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Abstract: Introduction. Primary bile acids (PBAs) are produced and released into human gut
as a result of cholesterol catabolism in the liver. A predominant PBA is chenodeoxycholic acid
(CDCA), which in a recent study in our laboratory, showed significant excipient-stabilizing effects on
microcapsules carrying insulinoma β-cells, in vitro, resulting in improved cell functions and insulin
release, in the hyperglycemic state. Hence, this study aimed to investigate the applications of CDCA in
bio-encapsulation and transplantation of primary healthy viable islets, preclinically, in type 1 diabetes.
Methods. Healthy islets were harvested from balb/c mice, encapsulated in CDCA microcapsules, and
transplanted into the epididymal tissues of 6 syngeneic diabetic mice, post diabetes confirmation. Pre-
transplantation, the microcapsules’ morphology, size, CDCA-deep layer distribution, and physical
features such as swelling ratio and mechanical strength were analyzed. Post-transplantation, animals’
weight, bile acids’, and proinflammatory biomarkers’ concentrations were analyzed. The control
group was diabetic mice that were transplanted encapsulated islets (without PBA). Results and
Conclusion. Islet encapsulation by PBA microcapsules did not compromise the microcapsules’
morphology or features. Furthermore, the PBA-graft performed better in terms of glycemic control
and resulted in modulation of the bile acid profile in the brain. This is suggestive that the improved
glycemic control was mediated via brain-related effects. However, the improvement in graft insulin
delivery and glycemic control was short-term.

Keywords: chenodeoxycholic acid; primary human bile acid; transplantation; type 1 diabetes

1. Introduction

Primary bile acids (PBAs) are produced in human gut, and result from cholesterol
breakdown by hepatocytes, before being released from the liver and stored in the gall
bladder and secreted into the intestine upon food ingestion [1]. In the intestine, the human
microbiome metabolizes PBAs into secondary bile acids, which are then reabsorbed back
into the liver for further metabolism, resulting in a pool of primary, secondary, and tertiary
bile acids, also known as the bile acid pool [2]. Based on the literature, the potency profile
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of these bile acids follows the order of ursodeoxycholic acid (UDCA) < chenodeoxycholic
acid (CDCA) < lithocholic acid (LCA), with UDCA being the least potent or toxic [3–5].

A dominant PBA in the gut is CDCA, which, of recently, has been shown to exert
beneficial effects in formulating drug matrices, as an excipient and as a matrix stabilizing
agent. In a recent study, when incorporated with matrix formulation, CDCA showed
excipient-stabilizing effects on microcapsules carrying viable insulinoma β-cells, in vitro [6].
In another study in our laboratory, the incorporation of CDCA improved the stability
and reduced swelling of drug-loaded microcapsules resulting in improved drug stability
and release and overall better shelf-life [7]. In addition to its potential applications as a
stabilizing excipient in formulations, CDCA and other bile acids have also been shown to
exert significant pharmacological and biological effects.

Based on published studies, when insulin sensitivity was correlated with the bile
acid pool, there was a strong association between bile acids’ ratios and glucose tissue
uptake, suggesting that bile acids may be directly related to glucose regulation and cellular
uptake [8]. In a study by Cariou et al., fasting plasma concentrations of CDCA as well as
other bile acids were found to be inversely correlated with insulin sensitivity in human
healthy and diabetic adults. The authors proposed the mechanisms to be at the molecular
levels, affecting a wide range of nuclear receptors, including farnesoid X-receptor (FXR) [9].
In another study by Shihabudeen et al., the authors found that CDCA can be used to
treat liver cirrhosis due to its role in suppressing inflammatory regulators, reversing
insulin resistance, and modulating secretion of pro-inflammatory and anti-inflammatory
adipokines [10]. Other studies have shown that in addition to its beneficial biological effects
in liver disease, CDCA possesses wide pharmacological effects but potentially might not
be as potent as other bile acids such as UDCA [11–13]. UDCA has been shown to possess
widespread anti-inflammatory and anti-apoptotic effects and can also exert beneficial
effects on blood glucose profile via reduced gluconeogenesis, increased insulin sensitivity,
and energy expenditure [12–15]. On the other hand, it is worth stating that not all bile acids
are known for their beneficial biological and pharmacological effects. For example, the bile
acid LCA can be toxic and is often attributed to inflammation, tissue necrosis, as well as
cancer development [11,12,16].

Type 1 diabetes is a chronic condition which presents with insulin deficiency which
causes subsequent hyperglycemia. Type 1 diabetes also presents with a range of complica-
tions which results in the condition often being difficult to treat and manage. Simplistically,
insulin treatment is required for type 1 diabetic patients. Such insulin treatments have his-
torically been administered via injection, with a stringent multiple-dose regiment required
in order to closely mimic a functional physiological insulin level. Over time, alternative
insulin analogues have been developed in an attempt to improve insulin delivery and
uptake. An insulin pump style delivery has also been implemented to allow a continuous
treatment with insulin [17,18]. Whilst these strategies have been effective at maintaining
insulin levels, the removal of the necessity of such injectable insulin therapies would be
greatly beneficial to the treatment of type 1 diabetes. A bioartificial pancreas has been pro-
posed, with islet transplantation proposed to be most successful via the microencapsulation
for the immunoisolation of islets, as investigated by several preclinical trials [19,20]. This
includes a study by Dufrane et al. with microencapsulated pig islets with polymer sodium
alginate transplanted to primates, with partial islet survival for up to six months without
immunosuppressants [21]. The potential for treatment with transplanted islets is greatly
advantageous, removing the requirement for exogenous insulin therapy and removing
many of the complications which are associated with type 1 diabetes due to the implan-
tation of functional islets without the requirement for immunosuppressive medications
associated with traditional orthotopic pancreatic transplant [22,23].

In terms of the relationships between bile acids, glucose, insulin, and diabetes, several
studies have shown interesting results. Of these, multiple investigated bile acid impacts
on the liver and subsequent results in glucose homeostasis. Seyer et al. showed bile acids
or FXR agonistic treatment of islets to result in an increase in insulin secretion stimulated
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by glucose, with overall results demonstrating that bile acids may influence β-cell glucose
competence in the liver [24]. Other studies suggest that in human hepatocytes, CDCA can
regulate the synthesis of bile acids without the need for fibroblast growth factor 19, which
is known to regulate bile acid homeostasis [25]. Diet has also been suggested to moderately
impact bile acids, which may also affect glucose homeostasis [26]. Bile acid signaling is
also shown to be expressed in colonic enteroendocrine cells which are deficient in obese
and diabetic patients, impacting glucose homeostasis [27]. Other studies which may be of
interest include the following references [28,29].

Overall, in the context of drug and islet formulation and delivery, CDCA seems to have
strong effects on stabilizing microcapsules containing islets, as well as exerting positive
biological effects on islets that may improve their ability to survival and function, post-
transplantation [6,7]. Accordingly, in this study, in order to investigate the applications and
potential role of CDCA in islet transplantation, healthy islets were harvested from mice,
encapsulated in CDCA microcapsules, and surgically transplanted into the epididymal
tissues in pelvic region of 6 syngeneic diabetic mice (injected with alloxan to induce T1D,
confirmed with blood glucose >16 mM in two consecutive measurements over two days,
and absence insulin in blood). The CDCA was used to complement the stability of the
delivery system, and the amounts used were pharmacologically negligible. The effects of
CDCA incorporation on microcapsule morphology and formulation characteristics were
assessed, and CDCA microcapsules were evaluated for the size, elemental composition,
CDCA-surface distribution, and physical features. Upon transplantation, the survival rate,
inflammation profile, concentrations of bile acids, and pro-inflammatory biomarkers in
biological samples of T1D animal model were assessed post-transplantation.

2. Methods
2.1. Materials

Calcium and barium chloride were acquired from Scharlab S.L (Barcelona, Spain), and
PBA CDCA, poly-L-ornithine, alginate sodium, and mixing reagents were purchased from
Sigma Chemical Co. (St. Louise, MO, USA) and Thermo Fisher (Scoresby, VIC, Australia).
Control and test microcapsules were prepared using our Ionic Gelation Vibrational Jet
Flow technology [30–38]. Formulation excipients consisted of 2% PBA, 2% CDCA, 1.5%
poly-l-ornithine, and 1.8% sodium alginate in 1% gel. The matrices were formulated within
48 h prior to islet encapsulation and surgical transplantation. All formulations were stored
in the refrigerator when not in use, and were used within 72 h of preparation.

2.2. Islet Microencapsulation, Topographic, Size Distribution, Surface Elemental Composition, and
Bile Acid Distribution Profiles, and Swelling and Mechanical Property Ratios Assessments

The microencapsulation of islets was performed under sterile conditions as per our
established methods in pancreatic cell encapsulation [39–48]. The effect of CDCA incorpo-
ration on islet-containing microcapsules were analyzed in terms of topographic features,
spectral elemental composition, microcapsule-size distribution, CDCA distribution on the
surface of the microcapsules, and microcapsules’ swelling and mechanical strength profiles.
All measurements were carried out based on our well-established methods [40–51].

Briefly, CDCA microcapsules were prepared using our Ionic Gelation Vibrational Jet
Flow technology via ionotropic gelation processed using main encapsulating parameters,
based on Büchi customized technology (Büchi, Switzerland) [30,40,52–59]. A multitude
of topographic assessments were conducted, with microscopy imaging, surface spectral
analyses and CDCA surface distribution assessments, scanning electron imaging, energy
dispersive X-ray spectroscopy, and confocal image measurements; all of which were carried
out on three randomly selected batches at the John De Laeter center, as well as at the Curtin
Health Innovation Research Institute (Bentley, WA, Australia). Zeiss Neon 40EsB FIBSEM
(Oberkochen, Germany), Oxford Instruments Aztec X-Act (Abingdon, UK), Olympus IX-51
and Nikon A1 confocal system (Tokyo, Japan) were used. For topography and surface
elemental composition analyses, microcapsules were coated with platinum, dried, and
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analyzed using laser-guided imagining. For CDCA surface distribution, CDCA-conjugate
was prepared and imaged using confocal-Nikon surface imaging, as per our well-described
techniques [45,60,61].

Size distribution, swelling, and mechanical resistance ratio measurements were car-
ried out using our well-established methods [44,45,50,62]. The size distribution of the
microcapsules was assessed using Master Sizer 2000 (Malvern, UK), while swelling ratio
and mechanical resistance were assessed using our methods of weight loss and structure
integrity assessments [49,63]. Briefly, 50 islet-containing microcapsules were incubated in
phosphate buffer at 37 ◦C and after one week of incubation, the swelling resistance index
was determined by comparing the initial and final weight of microcapsules [36,64]. The
percentage of intact microcapsules was calculated to determine the swelling resistance in-
dex. The mechanical strength was investigated by placing the microcapsules in phosphate
buffer and subject to the external mechanical agitation and disturbances over one week
using Boeco Shaker (Hamburg, Germany).

Once all microencapsulation and characterization assessments were carried out, the
preclinical studies commenced.

2.3. Preclinical Study Design

All experiments were approved by the Animal Ethics Committee at Curtin University
and all experiments were performed in accordance with the Australian Code of Practice
for the care and use of animals for scientific purposes.

Mice were acclimatized for up to one week after their arrival at the animal holding
facility at Curtin University as per normal protocols. The study design and preclinical
investigation encompassed two equal groups of mice, induced with diabetes (alloxan;
150 mg/Kg; IP/SC) and once diabetes confirmed (blood glucose >16 mM in two consecutive
days, and absence of plasma insulin), both groups transplanted viable islets, harvested
from donor healthy syngeneic mice. Diabetes induction and confirmation were carried out
using our well-established methods [31,34,58,59,65,66].

For the donor mice, they were euthanized and their islets harvested, digested, and
encapsulated before being transplanted into both recipient groups of mice. Group-1 mice
were considered control and were transplanted encapsulated viable islets. Group-2 mice
were considered treatment and were transplanted CDCA-encapsulated viable islets. Both
recipient groups as well as the donor mice were syngeneic, adult male balb/c, 6–8 weeks
old. Harvested islets were encapsulated using our well-established methods [61] and
transplanted surgically into the epididymal tissues, within 24 h from being harvested.
The experiment duration was 7 days, following which mice were euthanized and blood,
tissues, and feces were collected for analysis. Two main sets of measurements were carried
out. The first set on the topographic and physical and pharmaceutical features of the
CDCA-microcapsules and the other set for the biological and pharmacological effects of
the transplanted CDCA-microcapsules containing viable islets [67] (Figure 1).
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Figure 1. Experimental design and timeline for the surgical transplantation of islet-loaded CDCA mi-
crocapsules.

2.4. CDCA-Islet Epididymal Surgical Transplantation

Recipient mice were transplanted donor mice islets, encapsulated in formulation
matrix (control) or CDCA (test). Islet extraction from donor mice was carried out as per
our in-house developed and established protocols that have been approved by the Animal
Ethics Committee at Curtin University. Upon euthanasia, 3 mL of collagenase in RPMI
media was injected into the pancreatic duct to isolate the pancreas. The pancreas was
inflated by incubation in a water bath at 37 ◦C for 15 min before being vortexed at 2500 rpm,
and the suspension was retrieved by filtration into a 50-mL tube. The supernatant was
discarded by successive vortexing and centrifugation, followed by collection of islets using
a serological pipette customized for islet collection. The epididymal surgical transplantation
of encapsulated islets in both recipient groups was carried out as per approved protocol and
antibiotics were applied to prevent potential infection (Figure 2). Animals were monitored
pre- and post-surgery as per our approved protocols. Appropriate heating pads, special
surgical housing, soft food, and easy water access were provided to ensure the best animal
welfare was maintained. Further applications of opioid pain killers or antibiotics to mice
were carried out as per approved conditions in order to ensure the best outcome. Surgical
complications were monitored such as swelling or bleeding, in order to ensure robust
scientific data.
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2.5. Assessments of the Inflammatory and the Bile Acid Profiles

In order to assess the inflammatory profile, the proinflammatory cytokine, interleukin-
6 (IL-6) was measured in plasma using BD Biosciences CBA technology (San Jose, CA, USA)
as per our well-established methods [61,68,69]. In order to assess the bile acid profile, con-
centrations of the bile acids CDCA, LCA, and UDCA were analyzed in blood, tissues, and
feces. The three bile acids were measured in plasma, brain, liver and feces of recipient mice
in both control and treatment groups using our well-established liquid chromatography
mass spectrometry (LCMS 2020 system, Shimadzu Corporation, Japan) system, according
to the established protocols [69–71]. In order to extract the aforementioned bile acids from
the plasma, tissues, and feces, the samples were mixed with acetonitrile at a ratio of 1:1.
After centrifugation of the samples, 10 µL of supernatant was injected into the LCMS
system. The bile acids were separated by a C-18 column with 5-µm pore size (Phenomenex,
Torrance, CA, USA), and a mobile phase that was composed of methanol and water at a
ratio of 65%:35%.

2.6. Statistical Analysis

Statistical analysis was conducted using Prism® software v.9 (GraphPad Software,
Inc., La Jolla, CA, USA), with one-way ANOVA being the analysis technique of choice.
p < 0.05 was used for statistical significance.

3. Results
3.1. Topographic Features, Size Distribution, Surface Elemental Composition, Chenodeoxycholic
Acid Distribution, and Swelling and Mechanical Property Measurements

Figure 3 shows the schematic diagram (1A), SEM micrographs (1B), size distribution
(2A), EDXS analysis (2B), confocal assessment of CDCA distribution (3A), swelling (3B)
and mechanical resistance (3C) of the islet-loaded CDCA microcapsules.

When using our Ionic Gelation Vibrational Jet Flow technology to fabricate micro-
capsules, the incorporation of islets within the microcapsules resulted in spherical shape
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microcapsule (Figure 3(1B)) of uniform size (Figure 3(2A)) with the surface elemental
chemical composition representative of the nature of the polymers and excipients used.
There was uniform and visible CDCA distribution within the matrix of the microcapsules
(Figure 3(3A)) and microcapsules displayed robust resistance to osmotic induced swelling
and mechanical degradation (Figure 3(3B,C)). Therefore, the results of this section have
shown the co-encapsulation of exogenous CDCA with islets, when compared to controls
without CDCA, to have consistent chemical composition and resistance to osmotic stress,
improving mechanical strength.
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Figure 4 shows plasma levels of the proinflammatory biomarker, IL-6 (Figure 4(1A)),
survival rate (Figure 4(1B)), blood glucose (Figure 4(2A)), and weight (Figure 4(2B)) of
transplanted mice. As it can be seen, mice transplanted with islets-loaded microcap-
sules survived for several days longer than the control (non-CDCA microcapsules) group
(Figure 4(1B)) as well as displayed improved blood glucose levels (Figure 4(2A)), which was
complemented with corresponding decreases in the plasma levels of the pro-inflammatory
cytokine IL-6 (Figure 4(1A)). As can be seen in Figure 4(2B), both the control and test
showed results of similar weight profiles. The amounts of pro-inflammatory cytokine
IL-6 present in the plasma of recipient mice treated with CDCA-islet microcapsules were
more than 60% lower than the group treated with microencapsulated islets, suggesting an
immune-protective effects of CDCA.
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Recent studies have demonstrated significant effects of diabetes induction, develop-
ment, and progression on the bile acid profile [55] and hence, it is likely that the positive
glycemic and antidiabetic effects by the transplanted CDCA-islet microcapsules may mod-
ulate the bile acid profile in these treated mice, compared with control (Figure 5).
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3.2. The Bile Acid Profile and Diabetes Treatment

Figure 5 shows the levels of endogenous bile acids (CDCA, LCA, and UDCA) in
plasma (Figure 5A), brain (Figure 5B), liver (Figure 5C), and feces (Figure 5D) in both
groups of mice: control and test.

In plasma, treatment caused significant reduction in CDCA and LCA levels and an
increase in UDCA levels, compared with the control. The reduction in CDCA suggests
either reduction in cholesterol catabolism and CDCA synthesis, or an increase in CDCA
gut metabolism and subsequent CDCA reduction in concentration. The reduction in LCA
suggests either accelerated metabolism of LCA by the gut microbiome or a reduction in PBA
metabolism that results in a reduction in synthesis of LCA. Accordingly, decreased levels
of CDCA in plasma of our treated mice compared with the control (Figure 5A) suggest that
CDCA-islet microcapsules exacerbated the reduction in cholesterol catabolism or increased
CDCA metabolism by gut microbiome. The LCA reduction appears to be associated with
reduced inflammation due to the toxic nature of LCA, while UDCA induction seems to
associate with positive glycemic control and improved inflammatory profile. In the brain,
treatment caused a significant reduction of LCA with no detected levels of CDCA or UDCA.
In the literature, studies have shown that CDCA intake caused increased levels of UDCA
and that was as a result of the upregulation of UDCA synthetic pathways and modulation
in the bile acid profile [72]; while other studies have demonstrated the presence of multiple
metabolites and intermediates that mediate biosynthesis of primary bile acids such as
CDCA in tissues [73]. The absence of CDCA and UDCA in brain of diabetic mice suggests
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a reduced bile acid profile within brain tissues of diabetic mice, while the presence of LCA,
which was reduced by treatment, suggests the reduction is due to the reduced inflammation
reported in Figure 4(1A), since inflammation has been closely associated with LCA levels in
plasma [74–76]. In the liver, treatment caused a significant reduction in LCA levels whilst
there was no significant alteration to the CDCA or UDCA levels. Although the increase
of CDCA levels due to treatment did not reach significance, it remains visible, which
might be due to the fact that since the liver is the site where CDCA is synthesized, higher
CDCA levels are caused by an overall reduction in inflammation and improved glycemia
and hence, better blood circulation resulting in more efficient cholesterol catabolism and
production of CDCA. On the other hand, the significant and substantial reduction in LCA
levels in the liver may be due to overall reduced inflammation and improved glycemia
resulting in normalization of LCA levels in the treated diabetic mice (Figure 5C). Moreover,
Figure 5C shows that UDCA levels remain similar among control and treatment groups
suggesting lack of direct association between CDCA-islet transplantation and bile acid
synthesis in the liver and metabolism in the gut over the duration of the experiment. In
feces (Figure 5D), treatment did not cause significant and substantial alteration to excreted
bile acids. Given that the enterohepatic recirculation of bile acids account for more than
90% of total bile acids, lack of significant alteration due to CDCA-islet transplantation was
somewhat expected. The effects of CDCA on islet biology have previously been reported
by our group [6,38,77].

4. Discussion

The field of islet transplantation to treat type 1 diabetes is well established and research
has been ongoing for many years [78]. The research aimed to replace injectable insulin as a
way to revolutionize diabetes treatment.

Since its discovery in 1921, injectable insulin remains the mainstream treatment for
treating type 1 diabetes and although effective, its route of administration remains prob-
lematic in terms of patient compliance, injection complications, and storage challenges.
Researchers have invested significant funding and time in order to revolutionize injectable
insulin and various attempts have been trialed including design of interactive automated
hybrid systems that consistently measure glucose and inject insulin, design of new stable
insulin mimetics, design of new nanocapsules for oral, nasal, or pulmonary delivery of in-
sulin, and design of new hydrogels suitable for islet delivery and transplantation, with the
ultimate goal of complementing or even replacing the need for injectable insulin [79–81].
However, and despite the best effort and ongoing research, an ultimate treatment replacing
injectable insulin has not been established in the clinic and wide applications of islet trans-
plantation as a method to replace insulin therapy, long-term, have not been successful or
commercially viable. Alternative inventions for designing better insulin delivery systems
also failed to meet the clinical need to treating Type 1 diabetes, and hence, better approaches
remain to be achieved for such a medical need. Hence, this study aimed to explore the
applications of primary bile acids (PBAs) in islet transplantation, and insulin delivery with
a particular interest in the PBA, CDCA.

In terms of the surface elemental composition of the microcapsules, the results demon-
strated such composition to be characteristic of the encapsulation polymers and excipients
which make up the microcapsules. Therefore, these results were in accordance with pub-
lished studies demonstrating that bile acid incorporation with microcapsules did not
compromise the nature of excipients of these microcapsules and atoms such as C and O
remain integral to the surface characteristics of these microcapsules (Figure 3(2B)) [6,42,44].
Furthermore, the microcapsules were shown to be resistant to any osmotic induced swelling
and mechanical degradation, with the findings being consistent with the literature. Thus,
the current study reveals that the CDCA microcapsules could effectively co-encapsulate
exogenous CDCA and islets for transplantation, in addition to superior stability against
osmotic and mechanical stress, when compared with non-CDCA encapsulated islets. Ac-
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cordingly, CDCA-islet microcapsules exhibit features that may promote better islet survival,
glycemic control, and reduced inflammation (Figure 4).

As mentioned in the results section, pro-inflammatory cytokine IL-6 measurements
in plasma of mice had significant differences when comparing CDCA microencapsulated
islets to non-CDCA microencapsulated islets. This is consistent with previous studies
that showed immune-protective effects of bile acids when incorporated with nano and
microcapsules and exposed to cells either in cell culture or in a preclinical setting [46,49,82].
Accordingly, findings suggest that CDCA incorporation with islets have direct biological
effects on islet functions, insulin release, and glycemic response, and can also exert sig-
nificant anti-inflammatory effects, potentially further improving the islets insulin release
and diabetes treatment. Such desirable biological and anti-inflammatory effects is likely to
result in improved overall survival rate of transplanted graft and the host. Insulin levels
after transplantation averaged slightly lowering than normal levels seen in healthy mice,
but large enough to exert pharmacological effects.

For the weight profiles comparing non-CDCA transplanted islets and CDCA trans-
planted islets, similar weight profiles, (Figure 4(2B)), suggest that the improved glycemia
and inflammatory profiles are not directly the result of weight gain or improved weight
profile, but rather improved glycemic control due to better tissue and cell viability and
better insulin release from the CDCA-islet microcapsules, compared with control. This is
consistent with the literature, which has demonstrated significant pharmacological and
endocrinological effects of bile acids in cell signaling and functions, and overall viability
and biological activities [2].

Bile acid production and metabolism are complex and multifaceted. Endogenous bile
acids such as CDCA are produced via cholesterol catabolism. They are metabolized by
the gut microbiome into, for example, LCA and UDCA, and are recycled multiple times a
day, through what is known as the enterohepatic recirculation pathways. There are many
different types of bile acids that present in gut and various parts of the body, and their syn-
thesis is regulated by feedback mechanisms and complex processes [83–85]. In this study,
the impact of transplanting CDCA-islet microcapsules on the bile acid pool is likely to be
caused mainly as the result of the biological effects (including glycemic and inflammatory
effects) rather than feedback mechanisms brought about directly and predominantly due
to the presence of CDCA in the body, within the transplanted microcapsule.

Previously published studies in type 1 diabetes development and the bile acid profile
reported significant reduction in plasma CDCA levels and increase in plasma LCA levels
demonstrating negative feedback mechanisms on CDCA levels and positive feedback
mechanisms on LCA levels as a result of diabetes development, while UDCA levels
were not significantly altered [55]. Other studies have shown that induction of type 2
diabetes resulted in a decrease in UDCA levels in plasma, demonstrating negative feedback
mechanisms as a result of diabetes development [49]. Furthermore, it has been shown
that changes in the bile acid pool may be observed prior to type 2 diabetes development,
suggesting that bile acids may play a role [86]. Type 1 diabetes findings were consistent
with this research, which demonstrated, compared to the control, a significant reduction
in CDCA and LCA levels in plasma, whilst there was an increase in plasma UDCA levels.
The reduction in LCA plasma appearing to associate with reduced inflammation and the
increase in plasma UDCA is likely associated with both positive glycemic control and
inflammatory profile improvement. Such results are consistent with previously published
studies that demonstrated positive UDCA effects on the inflammatory biomarkers [39,87].

Changes were observed in the bile acid pools, although there was no significance in
the changes between UDCA and CDCA. Statistically insignificant changes in CDCA were
observed, with increases in levels likely to be due to improved blood circulation. Decreases
in LCA were statistically significant in the liver, likely to be due to overall inflammation
reduction and glycemia reduction. Published studies suggest that provision of certain bile
acids can result in alteration in the bile acid profile via vitamin D receptors. In a study
carried out by Nishida et al., the authors showed that administration of CDCA resulted
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in alteration of the bile acid profile, particularly the bile acid LCA, via direct influence on
vitamin D receptors and LCA metabolism pathways [88]. Other studies in our laboratory
have suggested that diabetes induction has been associated with increased LCA levels in
tissues and feces due to a potential increased expressions of liver enzymes and nuclear
receptors as well as alteration in the bile acid enterohepatic recirculation processes causing
a shift in the bile acid hemostasis and subsequent increase in LCA synthetic pathways [55].

5. Conclusions

The study has investigated the effects of CDCA incorporation on microcapsule forma-
tion and primary islet encapsulation. The results showed that CDCA incorporation into
islets containing microcapsules enhanced the integrity and stability of the microcapsules.
In the presence of CDCA, post-transplantation, the encapsulated islets showed improved
biological effects, including desirable islet functions, insulin release and glycemic response.
Furthermore, the incorporation of CDCA reduced inflammatory profile suggesting better
functions and pharmacological efficacy (Figure 6). Hence, CDCA improved primary islet
delivery and diabetes treatment. Future studies need to explore dose-response of CDCA
and potentially other bile acids in tissue delivery, biotechnology, and transplantation.
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