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Evolution of deep learning tooth
segmentation from CT/CBCT images:
a systematic review and meta-analysis
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Abstract

Background Deep learning has been utilized to segment teeth from computed tomography (CT) or cone-beam

CT (CBCT). However, the performance of deep learning is unknown due to multiple models and diverse evaluation
metrics. This systematic review and meta-analysis aims to evaluate the evolution and performance of deep learning in
tooth segmentation.

Methods We systematically searched PubMed, Web of Science, Scopus, IEEE Xplore, arXiv.org, and ACM for studies
investigating deep learning in human tooth segmentation from CT/CBCT. Included studies were assessed using
the Quality Assessment of Diagnostic Accuracy Study (QUADAS-2) tool. Data were extracted for meta-analyses by
random-effects models.

Results A total of 30 studies were included in the systematic review, and 28 of them were included for meta-analyses.
Various deep learning algorithms were categorized according to the backbone network, encompassing single-stage
convolutional models, convolutional models with U-Net architecture, Transformer models, convolutional models with
attention mechanisms, and combinations of multiple models. Convolutional models with U-Net architecture were
the most commonly used deep learning algorithms. The integration of attention mechanism within convolutional
models has become a new topic. 29 evaluation metrics were identified, with Dice Similarity Coefficient (DSC) being
the most popular. The pooled results were 0.93 [0.93, 0.93] for DSC, 0.86 [0.85, 0.87] for Intersection over Union (loU),
0.22 [0.19, 0.24] for Average Symmetric Surface Distance (ASSD), 0.92 [0.90, 0.94] for sensitivity, 0.71 [0.26, 1.17] for 95%
Hausdorff distance, and 0.96 [0.93, 0.98] for precision. No significant difference was observed in the segmentation of
single-rooted or multi-rooted teeth. No obvious correlation between sample size and segmentation performance was
observed.

Conclusions Multiple deep learning algorithms have been successfully applied to tooth segmentation from CT/
CBCT and their evolution has been well summarized and categorized according to their backbone structures. In
future, studies are needed with standardized protocols and open labelled datasets.

Keywords Artificial intelligence, Deep learning, Tooth segmentation, Convolutional neural networks, Transformer,
CBCT
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Introduction

As digital dentistry advances as a disruptive technology,
3D imaging techniques such as computed tomography
(CT) and cone-beam CT (CBCT) have become essen-
tial tools for diagnosis, treatment planning, and out-
come verification [1, 2]. CBCT has been recognized as
an advanced imaging modality in dental applications due
to its ability to offer lower radiation doses and high-reso-
lution images of the craniofacial region, yet CT remains
popular among dental professionals due to its superior
spatial resolution and detailed anatomical information
[3, 4]. While CT/CBCT provides 2D slices for cross-sec-
tional assessment, 3D modelling offers a more intuitive
form of visualization [5]. For example, tooth 3D model-
ling can simulate the dynamic movement and alignment
of teeth during orthodontic treatment [6]. The applica-
tions of tooth 3D modelling are extensive, encompassing
orthodontics [7], restorative dentistry [8], implantology
[9], prosthodontics [10], endodontics [11], oral surgery
[12], periodontics [13] and more. Ongoing research and
development continue to uncover new uses and enhance
existing techniques [14, 15].

In practice, 3D modelling involves the crucial process
of image segmentation, which extracts groups of voxels
with specific intensity and boundaries from 2D slices
[16]. However, unlike segmentation of the bone, tradi-
tional threshold-based segmentation is unsuitable for
tooth segmentation due to the similar density between
adjacent teeth and alveolar bone. This similarity makes
it difficult to distinguish between bone and teeth, mak-
ing manual tooth segmentation a cumbersome and
time-consuming process [17]. Other methods, includ-
ing level set-based algorithms, region-growing algo-
rithms, and modifications such as hybrid or hierarchical
level sets, have been explored [18—20]. However, these
methods often require manual tuning of parameters
and lack robustness for the variability of different teeth
and imaging features. In recent years, artificial intel-
ligence (AI) has emerged as a promising technology for
medical applications, achieving fully automatic segmen-
tation from medical images and improving the effective-
ness of segmentation, with deep learning thriving as the
most overwhelming tool [15]. Deep learning, a subset of
machine learning, utilizes neural networks with many
layers to model and understand complex patterns in data.
One of its primary advantages is its ability to handle large
datasets and automatically extract features, reducing the
need for manual intervention. During the training pro-
cess, deep learning models can learn hierarchical feature
representations directly from raw data, which enables
them to capture intricate structures and variations within
the data. This capability allows them to excel recogniz-
ing complex patterns and scales well with increased
data and computational resources. Transfer learning
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and end-to-end optimization further enhance its versa-
tility and efficiency. Continuous advancements in deep
learning algorithms and architectures have consistently
pushed the boundaries of Al performance across various
domains, making it a leading approach in the field. In the
realm of tooth segmentation, deep learning algorithms
have been employed to automatically label and segment
teeth, demonstrating satisfactory and accurate perfor-
mance [21, 22].

Previous literature has investigated the application of
automatic tooth segmentation in CBCT images [23, 24].
However, there is a lack of focus on deep learning algo-
rithms, and the quantitative analysis of deep learning per-
formance in tooth segmentation remains unknown due
to multiple models and diverse evaluation metrics. This
systematic review and meta-analysis aims to evaluate the
evolution and performance of deep learning algorithms
in tooth segmentation and provide updated insights in
teeth segmentation for potential clinical applications.

Materials and methods

This systematic review and meta-analysis was developed
and reported following the guideline of PRISMA-P (Pre-
ferred Items for Reporting Systematic Reviews and Meta-
analyses for protocols) [25].

Information source and search strategy

This study emphasizes the implementation of deep
learning algorithms in CT/CBCT segmentation, an area
driven by interdisciplinary cooperation of dentistry and
engineering. To ensure a comprehensive inclusion of
relevant studies, the literature searches were performed
across medical and engineering databases, including
PubMed, Web of Science, Scopus, IEEE Xplore, ArXiv.
org, and ACM. An exhaustive search strategy was
employed to maximize search results, with a combina-
tion of free terms and database thesaurus terms of the
following domains: “tooth’, “segmentation’, “CT”, “CBCT’,
“computed tomography’, and “cone-beam” (Supplemen-
tary Table 1). The search encompassed all fields of rel-
evant studies. The retrieved references were organized
in EndNote 20 (Clarivate) for a streamlined screening
process.

Eligibility criteria

The inclusion criteria for studies were: (1) the study had
to be either retrospective, prospective, or cross-sec-
tional in nature; (2) the deep learning algorithm had to
be applied to human tooth segmentation in CT/CBCT
imaging using either public or private dataset; (3) the
study had to report evaluation metrics for segmenta-
tion accuracy. The exclusion criteria were: (1) the study
was published in a language other than English; (2) the
deep learning algorithm was not applied to human tooth
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segmentation; (3) the study used image modalities other
than CT/CBCT; (4) the segmentation algorithm was
manual or semi-automatic segmentation without deep
learning algorithms; (5) the segmentation was applied to
tooth pulp or only a part of the tooth; (6) the study did
not report evaluation metrics for segmentation perfor-
mance; (7) the studies were animal studies, forensic stud-
ies, literature reviews, questionnaire-based studies, or
other non-original studies.

Study selection

The selection was conducted in two phases by three
authors. In phase 1, the titles and abstracts of all relevant
references were independently reviewed. In phase 2, the
full texts were retrieved and independently reviewed,
ensuring that all eligibility criteria were met. Any dis-
crepancies among reviewers were resolved through con-
sensus. The final decision was always made based on the
full text of the publication.

Data collection

The following data were extracted from each included
study: (1) year and type of study; (2) structure and fea-
tures of the deep learning algorithm; (3) characteris-
tics of samples, including sample size, tooth type, and
image modality; (4) characteristics of evaluation metrics,
including evaluation methods, type and result of the met-
ric, and validation methods.

Risk of bias assessment

The risk of bias in the included studies was evaluated
using the Quality Assessment of Diagnostic Accu-
racy Study (QUADAS-2) tool [26]. This scoring system
assesses four domains: (1) patient selection; (2) index test;
(3) reference standard; and (4) flow of patients through
the study and timing of the index test(s) and reference
standard. Signalling questions were employed in each
domain to evaluate the risk of bias, with the first three
domains also addressing applicability concerns. Based
on the responses to these signalling questions, the risk of
bias was determined to be either ‘low; ‘high; or ‘unclear’
Any differences of opinion were resolved through discus-
sion and mutual agreement between the authors.

Data analysis

The primary outcome of the meta-analysis was the seg-
mentation accuracy of teeth with deep learning algo-
rithms, as indicated by evaluation metrics. The number
of teeth was used as the sample size; if the number of
individuals or scans was reported instead of the num-
ber of teeth, an estimate was made assuming that each
individual had 28 teeth unless the number of teeth per
individual was specified. The mean values and stan-
dard deviations of the included studies were extracted;

Page 11 of 22

for studies that did not report a standard deviation, the
pooled standard deviation of the remaining studies was
used as an estimate. Z test was performed to compare
synthesized results that incorporated estimated stan-
dard deviations and those that did not. Furthermore, a
comparison was conducted between the segmentation
accuracy of single-rooted teeth and multi-rooted teeth.
Meta-analyses were performed to calculate the pooled
means of included evaluation metrics. The I? value of
the Cochran Q test was used to evaluate statistical het-
erogeneity, and the random inverse-variance model was
applied to provide the best pooled outcome estimates.
The meta-analysis was conducted using Stata Statistical
Software (Release 16; StataCorp LLC, College Station,
TX, USA).

Results

Study selection

A total of 3361 studies were identified from databases.
After removing duplicates, 2607 references remained
for title and abstract screening. This process led to the
selection of 181 articles for full-text evaluation. A full-
text assessment was conducted, and 151 studies were
excluded according to pre-defined eligibility criteria.
Thereafter, 30 studies were selected for the systematic
review (Supplementary Table 2). 2 studies were excluded
from the meta-analysis due to insufficient data, specifi-
cally lacking standard deviation and the number of teeth,
leaving 28 studies for the meta-analyses. A flowchart
describing the process is illustrated in Supplementary
Fig. 1.

Characteristics of included studies

The characteristics of the included articles are listed in
Table 1. Overall, almost all studies were cross-sectional
studies (96.7%), except for one (3.33%) [27], which was a
retrospective study. The earliest paper included was from
2019. The most common imaging modality studied was
CBCT (93.3%), followed by CT (6.7%). Manual segmenta-
tion was commonly used (40%) as the reference standard,
while other studies used semi-automatic segmentation as
the standard (16.7%), or did not mention their standard
(43.3%). To evaluate training performance, 21 studies
(70%) used internal validation, 2 (6.67%) used external
validation, 1 (3.33%) combined external and internal vali-
dation, and the remaining studies (20%) did not mention
their evaluation methods. The majority of studies (86.7%)
did not specify the segmented tooth type or included all
types of teeth, whereas studies (13.3%) classified the seg-
mented teeth based on the tooth type or as single-rooted
and multi-rooted teeth.
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Evolution of deep learning algorithms

The study identified multiple deep learning algorithms
for tooth segmentation and depicted their relationships.
Figure 1 illustrates the evolution and classification of
these algorithms according to the neural networks, which
are further explained in Table 2. The deep learning algo-
rithms involved in tooth segmentation were classified
into single-stage convolutional model, convolutional
model with U-Net architecture, Transformer model, con-
volutional model with attention mechanism, and com-
bination of multiple models. For the evolution of deep
learning, the single-stage convolutional model, repre-
sented by FCN, underwent modifications to incorporate
VoxResNet and DenseVoxelNet. This evolution pro-
gressed with the introduction of a U-shaped architecture,
culminating in the creation of the U-Net. U-Net and its
variants, such as UDS-Net and Dense U-Net, proved to
be the most frequently utilized algorithms. The advance-
ment of deep learning was further boosted by the emer-
gence of the multi-head attention mechanism, embodied
by the Transformer and its modifications. This attention
mechanism was seamlessly integrated with U-Net-based
algorithms, resulting in the formulation of the TDS-Net.
The combinations of multiple models were also intro-
duced to achieve robustness and offset the limitations of
single-stage models.

Evaluation metrics of segmentation accuracy

A total of 29 evaluation metrics for segmentation accu-
racy were identified, which were categorized into three
groups: overlap-based metrics expressed as percent-
ages (%), distance-based metrics measured in millime-
tres (mm), and volume-based metrics represented in
millimetres cubed (mm?) or as percentages (%). These
metrics are listed in Table 1. The overlap-based metrics
encompassed various measurements, such as Jaccard
Index/Intersection over Union (IoU), Dice Similarity
(DSC), Aggregated Jaccard Index (AJI), Accuracy (Acc),
Boundary F1 Score (BF), Detection Accuracy (DA), F1
Score (F1), Identification Accuracy (FA), Pixel Accu-
racy (PA), Positive Predictive Values (PPV), Precision,
Surface Dice (SD), Surface Dice Similarity Coefficient
at 1 mm (sDSC), Sensitivity/Recall (Sen), Surface Over-
lap (SO), Volumetric Dice Similarity Coefficient (vDSC),
Volumetric Overlap Error (VOE), and Weighted Dice
Similarity Coefficient (wDSC). The distance-based met-
rics included 95% Hausdorff Distance (95HD), Average
Symmetric Surface Distance (ASSD), Hausdorff Distance
(HD), Mean Absolute Deviation (MAD), and Maximum
Symmetric Surface Distance (MSSD). Lastly, the volume-
based metrics consisted of Relative Volume Difference
(RVD), Volume Difference (VD), and Volume Similarity
(VS). Among all evaluation metrics, DSC was the most
popular one [6, 27-47], followed by IoU [27, 29, 35-37,
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39-41, 43-54], ASSD [29, 31-34, 36, 38, 39, 42, 44, 46—
49, 51, 55], sensitivity [27, 30, 36-38, 40, 42, 43, 47, 50,
55, 56], 95HD [40, 43—-47, 50-52], and precision [27, 30,
40, 42, 43, 50, 55, 56]. Meta-analyses were performed for
these top five evaluation metrics in below.

Risk of bias and applicability concerns

The results of the QUADAS-2 tool are provided in Sup-
plementary Tables 3 and Supplementary Fig. 2. Within
the patient selection domain, only 9.1% studies were
found to have a low risk of bias, while the others 90.1%
were found to have an unclear risk of bias; all studies pre-
sented low applicability concerns. Within the index test
domain, all studies exhibited a low risk of bias and appli-
cability concerns. Within the reference standard domain,
51.5% of studies were found to have a high risk of bias,
30.3% low risk, and 18.2% unclear risk; all studies pre-
sented low applicability concerns. In the flow and timing
domain, all studies had a low risk of bias.

Pooled accuracy of tooth segmentation

The synthesized results were 0.93 [0.93, 0.93] for DSC
(Fig. 2), 0.86 [0.85, 0.87] for IoU (Supplementary Fig. 3),
0.22 [0.19, 0.24] for ASSD (Supplementary Fig. 4), 0.92
[0.90, 0.94] for sensitivity (Supplementary Fig. 5), 0.71
[0.26, 1.17] for 95% Hausdorff distance (Supplementary
Fig. 6), and 0.96 [0.93, 0.98] for precision (Supplemen-
tary Fig. 7). The synthesized results without estimation
of standard deviations were shown in Supplementary
Figs. 8—13; no statistically significant differences were
observed between with and without SD estimations
(p>0.05) (Supplementary Table 4). High I* values (>90%)
were shown in all forest plots, demonstrating high het-
erogeneity of the synthesized results. No significant dif-
ference was observed between the pooled results of
single-rooted and multi-rooted teeth in all available eval-
uation metrics (p>0.05) (Supplementary Figs. 14—19).
The exploration of the potential correlation between
segmentation models, sample size, publication year, and
DSC is demonstrated in the bubble plot in Fig. 3.

Discussion

This systematic review and meta-analysis is the first to
comprehensively analyse the evolution of deep learning
algorithms specifically in the context of tooth segmenta-
tion and provides an updated insight into their perfor-
mance within the field. Multiple deep learning algorithms
were identified and categorized, including single-stage
convolutional models, convolutional models with U-Net
architecture, Transformer models, convolutional models
with attention mechanism, and combination of multiple
models. Convolutional models with U-Net architecture
have been the dominant structure for tooth segmenta-
tion, while the integration of attention mechanism is
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Fig. 1 The evolution of deep learning models used for tooth segmentation *Notes: The colours of the models indicate their respective groups of deep
learning architectures. Models marked in grey indicate the absence of included studies. Layer modifications for each model are detailed along the ar-
rows. AttU-Net: Attention U-Net; CTA U-Net: CNN-transformer architecture U-Net; DenseVoxelNet: Densely-Connected Volumetric Convolutional Neural
Network; DHU-Net: Dual-Hierarchy U-Net; DRNet: end-to-end Decomposition and Reasoning Network; FCN: Fully Convolutional Network; FPN: Feature
pyramid network; MS-D CNN: Mixed-scale dense (MS-D) Convolutional Neural Network; nnU-Net: no new Net; PATRCNN +TSNet: Pose-aware Track R-CNN;
Swin-Transformer: Shifted windows Transformer; Symmetric FCRN with DCRF: Symmetric Fully Convolutional Residual Network (FCRN) with DCRF (Dense
Conditional Random Field); TSDNet: Tooth Segmentation Deeplearning Network; UDS-Net: Combination of U-Net, Dense Block and Spatial Dropout; VGG-
Net: Visual Geometry Group Net (Very Deep Convolutional Networks); ViT: Vision Transformer; Voxresnet: Deep Voxelwise Residual Network
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%

Study (Year) Effect (95% CI) Weight
Cui (2019) (1) 2% 0.92(0.92,0.93) 4.21
Chen (2020) :0 0.94 (0.93,0.94) 4.62
Lee (2020) (1) * ! 0.92 (0.92,0.92) 4.56
Wu (2020) (1) I = 0.96 (0.96,0.97) 4.20
Cui (2021) L. 0.95(0.95,0.95) 4.68
Duan (2021) | ¢ 0.96 (0.96,0.96) 4.68
Jang (2021) L. 0.95 (0.95,0.95) 4.57
Shaheen (2021) - X 0.90 (0.90,0.90) 4.50
Wang (2021) (2) < 0.94 (0.94,0.95) 4.53
Wang (2021) (3) . < 0.95 (0.95,0.95) 4.53
Yang (2021) ! ¢ 0.98 (0.98,0.98) 4.63
Cui (a) (2022) (1) - ! 0.83(0.82,0.83) 441
Cui (b) (2022) (1) * ! 0.88 (0.88,0.88) 4.50
Cui (c) (2022) (4) ¢ 0.94 (0.89,0.99) 0.43
Cui (c) (2022) (5) > 0.93 (0.87,0.98) 0.34
Dou (2022) (1) - 0.95 (0.95,0.96) 3.97
Fontenele (2022) X - 0.98 (0.97,0.98) 4.44
Khan (2022) (1) == X 0.90 (0.89,0.91) 4.20
Xie (2022) - ' 0.88 (0.88,0.88) 4.60
Algahtani (2023) ! +  0.99(0.99,0.99) 449
Chen (2023) (1) == ! 0.86 (0.86,0.87) 4.26
Chun (2023) * : 0.92 (0.88,0.96) 0.57
Kim (2023) i ® 0.94 (0.94,0.94) 468
Li (a) (2023) g 0.94 (0.94,0.94) 4.68
Li (b) (2023) & * 0.94 (0.94,0.94) 4.68

Overall, DL (2= 99.9%, p = 0.000)

0.93 (0.93, 0.93) 100.00

T T
.8 9

T
1

Fig. 2 Forest plot of pooled mean of Dice Similarity Coefficient. *Notes: (1) The missing standard deviation (SD) values were imputed by pooling all given
SD values that were < 1. (2) Multiclass segmentation subgroup. (3) Binary segmentation subgroup. (4) Internal validation dataset. (5) External validation

dataset

becoming a new topic of exploration. Based on the syn-
thesis of the most updated evidence, deep learning algo-
rithms can achieve a DSC accuracy as high as 0.93 for
tooth segmentation.

The continuous evolution of deep learning algorithms
is driven by the primary goal of achieving accurate and
efficient tooth segmentation [23]. The most popular deep
learning algorithm in tooth segmentation is the U-Net
architecture, which consists of the convolutional encod-
ing stage and the deconvolutional decoding stage. U-Net
can utilize skip connections, directly connecting the
appropriate layers between encoder and decoder, com-
bining information from different levels of abstraction,
and assisting the model in comprehending complex pat-
terns in the data, which is particularly beneficial for tooth
segmentation [57, 58]. This results in higher segmen-
tation accuracy compared to other convolutional neu-
ral networks (CNNs). To address the volumetric nature
of CT/CBCT images, researchers have also explored
3D U-Net architectures, leading to the development of
VoxResNet and DenseVoxelNet [59]. These networks
are designed to capture 3D information from volumetric

data, enabling the prediction of fine-grained labels for
objects within a 3D scene [60]. By leveraging 3D convo-
lutions, these models capture spatial relationships across
all three dimensionsresulting in enhanced segmentation
performance compared to 2D networks [61].

Another approach in tooth segmentation is the incor-
poration of multi-scale information, exemplified by the
use of feature pyramid networks (FPN). This enables cap-
turing fine-grained details and global context, which are
crucial for achieving accurate tooth segmentation [62,
63]. Furthermore, data augmentation has become a valu-
able technique for improving the performance of deep
learning in tooth segmentation, particularly when dealing
with limited annotated data. Data augmentation contrib-
utes to the efficient training of deep learning models, as
demonstrated in the application of Region Proposal Net-
work (RPN) combined with FPN and U-Net [64].

Aside from the mainstream convolutional models,
Transformer-based architectures have also been explored
for tooth segmentation. Transformer models are multi-
head self-attention networks that overcome memory con-
straints and capture long-range dependencies, originally
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developed for natural language processing [65]. These
networks have revolutionized sequence modeling by
global dependency modeling and parallelization, leading
to enhanced computational efficiency [66—68]. With the
advent of the Vision Transformer (ViT), the application
of Transformer-based architectures in image segmenta-
tion has expanded significantly. These networks process
a sequence of image patches and exhibit more consistent
prediction errors compared to human beings than CNNs
[67]. Transformer-based models are adept at encoding
long-range dependencies and learning highly effective
feature representations compared to CNNs [69]. While
Transformer-based algorithms excel at capturing global
relationships within data, a significant challenge remains
in the necessity for pre-training on large datasets, limit-
ing its real-world feasibility [67]. Further modifications
of deep learning mainly incorporate the combination of
different algorithms, such as combining convolutional
models with the attention mechanism from Trans-
former models [44], aiming to integrate the strengths of
various models while mitigating their weaknesses. The
future progression of deep learning algorithms is likely
to involve the continued integration of convolutional

models with Transformer attention mechanisms, with
the aim of enhancing segmentation accuracy while simul-
taneously reducing computational time.

The sample sizes varied across different studies, and
no clear relationship between sample size and segmenta-
tion accuracy has been observed. In traditional clinical
studies, researchers need to calculate the target sample
size using precision or power analysis [70]. However, in
the AI era, sample size calculation aims to determine
the number of images required for a machine learning
algorithm to reach a specific performance threshold or
maintain a sufficiently low generalization error [71]. A
common method for optimizing sample size is the use
of a post-hoc (curve fitting) approach, which involves fit-
ting the learning curve of the AI model on varying sizes
of training datasets [72]. As the sample size increases, the
training loss tends to stabilize, allowing the sample size to
be determined to avoid undertraining or overtraining of
Al models. Therefore, an excessive sample size may not
contribute to further improvement in the model’s perfor-
mance, explaining our findings.

Various evaluation metrics have been employed to
assess the performance of tooth segmentation, with
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DSC being the most prevalent, as observed in previ-
ous systematic reviews [23]. These diverse metrics can
be classified into three categories: overlap-based met-
rics, distance-based metrics, and volume-based met-
rics [23]. For example, DSC is an overlap-based metric
that measures the spatial overlap between two sets of
binary segmentation results [23, 73]. The performance of
deep learning algorithms often varies depending on the
metrics used. The prevalent use of DSC during model
training usually contributes to its high score in the evalu-
ation phase compared to other metrics [74]. Therefore,
although DSC is frequently used as the primary metric to
evaluate an algorithm, it is crucial to consider other met-
rics to obtain a comprehensive assessment of the overall
performance.

Although various evaluation metrics have been
employed in the research [23], there is a lack of clini-
cally relevant metrics that evaluate the clinical applica-
bility of tooth segmentation. Tooth segmentation in CT/
CBCT images can be used to examine tooth morphology
and positioning and can be applied in different clinical
scenarios. For instance, in orthodontic treatment, metal
artefacts caused by brackets and wires can influence the
segmentation accuracy of crowns, potentially affecting
the simulation of tooth movements during alignment
[75]. The impact of these artefacts, however, remains
unverified. In dentoalveolar surgeries, accurately seg-
menting the root apex is vital for proper apical surgery
guidance and prevention of root remnants, especially
in curved roots. Overlooking small root tips might not
noticeably affect segmentation accuracy, but it can sig-
nificantly impact clinical outcomes [24, 27]. While our
study pooled existing data to present a reference DSC
value of 0.93, it is important to approach clinical inter-
pretation with caution. The collaboration between Al
researchers, mathematicians, and clinicians is crucial for
developing evaluation metrics specifically tailored for
clinical applications, taking into account factors such as
the type of tooth and the location of teeth in relation to
adjacent vital structures, to comprehensively assess the
performance of tooth segmentation.

In our meta-analyses, all pooled metrics exhibited
significant data heterogeneity (I*>99%). Statistically, 1>
describes the percentage of variability in effect estimates
due to heterogeneity [76], and statistical heterogeneity
may also arise from clinical and methodological hetero-
geneity. Each included study had unique datasets and
deep learning models, leading to clinical heterogeneity.
Furthermore, the included studies demonstrated variabil-
ity in their designs, including the use of manual or semi-
automatic segmentation as the reference standard, the
implementation of internal and/or external validation for
model development, and the utilization of different imag-
ing modalities such as CBCT and CT.
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For methodological heterogeneity, it is worth noting
that some studies reported the number of teeth, while
others used the number of scans or individuals as the
sample size. Therefore, an estimate of the number of
teeth was made, assuming that each participant had 28
teeth. This potential overestimation of the number of
teeth may distort the weighting of studies and contribute
to the heterogeneity of the pooled result. Additionally,
our findings indicated a high prevalence of unclear risk
of bias in the patient selection domain, with more than
half of the included studies exhibiting a high risk of bias
in the reference standard domain. Although most studies
provided clear inclusion and exclusion criteria for their
populations, they often failed to specify whether the sam-
ple was selected through random sampling, resulting in
an unclear risk of bias. In the reference standard domain,
while the methods for obtaining ground truth were gen-
erally specified, the absence of cross-checking for the ref-
erence standard led to a high risk of bias.

These concerns regarding the risk of bias in the
included studies should be taken into account when
interpreting the results. To improve comparability
between future studies, it is recommended that research
be conducted with standardized protocols and open-
labelled datasets. Additionally, it is essential to specify
the sampling methods, cross-check the reference stan-
dard, and report the number of teeth used for training
and validation of the dataset.

To the best of our knowledge, this systematic review
and meta-analysis is the first and most comprehensive
effort to investigate the application of deep learning algo-
rithms in tooth segmentation and characterize the evo-
lution of deep learning algorithms in this field. The DSC
value of 0.93 represents the updated accuracy of tooth
segmentation utilizing deep learning that could provide a
reference for similar future studies. However, it should be
acknowledged that the included studies exhibited signifi-
cant heterogeneity and high risk of bias, which impacted
the pooled results. Furthermore, further clinical studies
are warranted to confirm the clinical applicability of deep
learning tooth segmentation from CT/CBCT. Future
research could explore advanced applications such as
the recognition of supernumerary teeth, the automatic
detection of periapical lesions, and the integration of
deep learning tools into dental education.

Conclusion

The application of deep learning algorithms in tooth
segmentation has significantly advanced the segmen-
tation process. Notably, the popularity of U-Net and
U-Net-based algorithms, as well as the emergence of
the Transformer model and the combination of multiple
models, should be highlighted as potential future trends
in the development of deep learning algorithms for
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tooth segmentation. This study provides a reference DSC
value of 0.93, which can serve as a benchmark for future
research in this field. However, it is crucial to conduct
studies with standardized protocols, evaluation metrics,
and open-labelled datasets to gain a better comparison
of different deep learning algorithms employed in tooth
segmentation. Additionally, more appropriate evalua-
tion metrics should be developed for use in the clinical
setting.
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