusion
that breastfeeding, especially of longer duration, but not oral
contraceptive use, was positively associated with a lower risk of
RA (174).

Possible explanations for the protective effect of breast
feeding include long-term immunomodulation, such as the
development of progesterone receptors on lymphocytes,
dysregulated hypothalamic–pituitary–adrenal axis, and
differences in cortisol concentrations. Lankarani-Fard et al.
(175) measured cortisol concentrations in postmenopausal
women, and noted significantly higher concentrations in those
who had breast fed. In contrast, short-term breast-feeding may
actually increase RA risk (176). Oxytocin, one of the hormones
that is raised in women who breast feed, is known to reduce
cortisol concentrations (177), induce well-being, and lower
blood pressure in the mothers (178). Prolactin, which also is
increased during breast feeding, is a known immunostimulator
(179), and high concentrations of prolactin are seen in patients
with RA (180, 181).

These observations suggest differential short-term and
long-term effects of breast feeding on the immune system,

and consequently on susceptibility to RA based on variable
concentrations of different sex hormones before, during and
after pregnancy.

Menopause
Early age at menopause (≤40–45 years) was found to be
statistically significantly associated (182) with the subsequent
development of rheumatoid factor (RF)-negative RA, whereas
it was positively correlated with RF-positive RA, but the
association did not reach statistical significance. The effect of
early menopause on development of RA remained significant
after adjusting for smoking, level of education, and length of
breastfeeding (166, 183). The Canadian Early Arthritis Cohort
Study on the other hand found that early age at menopause
is significantly associated with seropositivity in women with
early RA (184). An observational cohort study of RA patients
enrolled in the Swiss Clinical Quality Management Program
for Rheumatoid Arthritis, published in 2018, discovered that
in women with RA, functional disability progression was
less favorable in post-menopausal women compared to pre-
menopausal women and was not explained by disease duration,
age or radiographic damage (185) and a similar study in US
women found that menopause is associated with a worsening
progression of functional decline (186). A cohort study focusing
on pathological joint damage found that although patients >60
years of age of both sexes suffering from RA had greater joint
damage compared to younger patients (both male and female),
older postmenopausal female patients had most severe disease in
terms of joint destruction and physical disability (187). The study
concluded that the menopausal state is responsible for the major
part of the differences in outcome between men and women in
RA (187). This conclusion is also supported by a population-
based control study (188) demonstrating the protective effect of
post-menopausal hormone therapy in RA.

Psoriasis
Prominent increase in incidence of psoriasis is observed in the
sixth decade of life which corresponds to the postmenopausal
period (189–191). Another set of studies found a bimodal
distribution of ages of onset for psoriasis; puberty and between
the ages of 30 and 50 years (192–194).

Puberty
The peripubertal increase in the prevalence of psoriasis may
be explained by the increase in sex hormones during this
period since sex hormones are known to promote keratinocyte
differentiation (195). High levels of estrogens seem to have a
regulatory and inhibiting effect on many components of the
immune response, while low levels can be stimulating (106, 196,
197) and similar to other T cell mediated autoimmune diseases,
such as MS and RA, estrogen is protective in psoriasis.

Pregnancy
Psoriatic body surface area (BSA) was found to significantly
decrease between the 10th and the 20th week of gestation
compared to that in controls, while BSA significantly increased
by 6 weeks postpartum (198) suggesting protective role of
pregnancy in psoriasis. Pregnancy’s natural immunomodulation
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is associated with alleviation of symptoms in patients suffering
from psoriasis (199, 200). A number of studies have investigated
the association between hormones and psoriasis (201–203). A
worsening of psoriatic symptoms has been observed postpartum,
prior to menses, and at menopause, concomitant with decrease in
estrogen and progesterone levels, while most patients undergoing
hormone therapy around menopause noted no change in their
symptoms. Although progesterone levels alone did not correlate
with changes in psoriatic symptoms among pregnant women, a
higher ratio of estrogen to progesterone resulted in improvement
in symptoms in a group of 47 patients (198).

Menopause
A decrease in estrogen level during menopause was reported
to affect the occurrence or exacerbation of psoriasis in patients
already suffering from the condition, and it has been postulated
that reduced estrogen levels lead to insufficient inhibition of Th1
cell-mediated responses in menopausal women and consequent
disease exacerbation (204).

Mechanistic Perspective: Hormones,
Transition States, and Epigenetics
MS, RA, Psoriasis and T1DM are considered to be Th1 mediated
autoimmune diseases while in case of SLE, Th2-mediated
autoimmunity is believed to predominate. However, at least one
study found a Th2-skewed immune response in adult patients
with T1DM (205).

Endocrine Transition and Autoimmunity:

Reproductive Hormones
T-cell-mediated autoimmunity is upregulated post-puberty,
as demonstrated by Ahn et al. (52) who observed that female
post-pubertal mice developed enhanced myelin-reactive
T-cell responses, compared to age-matched mice that had
been prevented from entering puberty via pre-pubertal
ovariectomy. Similarly, Makino et al. (206) demonstrated a
reduced incidence of type 1 diabetes mellitus (T1DM) with
pre-pubertal ovariectomy in non-obese female diabetic mice,
whereas pre-pubertal castration in male mice increased the risk
of T1DM suggesting inherent protection enjoyed by the male sex.
A study also demonstrated hormone-dependent gender-specific
splenic immune response post-puberty where female mice
exhibited higher expression of adaptive immune response genes
while male mice had higher innate immune response genes’
expression (207). A significant gender-dependent divergence in
serum immunoglobulins levels was also noted in the study (207).
No statistically significant pre-pubertal differences were noted in
this study.

Estrogen Receptor—alpha is expressed in pancreatic beta
cells and sex hormones also exert effects on beta cell function
(208). Exogenous estrogen might limit islet amyloid polypeptide-
mediated beta cell loss in mice (209). Even though increased
prevalence and severity of islet amyloid deposition has been
identified in males compared to females with Type 2 Diabetes
Mellitus (T2DM) (210), in T1DM, beta cell destruction was
increased in females compared to males after puberty (211),
potentially due to the influence of sex hormones on the immune

system in the immune-mediated T1DM. Puberty may accelerate
onset of T1DM in genetically susceptible females, mediated
by the effect of estrogen on the Interleukin-6 (IL6) promoter
(212). Anti-islet autoantibodies have been detected years before
clinical diagnosis of T1DM (213) and these antibodies, which
play an important role in T1DM disease development, are more
frequently inherited paternally than maternally, even though
frequencies of these autoantibodies were found equal in male and
female offspring (214).

During peripubertal thymic involution, androgens stimulate
CD8+ cells and reduce the CD4+/CD8+ ratio, which diminishes
cell-mediated immune responses in male mice and rats, while
estrogen has the opposite effect, supporting CD4+ T cell survival
(215, 216). Compared to healthy women serum testosterone was
reduced in women suffering from Th1-mediated autoimmune
disease such as MS, particularly during the active phase of
the disease, as documented by brain MRI, while no significant
difference was seen in sex hormone levels between men suffering
fromMS and healthymen (217). Estrogenmay be both pro- (218)
and anti-inflammatory (219), depending on the circulating levels
in the blood as well as cell-specific receptor activation (49, 220).
High-estrogen states seem to favor amelioration of symptoms in
T-cell mediated autoimmune disorders such asMS and RA, while
a low-estrogen state is associated with disease progression (221).

Important role of estrogens in SLE pathogenesis has been
long-suspected but the molecular mechanisms involved remain
to be definitively elucidated (222, 223); however recent evidence
suggests that rapid turnover of ER-alpha receptor molecules in
T cells from SLE patients due to cellular level alterations in the
ubiquitination signaling pathway may be responsible (224).

Estrogen was also found to inhibit the production of IL-12
and TNF-alpha (203), suppress antigen-presenting capacity in
dendritic cells, and normalize type 1-shifted T cell priming by
dendritic cells (225) as well as stimulate anti-inflammatory IL-10
production in dendritic cells and T cells (226), thereby conferring
protective effect on women in the reproductive age group against
Th1-mediated psoriasis.

Both early (four weeks of age) and late (12 weeks of
age) estrogen administration protected non-obese diabetic
(NOD) mice from spontaneous autoimmune diabetes up to
30 weeks of age via revival of invariant natural killer T
(iNKT) cells’ immunomodulatory function (227). Early estrogen
administration averts insulitis that would signal loss on
pancreatic beta cells and delayed treatment ameliorates insulitis
to thwart the destruction of inflamed islets through what the
authors described as “bystander effect” (227).

Hormonal fluctuations in pregnancy (228) and the associated
exacerbations of SLE are well-documented (229, 230). Estrogen
has been traditionally associated with SLE (231, 232). At plasma
levels experienced during pregnancy, estrogen inhibits Th1-
mediated pathways, through mediators such as interleukin-1
(IL-1), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-
α), suppresses the activity of natural killer (NK) cells, and
stimulates Th2-mediated pathways, through mediators such as
interleunkin-4 (IL-4), interleukin-10 (IL-10), and Transforming
Growth Factor—beta (TGFβ) (106), as well as enhances the
number and function of CD4+ CD25+ regulatory T cells
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(233, 234). At lower concentrations than those observed
during pregnancy, estrogen stimulates release of Th2-response
mediating cytokines, promotes NK cell activity (106) and
stimulates antibody production by B cells (106). In fact, a 1-
year pilot study (235) in 16 patients demonstrated that blocking
estrogen receptors in vivo by an estrogen selective receptor
downregulator could be considered as a new and relatively safe
therapeutic approach in the management of SLE patients with
moderately active disease.

During the perimenopausal transition, declining levels of
estrogen and dehydroepiandrosterone sulfate may be associated
with increased production of Th1 cytokines such as IL-1, IL-
6, TNF-α, and increased response to these cytokines, decreased
secretion of Th2 cytokines, decreased lymphocyte levels (CD4+
T cells, B cells), and decreased cytotoxic activity of NK cells (236).

Based on above observations, it is clear that hormones
significantly affect the immune system (86) and there is
strong evidence that estrogens have immunomodulatory effects
(237–239). The role of hormone replacement therapy and
estrogen receptor modulators in autoimmune diseases is being
explored (240–246).

Thyroid autoimmunity has been described as a “window”
into autoimmune states and has been covered in multiple
reviews (247–249). Individuals suffering from more than one
autoimmune disease are likely to have a co-existing thyroid
autoimmune state as well, which may have been present in
either clinical or subclinical form since first diagnosis of another
autoimmune disease (248). It is possible that hormonal flux
in susceptible women may trigger or precipitate downstream
changes that disturb the fragile balance between inflammation
and immune regulation, similar to a neurological “tipping point”
described in perimenopause that results in hypometabolism,
insomnia, depression and ultimately neurological decline (250).

Endocrine Transition and Autoimmunity: Other

Factors
Leptin has been implicated as another hormone potentially
responsible for the sexual dimorphism in post-puberty
autoimmune diseases (251). Leptin is necessary for the
induction of MS in in leptin-deficient, C57BL/6J-ob/ob mice
(252). Leptin levels continue to rise in post-pubertal females,
but not in males due to the suppressive effect of testosterone on
leptin secretion (253). Furthermore, injection of recombinant
leptin in male mice increases their susceptibility to developing
experimental autoimmune encephalomyelitis (254). Obesity and
therefore leptin are implicated as central triggers of unnecessary
or aggressive inflammatory state responsible for autoimmune
states and the increased incidence of autoimmunity could be a
function of increased leptin, while in men testosterone acts as an
immunosuppressant. This hypothesis is lent credence by a study
in patients with Hashimoto’s thyroiditis (both hypothyroid and
euthyroid) where body mass index and fat mass was higher in
patients compared to controls (255).

Prolactin is another pro-inflammatory hormone implicated
in development of autoimmune diseases due to its increased
concentrations found in post-pubertal females compared to men
(179). Significantly higher prevalence of autoimmune thyroid
diseases was found in female prolactinoma patients compared

to age-matched healthy women (256). Similarly, SLE patients
had higher leptin levels compared to controls and these levels
were correlated with disease activity and severity (257). Increased
leptin in SLE also showed an inverse correlation with the
frequency of Treg cells (257).

Not all autoimmune pathogenesis can be attributed to
hormonal influence. Etiopathogenesis of Th2-mediated
autoimmune diseases such as SLE has been attributed to
the sexual dimorphism of the immune response, initiated in the
gut mucosa (258). Female mice were found to have higher plasma
cell- and gut-imprinted-α4β7 T cell frequencies, markedly higher
CD45+ immune cell densities, and higher numbers of IL-17-,
IL-22-, and IL-9-producing cells in the lamina propria compared
to male counterparts (258).

Prepubertal pediatric autoimmune diseases such as Juvenile
Rheumatic Arthritis peak between the ages of two and four
when levels of both estrogen and testosterone are low (259) and
direct hormonal influence on autoimmunity is likely minimal.
In utero sex steroid levels are much higher than in childhood
but reach low levels after birth, but approximately around the
6-month mark estrogen and testosterone levels reach between
one-fifth to one-third of adult levels in female and male children,
respectively, and this period has been termed “mini-puberty”
(260). It is possible that this rise in levels of sex hormones
soon after birth primes genetically susceptible individuals to
develop autoimmune diseases in early childhood or later in life.
Epigenetic mechanisms, discussed later, could also play a role in
prepubertal autoimmune diseases (261–265).

Pregnancy results in a shift from a pro-inflammatory and
cell-mediated (Th1) type of immune response to an anti-
inflammatory and antibody-mediated (Th2) type of immune
response, which promotes fetal survival due to diminished Th1
responses involved in rejection of the fetus as an allograft
(266). After pregnancy, Th1 immune-mediated diseases reappear
(267–270). Pregnancy has little effect on long-term disability in
women suffering from MS according to some sources (32, 271),
although one study found pregnancy and childbirth associated
with less long-term disability (272). Breastfeeding is protective
in Th1 mediated disease and women with MS who breastfed
were found to have an almost 50% lower risk of post-partum
relapse (273) compared to women who did not breastfeed.
Although breastfeeding seemed to protect women from relapse,
a considerable body of literature covered in an excellent review
(274) implicates prolactin as one of the causes of the post-
partum surge in MS symptoms, and this phenomenon is similar
to higher prolactin levels found in post-pubertal female subjects
that plays a role in increasing their susceptibility to Th1-mediated
autoimmune diseases (179). This contrasting phenomenon can
be explained by the observation that prolonged breastfeeding was
found to decrease proinflammatory CD4+ tumor necrosis factor-
α-producing cells in both healthy women and women with MS,
but cell counts increased again after menses resumed (275).

With respect to gestational diabetes, changes in
concentrations of two chemokines—an increase in level of
the chemokine Monocyte Chemotactic Peptide (MCP)-1 levels,
and decrease in levels of another chemokine, RANTES
(Regulated on Activation Normal T-cell Expressed and
Secreted)—is implicated in the pathogenesis (276). MCP-1
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is a pro-inflammatory activator of several immune cells
(277), and RANTES is an immunomodulator suppressing the
maternal allogeneic response (278). In diabetic pregnancies,
increase in MCP-1 and decrease in RANTES will elevate pro-
inflammatory response and attenuate the immunosuppressive
effect of RANTES.

Endocrine Transition and Autoimmunity: Influence of

Epigenetics
Recently it has come to light that the autoimmune regulator
(AIRE) is key to central tolerance of self-antigens and hormonal
action affects the expression of AIRE mRNA and protein
(279). Estrogen as well as male castration downregulated

FIGURE 2 | Factors that contribute to increased incidence and prevalence of autoimmunity in women. In women (46XX) with genetic susceptibility to autoimmune

states, external environmental stimuli affect modifying factors as well as endocrine transitions via epigenetic mechanisms. Additionally, there are interactions between

estrogens, androgens, leptin and prolactin on one hand and the interplay between Th1 and Th2 immune responses on the other. Both (endocrine and immune

response) these phenomena are influenced in varying ways during the female transition states depending on the circulating concentrations of different hormones and

immune cytokines, which in turn may be determined by epigenetics. Thus, hormonal fluctuation, immune polarization and transition states together drive susceptible

women over the autoimmune “tipping point” leading to manifestation of overt clinical disease.

FIGURE 3 | Three-fourths of all patients suffering from autoimmune disease are women. Based on the source of information, it is estimated that 5–8% (NIH, 2005) to

20% (American Autoimmune Related Diseases Association, 2017) of all Americans suffer from at least one autoimmune disease, of which ∼78% or three-fourths

patients are female, and the rest are male. Despite this, autoimmune diseases are rarely discussed as a women’s health issue.
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AIRE, while estrogen-mediated methylation of CpG sites in the
promotor region of AIRE could potentially disturb the delicate
balance between autoreactive T cells and Treg cells, precipitating
clinical autoimmune disease(s) in the presence of environmental
trigger(s) (279). The role of epigenetics and DNA methylation
was also explored by our lab and we found that DNAmethylation
plays a key role in progression toward reproductive senescence
(280), which could have crucial implications for autoimmune
states observed in post-menopausal women. Inhibition of DNA
methylation expedited transition to reproductive senescence
in female Sprague-Dawley rats, while increased methylation
through methionine supplementation prolonged the period
of endocrine aging by preserving regular cycling (280).
Another theory suggests that environmental toxins termed
“endocrine disruptors” play a key role in the increased
incidence of autoimmune diseases, cancer and diabetes by
altering the genome and the epigenome (281). Age related
immune dysfunction in innate and adaptive immune system
regulated via epigenetic mechanisms has been observed (282)
and implicated in autoimmune disease states. Epigenetically
induced immunosenescence potentially leads to elevated levels of
proinflammatory cytokines during the aging process either due
to accumulated toxins or the normal aging process or both and
consequently increases the susceptibility to autoimmune diseases
in aging (283). These age-related changes occur in both sexes
but testosterone’s immunosuppressant function and its decline
much later in life (284) compared to estrogen’s varying effects
on the immune system, hormonal flux in women and earlier loss
due to menopause amplify the effects of immune system-related
changes in females compared to males. Epigenetic mechanisms
of MS (285), SLE (286, 287), RA (288), T1DM (289) and psoriasis
(290) has been studied in some detail but further elucidation is
necessary to fully understand the role of epigenetics as a driver of
menopausal transition and autoimmunity in females.

Similar to menopause, puberty too has a strong epigenetic
component as articulated by Toro et al. (291), and epigenetic
mechanisms are likely a bridge between external non-genetic
stimuli (environment, nutrition, physical activity) and genomic
expression or repression that serves to modulate puberty.
In fact, Thompson et al. (292) discovered that in females,
puberty associated DNA methylation changes at CpGs are
in close proximity to estrogen responsive genes and form
networks centered on respiratory and inflammatory processes.
Moreover, the authors suggest that these epigenetic changes that
materialize during puberty in females likely contribute to the
sexual dimorphism of immune-mediated diseases later in life
(292). Some of these epigenetic mechanisms could be DNA
methylation, histone post-translational modifications and non-
coding RNAs (291) that have been known to influence various
autoimmune diseases (293, 294). To add to this complexity,
Markle et al. (295) showed that microbial exposure in early-life
affects level of sex hormones and influences autoimmune states in
non-obese diabetic mice via sex hormone regulation. Male NOD
mice were conferred protection against T1DM by gut microbiota
and this protection was transferable to immature female NOD
mice via transfer of microbiota, which increased testosterone in
the female mice, reduced islet cell inflammation and decreased
antibody production (295).

Based on these observations, the epigenetic regulation of
perimenopausal and peripubertal transition states could be the
missing link that connects hormonal flux, genetic susceptibility
and environmental stimuli in the initiation, pathogenesis and
clinical manifestation of autoimmune diseases. Future studies
can shed light on the exact molecular pathways as well as clarify
causal relationships between the different factors that ultimately
cause autoimmune disease states to manifest.

CONCLUSION

Autoimmune disease states show strong associations with
endocrinological changes in human and animal studies.
There is clear evidence for the role of sex steroids in the
immune disturbances that result in autoimmune diseases
(Figure 2). The majority of women who pass through the
different endocrinological transition states do not succumb to
autoimmune diseases.

However, a small percentage of women emerge with an
increased risk of developing autoimmune diseases due to
sustained hormonal changes during the endocrinological
transitions coupled with genetic susceptibility and environmental
injury, which are likely modulated by epigenetic mechanisms.
In women there are interactions between estrogens, androgens,
leptin and prolactin on one hand and the interplay between
Th1 and Th2 immune responses on the other. Both (endocrine
hormones and immune responses) these phenomena are
influenced in varying ways during the female transition states
depending on the concentration of different hormones and
immune cytokines. Thus, hormonal fluctuation, immune
polarization, and transition states together increase the
susceptibility of women to autoimmune diseases.

Autoimmune diseases are highly debilitating diseases with
no cure and only moderately satisfactory but expensive
treatment that nonetheless increases patients’ vulnerability
to deadly infections due to prolonged immunosuppression.
Autoimmune diseases result in considerable erosion in quality
of life, unemployment or underemployment and increased
caregiver hours. Based on the source of information, it is
estimated that 5–8% (1) to 20% (American Autoimmune
Related Diseases Association; https://www.aarda.org/knowledge-
base/many-americans-autoimmune-disease/; accessed on Nov.
20, 2018) of all Americans suffer from at least one autoimmune
disease, of which ∼78% or three-fourths patients are female, and
the rest are male (Figure 3) (296). Despite this, autoimmune
diseases are rarely discussed as a women’s health issue. The
incidence and prevalence rates of various autoimmune diseases
are rising all over the world (297, 298). At the global level,
increased incidence and prevalence of autoimmune diseases in
Western and Northern countries compared to Southern and
Eastern countries has led to speculation that alterations in
dietary habits such as highly prevalent Western diet, increased
exposure to pollution as well as a changing environment may
be responsible for this region-specific rise (297). The National
Institutes of Allergy and Infectious Diseases (NIAID) in 2011
estimated that the cost of treating autoimmune disease in the
US is >$100 billion annually (299); this excludes indirect costs
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to the patient and family members incurred due to decreased
quality of life and loss of productivity. In contrast, autoimmune
diseases research funding from NIH was $883 million in FY
2016 and $821 million in FY 2015 (300). Recently women’s
health issues have received more attention, and considering
autoimmune diseases are a leading cause of death among young
and middle-aged women in the United States (12), the plight of
autoimmune disease patients should not go unnoticed. Increased
funding for research in autoimmune diseases and exploring
their link to endocrine transitions, raising awareness among
healthcare providers and the general population and developing
better support systems for both men and women suffering
from autoimmune diseases are some ways to mitigate the toll
autoimmune diseases take on our society.

Greater understanding of: (1) the underlying cellular and
molecular level immune changes due to endocrinological
transitions; (2) the genetic and epigenetic characteristics

of women who have increased likelihood of developing
autoimmune diseases; and the (3) translational animal
models currently used to study endocrinological transition
states in women could help predict, potentially prevent and
even cure the debilitating group of autoimmune diseases
in women.
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