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Simple Summary: Triacylglycerols are the major component of intramuscular fat, and the final step in
their biosynthesis is catalyzed by DGAT2. Bovine skeletal muscle satellite cells were infected with the
overexpression adenovirus Ad-DGAT2 and interfering adenovirus sh-DGAT2. The results showed
that overexpression of DGAT2 upregulated the expression of genes involved in lipid accumulation
and adipogenesis and increased cellular triacylglycerol content. The differentially expressed genes
were mainly enriched in the PPAR signaling, glycerolipid metabolism, fatty acid biosynthesis, and
AMPK signaling pathways. These results highlight the important regulatory role of DGAT2 during
adipogenic transdifferentiation of BSCs and the complexity of intramuscular adipogenesis, as well as
providing a theoretical basis for producing high marbling content beef.

Abstract: Intramuscular fat (IMF) is closely related to the tenderness, juiciness, and flavor of beef, and
is an important indicator for beef quality assessment internationally. The main components of skeletal
intramuscular fat (IMF) are phospholipids and triacylglycerols (TAG), and the final step of TAG
biosynthesis is catalyzed by diacylglycerol acyltransferase 2 (DGAT2). To explore the effect of DGAT2
on the differentiation of bovine muscle satellite cells (BSCs) and its role in the signaling pathway
related to lipid metabolism, the adenovirus overexpression and interference vector of the DGAT2
gene was constructed in this study, and the overexpression adenovirus Ad-DGAT2 and interfering
adenovirus sh-DGAT2 were used to infect BSCs. Overexpression of DGAT2 resulted in a significant
increase in the contents of TAG and ADP, and the mRNA and protein expression levels of PPARγ,
C/EBPα, and SREBF1 (p < 0.05). Interfering with the expression of DGAT2 reduced the intracellular
TAG content and lipid droplet accumulation. Furthermore, the mRNA and protein expression
levels of PPARγ, C/EBPα, and SREBF1 (p < 0.05) were significantly downregulated. Transcriptome
sequencing showed that a total of 598 differentially expressed genes (DEGs) were screened in BSCs
infected with Ad-DGAT2, and these DEGs included 292 upregulated genes and 306 downregulated
genes. A total of 49 DEGs were screened in BSCs infected with sh-DGAT2, and these DEGs included
25 upregulated and 24 downregulated genes. KEGG enrichment analysis showed that the DEGs,
after overexpression of DGAT2, were mainly enriched in the PPAR signaling pathway, and the fat
digestion and absorption, glycerophospholipid metabolism, fatty acid biosynthesis, and AMPK
signaling pathways. The DEGs obtained after interfering with DGAT2 were mainly enriched in
the metabolic pathways, such as the PPAR signaling pathway and PI3K/AKT signaling pathway.
In summary, our study demonstrated that the lipid droplet formation, TAG accumulation, and
adipogenic gene expression in BSCs overexpressing DGAT2 were higher than those in the control
cells. These results highlight the important role of DGAT2 in regulating BSCs during adipogenic
transdifferentiation and underscore the complexity of intramuscular adipogenesis.
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1. Introduction

The fat content in skeletal muscle is closely related to the sensory and edible quality of
beef and has a great influence on the flavor, color, juiciness, and tenderness of meat. This
includes intramuscular fat (IMF) located within the perimysium, intermuscular fat (INTMF)
located between muscle bundles, and intramyocellular lipids (IMCL) [1]. IMF content is
an important indicator of meat quality. The main components of IMF are phospholipids
and triglycerides, the content of which is mainly determined by number and size, and
which is associated with the proliferation and differentiation capacity of intramuscular
adipocytes, which provide a site for the subsequent “marbling” of fat deposits. Skeletal
muscle PDGFRα + FAPs cell populations and satellite cell populations serve as the main
sources of intramuscular adipocytes, which are key targets in the regulation of intramus-
cular adipocyte development and “marbling” fat deposition [2]. Satellite cells are skeletal
muscle progenitor/stem cells that reside between the basement membrane and plasma
membranes of skeletal muscle fibers in vivo and can give rise to muscle cells and adipocytes.
Furthermore, the proliferation and adipogenic differentiation potential of skeletal muscle
satellite cells are closely related to IMF deposition [3,4]. IMCL are mainly stored in muscle
fibers, in the form of lipid droplets. The components of lipid droplets in skeletal muscle are
esterified lipids, mainly triacylglycerol (TAG), followed by cholesterol and diacylglycerol
(DAG) [5,6]. There are two pathways for TAG synthesis: the phosphoglycerol pathway
(Kennedy pathway), and the monoacylglycerol (MG) pathway [7]. The phosphoglycerol
pathway functions in most cells, while the MG pathway functions only in specialized cells.
The final reaction of the two pathways uses diacylglycerol and fatty acid acyl to synthesize
TAG [8], and the final step of its synthesis is catalyzed by fatty acyl-CoA-diacylglycerol
acyltransferases (DGAT). These enzymes are referred to as DGAT1 or DGAT2, based on
their order of recognition.

Studies have shown that DGAT1-mediated TAG synthesis not only plays a role in
energy storage, but also protects adipocytes from lipotoxicity during lipolysis in mice
lacking DGAT1 in their adipocytes [9]. Mice lacking DGAT1 survive and are metabolically
healthy, with ~50% reduction in TG storage in adipose tissue [10]. In sharp contrast
to DGAT1 knockout mice, mice lacking DGAT2 died shortly after birth. Importantly,
DGAT2 knockout mice had significantly reduced triglyceride (TG) storage (less than 10%
of normal levels) [8,11]. DGAT2 differs from DGAT1 in that it has a single membrane-
embedded hairpin and its catalytic domain is located on the cytoplasmic side of the
endoplasmic reticulum membrane. The activity of DGAT2 is largely dependent on TG
synthesis. In addition, DGAT2 can also relocate around the lipid droplets required for local
TG synthesis [12,13]. Whether the DGAT2 gene plays a similar role in lipid infiltration
in bovine skeletal muscle tissue remains unclear. We hypothesized that DGAT2 encodes
proteins with critical roles and induces adipogenic transdifferentiation of BSCs. In this study,
adenovirus overexpression and interference vectors of the DGAT2 gene were constructed,
and Ad-DGAT2 overexpressing adenovirus and sh-DGAT2 interference adenovirus were
obtained. The effects of the DGAT2 gene on the expression of fat-related genes at the mRNA
and protein levels were analyzed, to explore the effects of DGAT2 on BSC differentiation
and lipid metabolism-related signaling pathways in cattle.
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2. Materials and Methods
2.1. Ethics Statement

The Animal Care and Use Committee (approval code YBU-20160303) of Yanbian
University (Yanji, Jilin, China) approved all procedures involving the use of live cattle.

2.2. Adenovirus Generation and Overexpression of DGAT2

The cDNA sequence of Yanbian cattle DGAT2 (Accession No. NM_205793.2) was
subcloned into the ADV1 shuttle plasmid vector between EcoRI and BamHI, to construct a
recombinant shuttle plasmid containing the target gene, and then the recombinant shuttle
plasmid was combined with the backbone plasmid pGP-Ad-Co-transfected 293A cells
with Pac Vector (recombinant shuttle plasmid and packaging plasmid were constructed
by GenePharma Biotech, Shanghai, China), using a new adenovirus backbone gene (with
deletion of left ITR and packaging signal and E1 sequence; homologous recombination in
bacteria at the pAdEasy step was not necessary) to generate the adenovirus pAd-DGAT2.
A recombinant adenovirus with green fluorescent protein (Ad-GFP) was used as a negative
control. The virus titer was detected using the micropan-cytopathic method (refer to
the method of the Institute of Genetics of Fudan University, Shanghai, China), and the
Ad-DGAT2 and Ad-NC adenovirus titers were 1 × 109 PFU/mL.

2.3. Design of shRNAs and Recombinant Adenovirus Production

Three shRNAs targeting DGAT2 were designed and detected using BLAST. Based
on the position of the shRNA targeting the target gene CDS region sequence, they were
named DGAT2-shRNA-108, DGAT2-shRNA-320, and DGAT2-shRNA-687. In addition,
shRNA-NC sequences that did not target any genes were designated as the control group.
The target sequences are shown in Table 1, with sequence information.

Table 1. Oligonucleotide sequences of sh-RNAs for the DGAT2 gene.

shRNA Sense Strand Anti-Sense Strand Target Sequence

shRNA-108
AATTCGGTAGAGAAGCAGCT
CCAAGTTTCAAGAGAACTTG

GAGCTGCTTCTCTACCTTTTTTG

GATCCAAAAAAGGTAGAGAA
GCAGCTCCAAGTTCTCTTGA

AACTTGGAGCTGCTTCTCTACCG

GGTAGAGAAGCAGCTCCA
AGT

shRNA-320
AATTCGCTACTTTCGAGACT

ACTTTCTTCAAGAGAGAAAG
TAGTCTCGAAAGTAGCTTTTTTG

GATCCAAAAAAGCTACTTTC
GAGACTACTTTCTCTCTTGA

AGAAAGTAGTCTCGAAAGTAGCG

GCTACTTTCGAGACTACT
TTC

shRNA-687
AATTCGCGCAATCGCAAGGG
CTTTGTTTCAAGAGAACAAA

GCCCTTGCGATTGCGCTTTTTTG

GATCCAAAAAAGCGCAATCG
CAAGGGCTTTGTTCTCTTGA

AACAAAGCCCTTGCGATTGCGCG

GCGCAATCGCAAGGGCTT
TGT

shRNA-NC
AATTCGTTCTCCGAACGTGT

CACGTTTCAAGAGAACGTGAC
ACGTTCGGAGAACTTTTTTG

GATCCAAAAAAGTTCTCCGA
ACGTGTCACGTTCTCTTGAA

ACGTGACACGTTCGGAGAACG

TTCTCCGAACGTGTCA
CGT

The shRNA duplex was then cloned into the corresponding site of the adenovirus
shuttle plasmid ADV1 BamHI/EcoRI to generate recombinant ADV1/U6/CMV shRNA
containing the shRNA expression cassette, in which the shRNA expression was driven by
the U6 promoter (PU6). The resulting recombinant shuttle plasmid was co-transfected into
293A cells, along with the backbone plasmid pGP-Ad-Pac vector. sh-NC was constructed
by GenePharma Biotech (Shanghai, China).

2.4. Optimization of Optimal Conditions for Adenoviral Overexpression/Interference of the DGAT2 Gene

The day before the test, 5 × 103 BSCs were inoculated into each well of a 96-well plate,
at a total volume of 100 µL. Interference pretests were divided into two groups. The first
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group was normally infected, and the virus was added directly to the complete medium.
The second group was treated with 5 µg/mL polybrene (GenePharma Biotech, Shanghai,
China) at the time of infection, and each group had a different multiplicity of infection
(MOI) gradient. Before infection, the cell medium was changed, and the adenovirus stock
solution was serially diluted (stock solution, 10-fold dilution, 100-fold dilution, 1000-fold
dilution, 10,000-fold dilution). These dilutions were used to infect BSCs. Subsequently, the
cells were cultured for 24 h, and the medium was then replaced with fresh medium. After
48 h infection, expression was observed by fluorescence and the infection parameters of the
target cells were confirmed. Infection efficiency was evaluated by detecting the expression
of the target gene using real-time PCR.

2.5. Cell Culture and Treatment

BSCs were isolated from the semimembranosus muscle of 8-day-old Yanbian cattle us-
ing pronase (10165921001, Roche, Basel, Switzerland) digestion, as described previously [14].
Details of the BSC culture were also been described in our previous studies [14,15]. Briefly,
the BSCs were incubated in DMEM (Gibco, Thermo Fisher Scientific, Waltham, MA, USA)
containing 10% fetal bovine serum (FBS) (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA) in a humidified incubator at 37 ◦C and 5% CO2. When the BSCs were about 80%
confluent, they were transfected with adenovirus supernatants of recombinant adenovirus
expressing DGAT2 (Ad-DGAT2), Ad-NC, recombinant adenovirus interfering with DGAT2
(sh-DGAT2), or sh-NC. After 24 h of adenovirus infection, differentiation was induced
using oleic acid (OA), in differentiation medium containing 5% FBS, 100 µM OA, and
DMEM. Transfected BSCs were collected after 96 h of culture for total RNA extraction,
protein extraction, and triglyceride determination.

2.6. RNA Extraction and Quantitative Real-Time PCR

Total RNA was extracted from cells incubated for 96 h using TRIzol reagent (Thermo
Fisher Scientific), according to the manufacturer’s instructions. The extracted total RNA
was assayed for integrity using a NanoDrop ND-100 spectrophotometer (2000C, Thermo
Fisher Scientific) and further verified using 1% agarose gel electrophoresis. cDNA was
synthesized using a FastKing One Step Kit (Tiangen Biotech, Beijing, China), according
to the manufacturer’s protocol. Quantitative real-time PCR was performed using SYBR
Green (SuperReal PreMix Plus; Tiangen Biotech, Beijing, China) on an Agilent Mx3000/5p
Real-Time PCR Detection System (Agilent Mx3000/5p; Agilent Technologies, Santa Clara,
CA, USA), according to the manufacturer’s instructions. PCR amplification was performed
at 95 ◦C for 15 min, followed by 40 cycles at 95 ◦C for 15 s, 60 ◦C for 30 s, and 72 ◦C for 30 s.
The dissociation protocol used incremental temperatures of 95 ◦C for 15 s and 65 ◦C for 5 s.

Genes involved in the evaluation included the genes associated with adipogenesis:
peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding
protein alpha (C/EBPα), CCAAT/enhancer binding protein beta (C/EBPβ); genes for de
novo fatty acid synthesis: acetyl-CoA carboxyl acylase alpha (ACACA), fatty acid synthase
(FASN), and desaturation-related genes stearoyl-CoA desaturase (SCD); TAG synthesis-
related genes: glycerol-3-phosphate acyltransferase 4 (GPAT4), 3-phosphoglycerol acyl-
transferase (GPAM), monoacylglycerol acyltransferase 1 (MGAT1), diacylglycerol acyl-
transferase 1 (DGAT1), and diacylglycerol acyltransferase 2 (DGAT2); paired box 7 (Pax7),
myogenic differentiation antigen (MYOD), myogenin (MYOG), and myofactor-4 (MRF4)
genes to determine the extent of myogenesis in cultured BSCs.

Gene expression values were calculated using the relative quantification (2−∆∆Ct)
method [16], and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an
endogenous reference for normalization of the target RNA profiles; the primer sequences
are shown in Table 2.
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Table 2. Primers used for quantitative real-rime PCR.

Gene Symbol Gene ID Primer Sequence (5′–3′) Length (bp)

PPARγ NM_181024 F:ATCTGCTGCAAGCCTTGGA
R:TGGAGCAGCTTGGCAAAGA 138

SREBF1 NM_001113302 F:CTGCTGACCGACATAGAAGACAT
R:GTAGGGCGGGTCAAACAGG 81

C/EBPα NM_176784 F:CCAGAAGAAGGTGGAGCAACTG
R:TCGGGCAGCGTCTTGAAC 69

C/EBPβ NM_176788 F:CAACCTGGAGACGCAGCACAAG
R:CGGAGGAGGCGAGCAGAGG 143

FABP4 NM_174314 F:GTGGGCTTTGCTACCAGGAA
R:GTGACCACACCCCCATTCAA 77

DGAT1 NM_174693 F:CTACACCATCCTCTTCCTCAAG
R:AGTAGTAGAGATCGCGGTAGGTC 176

DGAT2 NM_205793 F:GACCCTCATAGCCTCCTACTCC
R:GACCCATTGTAGCACCGAGATGAC 145

GPAT4 NM_001083669 F:AAGCAAGTTGCCCATCCTCA
R:AAACTGTGGCTCCAATTTCGA 101

GPAM NM_001012282 F:GCGAACAACTGGGAAAACCC
R:GGCAACAATGCTTGCTCCAA 193

LPIN1 NM_001206156 F:AGTCCTCGCCACACAAGATG
R:AGATGCCCTGACCAGTGTTG 137

MGAT1 NM_001015653 F:AGCCGTGGTGGTAGAGGATGATC
R:TGCTCCTTGCCATTGTCGTTCC 132

SCD NM_173959 F:TGCCCACCACAAGTTTTCAG
R:GCCAACCCACGTGAGAGAAG 80

ACACA NM_174224 F: GCCAAACCTCTGGAGCTGAA
R: CGAGCTTCACCAGGTTGCTA 97

FASN NM_001012669 F:CGCTTGCTGCTGGAGGTCAC
R:GGTCTCAGGGTCTCGGCTCAG 141

MYOD1 NM_001040478 F:CCGACGGCATGATGGACTA
R:CTCGCTGTAGTAAGTGCGGT 80

MYOG NM_001111325 F:CAGTGAATGCAGCTCCCATAG
R:GCAGATGATCCCCTGGGTTG 87

MRF4 NM_181811 F:TGGACCCCTTCAGCTACAGA
R:ATGCTTGTCCCTCCTTCCTTG 139

PAX7 XM_015460690 F:TGCCCTCAGTGAGTTCGATT
R:CGGGTTCTGACTCCACATCT 180

2.7. Oil Red O Staining

Oil Red O staining was used to confirm the degree of lipid droplet accumulation
during adipogenic transdifferentiation of BSCs. BSCs were stained with Oil Red O, and
the specific staining procedure was carried out using an Oil Red O Staining Kit (G1262,
Solarbio, Beijing, China), according to the instructions provided by the manufacturer.
Briefly, the cells were fixed in 4% paraformaldehyde, washed with 60% (v/v) aqueous
isopropanol, incubated with Oil Red O staining solution for 30 min, and then stained with
hematoxylin for 1 min. The stained cells were observed using an inverted microscope
(IX-73, Olympus, Tokyo, Japan). Adipocytes were identified based on the presence of
red-stained lipid droplets.



Animals 2022, 12, 1847 6 of 19

2.8. Cellular TAG Assay

The TAG concentration in cells was measured using a TAG assay kit (Applygen Tech-
nologies, Beijing, China), according to the manufacturer’s instructions. Briefly, adenovirus-
infected BSCs were washed three times with PBS, lysed with RIPA buffer (10 min) (R0010,
Solarbio, Beijing, China), and cell lysates were extracted. TAG content was measured at
570 nm by enzymatic colorimetry, using a microplate reader (iMark, BIO-RAD, Hercules,
CA, USA).

2.9. Adiponectin Assay in Culture Medium

Adiponectin, after adenovirus infection and induction of differentiation for 96 h, was
analyzed using a bovine adiponectin ELISA Kit (Mlbio, Shanghai, China), and the analysis
was performed according to the manufacturer’s protocol. Adiponectin concentrations were
measured at 450 nm using a microplate reader (iMark, BIO-RAD, Hercules, CA, USA), and
a standard curve was generated in the same assay using reference standards of known
concentrations of adiponectin.

2.10. Western Blotting

Transfected cells were lysed in RIPA buffer containing 1% phenylmethylsulfonyl fluo-
ride (PMSF). A BCA protein kit (Pierce, Thermo Fisher Scientific Inc., Waltham, MA, USA)
was used to determine the total protein concentration. Protein samples were separated
using 10% SDS-PAGE and transferred onto PVDF membranes (Millipore, Billerica, MA,
USA). The membranes were incubated overnight at 4 ◦C with the following antibodies: anti-
DGAT1 (ab189994, Abcam, Cambridge, UK), anti-DGAT2 (ab59493, Abcam, Cambridge,
UK), anti-PPARγ (bs-4509R, Bioss, Beijing, China), anti-C/EBPα (bs-1630R, Bioss, Beijing,
China), anti-SREBF1(bs-1402R, Bioss, Beijing, China), anti-Pax7 (ab61067, Abcam, Cam-
bridge, UK), anti-MYOD (bs-2442R, Bioss, Beijing, China), and anti-MYOG (bs-3550R, Bioss,
Beijing, China). Thereafter, the membranes were washed and incubated with horseradish
peroxidase-conjugated goat anti-mouse or goat anti-rabbit IgG (bs-0295G; Bioss, Beijing,
China) for 1 h. β-actin (ab8226, Abcam, Cambridge, UK) was used as an endogenous
control. A grayscale intensity analysis was performed using ImageJ software (NIH).

2.11. Transcriptome Sequencing (RNA-Seq) Research

BSCs were treated with adenovirus Ad-NC, Ad-DGAT2, sh-NC, or sh-DGAT2, and
induced to differentiate for 96 h. Trizol was used to extract total RNA from the cells. The
concentration of total RNA was quantified using a NanoDrop-NC2000 spectrophotometer
(Thermo Scientific, Shanghai, China), and its purity was assessed using 1% (w/v) agarose gel
electrophoresis. Samples with an RIN value of >7 were used for library preparation. RNA
purification, reverse transcription, library construction, and sequencing were performed by
Shanghai Personal Biotechnology Co. Ltd. (Shanghai, China).

The sequencing results from Illumina® HiSeq TM 2000 were raw reads. The sequenc-
ing data contained low-quality reads with adapters, including reads with an average quality
score lower than Q20, and needed to be further filtered. Ideally, the distribution of reads
should be uniform across all the expressed genes. Gene coverage uniformity shows the
sequence coverage in the 5′ to 3′ region of all genes in each sample and was used to assess
the uniformity of the sequencing results. We used RSeQC to analyze the expression level
saturation, to assess whether the amount of data measured was sufficient to correctly calcu-
late gene expression levels. We used HTSeq to statistically compare the read count value
of each gene to the original expression of the gene and normalized the expression using
FPKM. Pearson’s correlation coefficient was used to represent the correlation of gene ex-
pression levels between the samples. The closer the correlation coefficient is to 1, the higher
the similarity of expression patterns between samples. DESeq was used for differential
analysis of gene expression, and the conditions for screening differentially expressed genes
(DEGs) were as follows: expression difference fold |log2FoldChange| > 1, significant
p-value < 0.05, and the R command p.adjust was used to correct multiple comparisons.
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2.12. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway
Analysis of DEGs

First, the DEGs were mapped to the database established by the Gene Ontology
Consortium (Gene Ontology, http://geneontology.org/, accessed on 20 April 2022). We
then used topGO to perform GO enrichment analysis, using the differential genes annotated
by GO terms to analyze the difference of each term. The gene list was determined and the
number of genes was calculated. Then, the p-value was calculated by the hypergeometric
distribution method (the criterion for significant enrichment is p-value < 0.05), and the GO
terms with significant enrichment of differential genes compared with the whole genome
background were identified. Thus, the main biological functions of the differential genes
were determined. GO covers three aspects: the molecular function of genes (MF), cellular
component function (CC), and biological process (BP).

2.13. KEGG Enrichment Analysis

KEGG (http://www.kegg.jp/, accessed on 20 April 2022) enrichment analysis was
used to identify pathways that were significantly enriched in differentially expressed
transcripts compared to the whole genome. We used clusterProfiler to perform a KEGG
enrichment analysis, and used the differential genes annotated by the KEGG pathway
to determine the gene list and number of genes for each pathway. Then, the p-value
was calculated by the hypergeometric distribution method (the criterion for significant
enrichment was p-value < 0.05), and the KEGG pathway in which the differential genes
were significantly enriched compared with the whole genome background was determined,
to identify the main biological functions exercised by the differential genes.

2.14. Statistical Analysis

The results are expressed as the mean ± SEM of three independent experiments. Data
evaluation and statistical analysis were performed using SPSS 17.0 and GraphPad Prism
6.07 (GraphPad Software, La Jolla, CA, USA) software. Student’s t-test was used to compare
the differences between the two groups. Differences between more than two groups were
assessed using one-way ANOVA. Statistical significance was set at p < 0.05.

3. Results
3.1. Detection of Optimal MOI Value and Infection Efficiency in Yanbian Bovine Skeletal Muscle
Satellite Cells Infected with Adenovirus Overexpressing or Interfering with DGAT2

As shown in Figure 1, when the polybrene concentration was 5 µg/mL and the
adenovirus dilution factor was 10−4 (MOI = 100), Ad-DGAT2, Ad-NC (A), sh-DGAT2,
and sh-NC (B) adenovirus-infected cells had no lesions and a good morphology, and all
expressed green fluorescence.

Figure 1. Green fluorescent expression of high titer adenovirus Ad-NC, Ad-DGAT2 (A) and sh-NC,
sh-DGAT2 (B) infected bovine skeletal muscle satellite cells after 48 h. Scale bars = 200 µm.

http://geneontology.org/
http://www.kegg.jp/
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As shown in Figure 2, real-time PCR detected DGAT2 gene expression and found
that in the culture containing Ad-DGAT2, the mRNA expression of DGAT2 was almost
1700-fold higher than that in culture containing Ad-NC (p < 0.01) (Figure 2A). Compared
with the sh-NC control, DGAT2-shRNA-320 successfully mediated the interference of the
DGAT2 gene in BSCs, and the interference efficiency reached 67.4% (Figure 2B). Therefore,
the optimal MOI for subsequent experiments was determined to be 100.

Figure 2. Effects of overexpression (A) and interference (B) of DGAT2 gene on mRNA expression
levels in bovine skeletal muscle satellite cells. Values are presented as means ± SEM. The different
letters (a–c) represent significant differences (p < 0.05) in gene expression. * p < 0.05 compared with
the control (Ad-NC/sh-NC).

3.2. Overexpression of DGAT2 Increases TAG Accumulation, ADP Content, and Lipid Droplet
Formation in BSCs Undergoing Adipogenic Transdifferentiation

BSCs were infected with recombinant adenovirus expressing DGAT2 (Ad-DGAT2)
and control (adenovirus containing green fluorescent protein; Ad-NC) for 24 h and then
differentiated by treatment with OA for 96 h. Lipid droplet measurement and TAG and
ADP analyses were performed. As shown in Figure 3A, lipid droplet accumulation was
significantly induced in BSCs transfected with Ad-DGAT2 compared with that in BSCs
transfected with Ad-NC. Relative to Ad-NC, the overexpression of DGAT2 significantly in-
creased cellular TAG accumulation (Figure 3B), and the adiponectin content in the medium
also significantly increased (p < 0.05; Figure 3C).

3.3. Interference of DGAT2 Affects TAG Accumulation, ADP Content, and Lipid Droplet
Formation in BSCs Undergoing Adipogenic Transdifferentiation

BSCs were infected with recombinant adenovirus containing shRNA fragments target-
ing the DGAT2 gene (DGAT2-shRNA-320) and a control (adenovirus containing shRNA-NC
sequences not targeting any gene; sh-NC) for 24 h, and differentiation was induced via
treatment with OA for 96 h. Oil Red O staining and TAG and ADP analyses were performed.
The results are shown in Figure 4A. Lipid droplet formation was significantly inhibited in
BSCs transfected with DGAT2-shRNA-320 compared with that in BSCs transfected with
sh-NC controls. Interference with DGAT2 significantly reduced cellular TAG accumula-
tion relative to sh-NC (Figure 4B), and the adiponectin content in the medium was also
significantly reduced (p < 0.05; Figure 4C).
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Figure 3. Overexpression of DGAT2 promotes BSCs lipid droplet accumulation, cellular TAG con-
centration, and adiponectin content in the medium. (A) Oil red O staining (scale bar: 200 µm).
(B) Cellular TAG content after overexpression of DGAT2. (C) ADP content in the medium after
overexpression of DGAT2. Values are presented as means ± SEM from three individual cultures.
* p < 0.05.

3.4. The Expression and Function of DGAT2 Overexpression in BSCs Adipogenic Differentiation

As shown in Figure 5A, compared to the control Ad-NC, the mRNA expression
of PPARγ, C/EBPβ, SREBF1, and FABP4 was significantly upregulated in Ad-DGAT2-
infected cells, and the expression of C/EBPα was also significantly upregulated (p < 0.05).
Compared with Ad-NC, overexpression of DGAT2 significantly upregulated the expression
of the triacylglycerol synthesis-related genes GPAT4 and LPIN1, as well as DGAT1 and
GPAM (p < 0.05) (Figure 5B). Compared to the Ad-NC control, overexpression of DGAT2
significantly upregulated the mRNA expression of ACACA, FASN, and SCD (p < 0.05;
Figure 5C). As shown in Figure 5D, the overexpression of DGAT2 significantly suppressed
the expression of PAX7, MYOD1, MYOG, and MYR4 in BSCs (p < 0.05). The expression
levels of these proteins are shown in Figure 5E (Figure S1).
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Figure 4. Interference of DGAT2 inhibits BSCs lipid droplet accumulation and reduces cellular TAG
concentration and adiponectin content in the medium. (A) Oil red O staining (scale bar: 200 µm).
(B) The effect of interfering DGAT2 on TAG content in BSCs. (C) The effect of interfering DGAT2
on ADP content in the medium. Values are presented as means ± SEM from three individual
cultures. * p < 0.05.

3.5. Effects of Interference with DGAT2 Expression on BSCs Undergoing Adipogenic Differentiation

Compared with the mRNA expression in sh-NC-infected BSCs, the mRNA expression
of PPARγ, C/EBPα, C/EBPβ, and SREBF1 was significantly decreased in BSCs infected
with sh-DGAT2 during OA-induced adipogenic transdifferentiation (p < 0.05; Figure 6A).
As shown in Figure 6B, compared to the sh-NC control, interference with DGAT2 expres-
sion caused a significant increase in the expression of DGAT1 and decreased the mRNA
expression of GPAT4 and LPIN1 (p < 0.05), but there was no significant difference in the
expression of MGAT1 (p > 0.05). Compared with sh-NC, DGAT2 interference significantly
suppressed the expression of ACACA and SCD (p < 0.05) but had no significant effect
on FASN (Figure 6C) (p > 0.05). As shown in Figure 6D, compared to sh-NC, sh-DGAT2
infection of BSCs significantly inhibited the mRNA expression of PAX7, MYOD1, MYOG,
and MYR4 (p < 0.05; Figure 6D). The expression levels of the related proteins are shown in
Figure 6E (Figure S1).



Animals 2022, 12, 1847 11 of 19

Figure 5. Overexpression of DGAT2 upregulates the expression of genes related to adipogenesis and
lipid metabolism in BSCs. The mRNA expression levels of genes associated with (A) adipogenesis,
(B) triacylglycerol synthesis, and (C) fatty acid synthesis in BSCs. Values are presented as means ± SEM
from three individual cultures. * p < 0.05. (D) Overexpression of DGAT2 downregulates myogenesis-
related gene expression in BSC. (E) Protein levels of adipogenesis markers PPARγ, SREBF1, C/EBPα,
DGAT2, and DGAT1 and myogenesis markers Pax7, MyoD1, and MyoG.

Figure 6. Interference with the expression of DGAT2 inhibits the expression of genes related to
adipogenesis and lipid metabolism in BSCs. mRNA expression levels of genes associated with
(A) lipogenesis, (B) triglyceride synthesis, and (C) fatty acid synthesis in BSCs. (D) Interference with
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DGAT2 downregulates myogenesis-related gene expression in BSC. Values are presented as
means ± SEM from three individual cultures. * p < 0.05. (E) Protein levels of adipogenesis markers
PPARγ, SREBF1, C/EBPα, DGAT2, and DGAT1, and myogenesis markers Pax7, MyoD1, and MyoG.

3.6. DEG Screening in BSCs Infected with Ad-DGAT2/sh-DGAT2

The quality of the RNA-seq data was assessed, sequencing data were filtered, and
the composition ratio of each part of the original data was analyzed. According to the
sequencing quality evaluation results, the high-quality clean reads of both groups were
>91.00% (Table S1). In this study, the genome of bovine Bos taurus (bovine) (https://www.
ncbi.nlm.nih.gov/genome/?term=Bos+taurus, accessed on 20 April 2022) was used as the
reference genome, and the sequencing data were compared with the reference genome
(Table S2). Figure 7 shows the sequence of the gene coverage uniformity (Figure 7A) and
FPKM density distribution (Figure 7B). A total of 598 DEGS were screened in BSCs infected
with Ad-DGAT2, and these DEGs included 292 upregulated genes and 306 downregulated
genes. A total of 49 DEGS were screened in BSCs infected with sh-DGAT2, and these DEGs
included 25 upregulated and 24 downregulated genes (Figure 7C).

Figure 7. Screening of differentially expressed genes (DEGs) in BSCs infected with Ad-DGAT2/sh-
DGAT2. BSCs were infected with Ad-NC, Ad-DGAT2, sh-NC, or sh-DGAT2 for 24 h; differentiation

https://www.ncbi.nlm.nih.gov/genome/?term=Bos+taurus
https://www.ncbi.nlm.nih.gov/genome/?term=Bos+taurus


Animals 2022, 12, 1847 13 of 19

was induced with OA treatment for 96 h; and total RNA was extracted for transcription and se-
quencing analysis. (A) Gene coverage uniformity. (B) FPKM density distribution. (C) Volcano plot
of DEGs.

3.7. GO Functional Classification

As shown in Figure 8A, the top 20 GO terms enriched by 598 DEGs after overexpression
of DGAT2 were mainly related to two categories: biological processes, such as multicellular
organismal process, cell differentiation, cellular development process, and striated muscle
cell differentiation; and cellular compounds, such as extracellular matrix and myofibril. A
GO functional classification of the DEGs obtained after infection with sh-DGAT2 revealed
enrichment in three categories: biological processes, cellular compounds, and molecular
functions. As shown in Figure 8A, the number of upregulated and downregulated genes
in the basolateral plasma membrane was highest in the cellular compound category. In
addition, DEGs were significantly enriched in the categories of biological processes, such
as cellular responses to triglycerides. The molecular function category was mainly related
to enzyme activity.

Figure 8. Gene ontology (GO) functional annotation and classification of differentially expressed
genes (DEGs). (A) GO functional classification (Ad-DGAT2). (B) GO functional classification (sh-
DGAT2). CC (cellular compound), BP (biological process), MF (molecular function).

3.8. KEGG Enrichment Analysis

Pathway analysis of the DEGs was performed to understand the pathways and molec-
ular interactions related to DGAT2. As shown in Figure 9A, a KEGG enrichment analysis
of DEGs after overexpression of DGAT2 in BSCs undergoing differentiation revealed
that DEGs were mainly enriched in the PPAR signaling pathway; fat digestion and ab-
sorption, glycerolipid metabolism, fatty acid biosynthesis, and AMPK signaling path-
ways; and glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids, and
other signaling pathways.

There were 10 DEGs enriched in the PPAR signaling pathway, including six upregu-
lated genes: ACSL3, FADS2, SCD, HMGCS1, FABP3, and FABP7, and four downregulated
genes: ANGPTL4, CD36, PLIN4, and APOA1(Figure 9B). There were six DEGs enriched in
the glycerolipid metabolism pathway, all of which were upregulated: DGAT2, LPIN1, LIPG,
PNPLA3, MOGAT1, and LOC101905992(Figure 9C). There were seven DEGs enriched
in the AMPK signaling pathway, including six upregulated genes, SCD, FASN, SREBF1,
ACACA, SLC2A4, and FBP2, and one downregulated gene, CD36 (Figure 9D).
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Figure 9. KEGG enrichment analysis of differentially expressed genes (DEGs) after overexpression of
DGAT2. (A) KEGG enrichment factor map. (B) KEGG functional annotation of DEGs involved in
the PPAR signaling pathway. (C) KEGG functional annotation of DEGs involved in the glycerophos-
pholipid metabolic pathway. (D) KEGG functional annotation of DEGs involved in the biosynthetic
pathway of unsaturated fatty acids. Red rectangles indicate DEGs significantly upregulated (log
fold change > 1, false discovery rate (FDR) < 0.001); green rectangles indicate DEGs significantly
downregulated (log fold change > 1, FDR < 0.001) in BSCs infected with Ad-DGAT2 compared with
control Ad-NC.

A pathway enrichment significance analysis of DEGs in the BSCs after infection with
sh-DGAT2 was performed using the KEGG database, and 20 significant pathways were
found to be enriched, including the phospholipase D signaling pathway, phosphoinositide
3-Kinase (PI3K)/protein kinase B (Akt) signaling pathway, PPAR signaling pathway, and
neutrophil extracellular trap formation (Figure 10A). Two DEGs in the PPAR signaling
pathway, PLIN4 and SLC27A5, were downregulated (Figure 10B). KEGG enrichment
analysis helped us further understand the biological functions of the DEGs.
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Figure 10. KEGG enrichment analysis of differentially expressed genes (DEGs) after interference of
DGAT2. (A) KEGG enrichment factor map. (B) KEGG functional annotation of DEGs involved in the
PPAR signaling pathway. Green rectangles indicate that DEGs were significantly downregulated (log
fold change > 1, FDR < 0.001) in BSCs infected with sh-DGAT2 compared to control sh-NC.

4. Discussion

The proportion of saturated, monounsaturated, and polyunsaturated fatty acids in beef
has a significant impact on human health [17]. Studies have shown that the high saturated
fatty acid (SFA) component of beef is associated with increased blood cholesterol levels and
that consumption of meat containing high SFA and trans fatty acids decreases HDL levels
and increases TAG and the atherosclerosis index (LDL/HDL) compared with consumption
of meat containing high monounsaturated fatty acid (MUFA) [18,19]. Intracellular fatty
acids can be imported from extracellular sources or synthesized by cells [20]. DGAT
catalyzes the final step of TAG formation through acylation of diacylglycerols (DAGs) [21].
Muscle satellite cells exhibit multipotent mesenchymal stem cell activity and are capable
of forming osteocytes, adipocytes, and myocytes [22]. Our previous study showed that
the lipid droplet area was significantly increased and TAG accumulation was promoted
in BSCs differentiated by palmitoleic acid induction [23]. Belal et al. [24] showed that
long-chain fatty acids (LCFAs) induced cytosolic TAG accumulation in satellite cells and
significantly enhanced DGAT2 mRNA expression; however, of the two DGAT isoforms
expressed in BSCs, only DGAT2 significantly responded to LCFA treatment, indicating that
DGAT2 plays a critical role in TAG accumulation in cattle.

The study of mouse DGAT2 by McFie et al. [25] showed that DGAT2 is part of a
multimeric complex composed of several DGAT2 subunits, and the interaction of DGAT2
with lipid droplets depends on the C-terminus of DGAT2. When cells were incubated
with OA to stimulate TAG synthesis, DGAT2 mutants, in which the C-terminal region was
truncated or specific regions were deleted, were unable to colocalize with lipid droplets.
Their findings demonstrated that DGAT2 can catalyze TAG synthesis and promote TAG
storage in cytosolic lipid droplets, regardless of its localization in the endoplasmic reticulum.
Zhang et al. [26] studied the fatty acid composition of 3T3-L1 preadipocytes overexpressing
DGAT2 and found that a higher proportion of MUFA C16:1 and C18:1 were derived from de
novo fatty acid synthesis, rather than from the absorption of specific fatty acids in the culture
medium. This is consistent with our findings that the mRNA expression levels of ACACA,
FASN, and SCD, which are involved in de novo fatty acid synthesis, were significantly
higher in BSCs overexpressing DGAT2 than in control cells. However, the expression of
genes such as ACACA was significantly suppressed in sh-DGAT2-tranfected BSCs. This
study aimed to determine the mechanism of DGAT2 in the adipogenic transdifferentiation
of BSCs, to provide a theoretical basis for the actual production of beef rich in UFA.
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Overexpression of DGAT2 in mouse glycolytic muscle increased the content of TAG,
ceramide, and unsaturated long-chain fatty acyl-CoA in adult mice, mediating skeletal
muscle-specific lipid deposition [27]. Our study showed that overexpression of DGAT2
significantly increased the TAG content in BSCs and ADP content in the medium. The
mRNA expression of adipogenesis-related genes PPARγ, C/EBPβ, SREBF1, and FABP4
was also significantly increased. SCD1 and DGAT2 are located in close proximity to the
endoplasmic reticulum, and SCD has been proposed to mediate the conversion of de
novo MUFA to DGAT2 as a substrate for TAG synthesis [28]. Solé et al. [29] showed that
DGAT2 preferentially uptakes shorter rather than longer-chain fatty acids as a substrate,
especially if they are monounsaturated. Numerous studies have shown that low DGAT2
expression leads to reduced TAG content. DGAT2-knockout mice, (DGAT2(-/-)), are
fat-deficient and die shortly after birth, due to a severe reduction in energy metabolism
substrates [11]. The siRNA-mediated downregulation of goose DGAT2 reduces the mRNA
levels of adipogenesis-related genes [30]. Our results showed that after interfering with
the expression of DGAT2, the formation of lipid droplets in the cells was significantly
inhibited, intracellular TAG content was significantly reduced, and the adiponectin content
in the medium was also significantly reduced. The mRNA expression of lipogenesis-related
genes PPARγ, SREBF1, and SCD, and lipid metabolism genes GPAT4 and LPIN1, was also
significantly downregulated.

We focused on identifying key genes involved in adipogenesis and lipid metabolism.
Transcriptome sequencing after overexpression of DGAT2 revealed 598 DEGs. The top
20 GO terms enriched by these 598 DEGs included muscle system process, cell differentia-
tion, and cell development process. KEGG enrichment analysis showed that these DEGs
were mainly involved in PPAR signaling, glycerophospholipid metabolism, and AMPK
signaling pathways. As a known transcription factor, PPARγ can regulate the expression of
ACS, FABP3, FABP4, and others [31]. The upregulated DEGs GPAT4, GPAM, and LPIN1 in
the glycerophospholipid metabolic pathway have been identified as important regulators
of lipid deposition [32,33]. AMPK signaling plays a crucial role in systemic metabolic
pathways by regulating energy homeostasis and cellular lipid metabolism [34–36]. Over-
expression of DGAT2 upregulated the AMPK downstream lipid synthesis-related genes
SREBF1, FAS, ACC1, and SCD1, to regulate lipogenesis.

Analysis of the enriched GO terms derived from the 49 DEGs obtained after disrupting
DGAT2 revealed that the DEGs were significantly enriched in GO terms, such as cellular
response to triglycerides and cellular compounds, and were mainly involved in metabolic
pathways, such as the PPAR signaling and PI3K/Akt signaling pathways. The PI3K/Akt
signaling pathway is involved in various cellular functions, such as adipocyte differenti-
ation. Previous studies have shown that inhibition of the PI3K/Akt signaling pathway
results in reduced obesity and improved metabolic health [37]. After interference with
the expression of DGAT2, the expression of SREBF1 and SCD was downregulated. In this
study, we found that regulating the expression of DGAT2 positively and cooperatively
regulates the mRNA expression of SREBF1 and SCD, and alteration of PPAR and SREBPs
levels by up- or downregulation of DGAT2 may imply a role for DGAT2 in regulating BSC
differentiation into adipocytes.

There are three types of differentiated adipogenic cells, including white, brown, and
beige adipocytes, and the three types are morphologically difficult to recognize; how-
ever, a common feature of all adipoblasts is the expression of FABP4 [38–40]. A study
by Schubert et al. [41] on the differentiation capacity of satellite cells from the rotator cuff
revealed that all FABP4+ cells were also Pax7-tdTomato+, suggesting that these adipocytes
originate from a myogenic progenitor population. Furthermore, in adipogenic media,
satellite cells have reduced myogenic differentiation potential, and the expression of the
differentiated myocyte marker MRF4 is decreased; accompanied by a significant upregula-
tion of the adipogenesis transcription factor PPAR and FABP4 expression, and increased
adipogenic differentiation potential. In our study, enhancing or interfering with the ex-
pression of DGAT2 significantly inhibited the mRNA and protein expression levels of the
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myogenesis-related genes PAX7, MYOD1, MYOG, and MYR4. There is reciprocal inhibition
between Pax7 and muscle regulatory factors (MRFs), and Pax7 null mice exhibited reduced
muscle growth, marked muscle atrophy, and extremely deficient muscle regeneration after
acute injury [42,43]. This suggests that the myogenic differentiation of BSCs was inhib-
ited. Therefore, the upregulation of these adipogenic proteins and the downregulation of
myoblast differentiation proteins promote OA-induced transdifferentiation of BSCs into
adipocytes, inhibit their myogenic differentiation ability, and promote lipid accumulation
in cells.

5. Conclusions

The accumulation of TAG and adipogenic gene expression in BSCs overexpressing
DGAT2 were higher than those in the control cells in this study. Interference of DGAT2
expression inhibited lipid droplet formation in OA-induced differentiated BSCs. DGAT2
participated in the PPAR signaling pathway, glycerophospholipid metabolism pathway,
AMPK signaling pathway, and PI3K/Akt signaling pathway to coordinately regulate lipid
production, by controlling the transcription of certain genes in BSCs.
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lite cells; C/EBPα: CCAAT/enhancer-binding protein alpha; C/EBPβ: CCAAT/enhancer-
binding protein beta; DGAT1: diacylglycerol O-acyltransferase 1; DGAT2:diacylglycerol
acyltransferase 2; DAG: diacylglycerol; DEGs: differentially expressed genes; FABP4: fatty
acid binding protein 4; FASN: fatty acid synthase; FBS: fetal bovine serum; GPAM: glycerol-
3-phosphate acyltransferase mitochondrial; GPAT4: glycerol-3-phosphate acyltransferase
4; GO: gene ontology; GAPDH:glyceraldehyde-3-phosphate dehydrogenase; IMF: intra-
muscular fat; INTMF: intermuscular fat; IMCL: intramyocellular lipids; KEGG: Kyoto
Encyclopedia of Genes and Genomes; LPIN1: lipin 1; LCFA: long-chain fatty acid; MG:
monoacylglycerol; MYOD: myogenic differentiation; MYOG: myogenin; MRF4: myofactor-4;
MUFA:monounsaturated fatty acid; OA:oleic acid; PPARγ: peroxisome proliferator-activated
receptor-γ; Pax7: paired box 7; SREBF1: sterol regulatory element-binding protein 1; SCD:
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stearoyl-CoA desaturase; SFA: saturated fatty acid; TAG: triacylglycerol; TG: triglyceride.
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