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Abstract

Background: A growing number of arenaviruses can cause a devastating viral hemorrhagic fever (VHF) syndrome. They
pose a public health threat as emerging viruses and because of their potential use as bioterror agents. All of the highly
pathogenic New World arenaviruses (NWA) phylogenetically segregate into clade B and require maximum biosafety
containment facilities for their study. Tacaribe virus (TCRV) is a nonpathogenic member of clade B that is closely related to
the VHF arenaviruses at the amino acid level. Despite this relatedness, TCRV lacks the ability to antagonize the host
interferon (IFN) response, which likely contributes to its inability to cause disease in animals other than newborn mice.

Methodology/Principal Findings: Here we describe a new mouse model based on TCRV challenge of AG129 IFN-a/b and -c
receptor-deficient mice. Titration of the virus by intraperitoneal (i.p.) challenge of AG129 mice resulted in an LD50 of ,100
fifty percent cell culture infectious doses. Virus replication was evident in the serum, liver, lung, spleen, and brain 4–8 days
after inoculation. MY-24, an aristeromycin derivative active against TCRV in cell culture at 0.9 mM, administered i.p. once
daily for 7 days, offered highly significant (P,0.001) protection against mortality in the AG129 mouse TCRV infection model,
without appreciably reducing viral burden. In contrast, in a hamster model of arenaviral hemorrhagic fever based on
challenge with clade A Pichinde arenavirus, MY-24 did not offer significant protection against mortality.

Conclusions/Significance: MY-24 is believed to act as an inhibitor of S-adenosyl-L-homocysteine hydrolase, but our findings
suggest that it may ameliorate disease by blunting the effects of the host response that play a role in disease pathogenesis.
The new AG129 mouse TCRV infection model provides a safe and cost-effective means to conduct early-stage pre-clinical
evaluations of candidate antiviral therapies that target clade B arenaviruses.

Citation: Gowen BB, Wong M-H, Larson D, Ye W, Jung K-H, et al. (2010) Development of a New Tacaribe Arenavirus Infection Model and Its Use to Explore
Antiviral Activity of a Novel Aristeromycin Analog. PLoS ONE 5(9): e12760. doi:10.1371/journal.pone.0012760

Editor: Cheryl A. Stoddart, University of California San Francisco, United States of America

Received June 10, 2010; Accepted August 18, 2010; Published September 16, 2010

Copyright: � 2010 Gowen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Supported by contract/grant N01-AI-30048, N01-AI-15435, N01-AI-30063 (awarded to Southern Research Institute), and U19-AI-56540, Virology Branch,
NIAID, NIH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: brian.gowen@usu.edu

Introduction

Junı́n and other South American hemorrhagic fever-causing

viruses pose a considerable public health threat as emerging

infectious disease agents and because of their potential for

intentional release [1]. All of the highly pathogenic New World

arenaviruses (NWA; Junı́n, Machupo, Guanarito, Sabia), includ-

ing the recently identified Chapare virus, phylogenetically

segregate into clade B [2], and require maximum biosafety level

4 (BSL-4) containment facilities for their study. Presently, there are

no clade B arenavirus infection models outside of newborn mice

suitable for early stage antiviral drug development and proof-of-

concept studies. There are several guinea pig and nonhuman

primate models based on infection with authentic BSL-4

arenaviral hemorrhagic fever agents, but they are not readily

available to most researchers [3]. Moreover, studies in BSL-4

containment and with larger animal species are cost-prohibitive

for use in early pre-clinical drug development.

Tacaribe virus (TCRV) is a nonpathogenic member of clade B

that is ,70% identical to Junı́n virus (JUNV) at the amino acid

level [4]. However, despite its relatedness to the highly pathogenic

NWA, TCRV lacks the ability to antagonize the host interferon

(IFN) response [5], which likely contributes greatly to its inability

to cause disease in mature animals. Because of the apathogenicity

of TCRV in mice and other rodents, a newborn mouse model was

established to evaluate lead antiviral compounds in vivo, primarily

with the intent to demonstrate proof-of-concept in a Clade B

NWA model [4,6]. Due to the many challenges of working with

newborn mice and their underdeveloped cellular and immune

response to infectious agents, an alternative model to study clade B

arenavirus infection biology and evaluate candidate therapies is

needed.
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AG129 IFN-a/b and -c receptor knockout (KO) mice were

originally described to have increased susceptibility to severe

infection with the prototypical arenavirus, lymphocytic chorio-

meningitis virus (LCMV), as well as vaccinia virus [7]. Recently,

the AG129 mice were used to develop a dengue hemorrhagic fever

disease model that manifests vascular leak, thus, more closely

resembling the human condition [8]. In a study investigating the

contributions of type I and II IFN antiviral responses to Sindbis

virus infection, wild-type and IFN-c receptor KO (G129) mice

were found to be resistant to challenge, whereas the IFN-a/b
receptor KO (A129) and the double KO AG129 mice succumbed

to infection [9]. Importantly, the AG129 mice produced a lethal

viral hemorrhagic fever (VHF)-like disease not observed in the

Sindbis virus-infected A129 mice. Because TCRV does not disrupt

IFN production [5], the AG129 mice may provide fertile ground

for viral replication that culminates in a lethal viscerotropic

disease, thereby providing a model that can be used to evaluate

antiviral drug candidates for the treatment of acute arenaviral

infections.

To date, there are limited options for treating JUNV infection in

cases of Argentine hemorrhagic fever. Immune plasma has been

reported to be effective at reducing case-fatality rates when

administered within a week from the onset of illness [10]. In a

clinical trial with limited enrollment, ribavirin therapy had an

antiviral effect on several measured disease parameters including

viral load and delay in time of death in patients who succumbed

[11]. Notably, however, both immune plasma and ribavirin

treatments have been associated with neurologic sequelae following

the resolution of the acute phase of the disease [12]. The use of

ribavirin has also been explored in several cases of Bolivian

hemorrhagic fever [13], but larger numbers of patients are needed

to convincingly demonstrate efficacy. Finally, in a landmark study

wherein ribavirin was used to treat sever cases of Lassa fever,

significant efficacy was demonstrated [14]. Notably, however,

ribavirin lacks specificity [15], is associated with considerable

toxicity [16], and is not approved by the FDA for the indication of

treating any form of arenaviral hemorrhagic fever [1].

There are several new antiviral drug candidates that have

demonstrated efficacy in small animal models of acute NWA

infection. Favipiravir (T-705) has been shown to be highly effective

in the hamster Pichinde virus (PICV) model of arenaviral

hemorrhagic fever [17], and is capable of treating advanced

disease [18]. Presumably, the mode of antiviral action in

arenaviruses is through inhibition of the viral polymerase, as has

been shown for influenza virus [19]. ST-294, a potent inhibitor of

NWA membrane fusion has also demonstrated activity in a

newborn mouse TCRV infection model [4].

Several biologics that enhance the host antiviral response are

also being considered. Although Lassa fever is thought to be

resistant to the effects of type I IFN [20], a recent study

demonstrated sensitivity of several strains Lassa virus to IFN-a
and -c in cell culture [21]. Moreover, treatment with consensus

IFN-a, alone or in combination with ribavirin has proven effective

in the hamster PICV infection model [22,23]. A novel therapy

based on the targeting of anionic phospholipids exposed on

infected cells and virions has shown promise in studies employing a

guinea pig model based on infection with an adapted PICV [24].

Despite the present efforts to develop therapies for the treatment of

arenaviral hemorrhagic fevers, most are in the early stages of

development, and new classes of inhibitors will most certainly be

needed.

Carbocyclic nucleosides have provided a foundation for

discovering new biological agents, including antivirals [25,26].

Among this class of compounds, aristeromycin (Figure 1, 1), which

is the naturally occurring carbocylic nucleoside analog of

adenosine (Figure 1, 2) [27], has been particularly valuable in

the search for new antivirals because of its inhibition of host cell S-

adenosylhomocysteine hydrolases [28], an enzyme that plays a

role in metabolic methylations requiring S-adenosylmethionine as

enzymatic cofactor [29]. However, the potential of aristeromycin

is limited by its ready intracellular conversion to the 59-nucleotides

that renders it toxic [30,31,32,33]. As part of a study to circumvent

this toxicity, 59-homoaristeromycin (Figure 1, 3) was reported to

have activity against vaccinia, cowpox, and monkeypox viruses

[34]. In the following, we report the details of our synthesis of 59-

homoaristeromycin, referred to herein as MY-24, and its

evaluation in a newly developed AG129 mouse TCRV infection

model.

Materials and Methods

Ethics statement
All animal procedures complied with USDA guidelines and

were conducted at the AAALAC-accredited Laboratory Animal

Research Center at Utah State University under protocols 1229

and 1425, approved by the Utah State University Institutional

Animal Care and Use Committee.

Animals
Four to seven week-old AG129 IFN-a/b and -c receptor-

deficient mice were obtained from Dr. Justin Julander’s breeding

colony at Utah State University. They were fed irradiated mouse

chow and autoclaved water ad libitum. Female 60–100 g golden

Syrian hamsters were obtained from Charles River Laboratories

(Wilmington, MA) and acclimated for a minimum of 6 days prior

to experimentation. They were fed standard hamster chow and

tap water ad libitum.

Viruses
TCRV, strain TRVL 11573, was obtained from American

Type Culture Collection (ATCC; Manassas, VA). The virus stock

(2 passages in Vero 76 African green monkey kidney cells) used

was from a clarified cell culture lysate preparation concentrated

using an Amicon stirred ultrafiltration cell (Millipore, Danvers,

MA). The JUNV vaccine strain, Candid 1, was provided by Dr.

Robert Tesh (World Reference Center for Emerging Viruses and

Arboviruses, University of Texas Medical Branch, Galveston,

TX). PICV, strain An 4763, was provided by Dr. David Gangemi

Figure 1. Chemical structure of MY-24 and derivatives.
Aristeromycin (1), adenosine (2), 59-homoaristeromycin (MY-24)(3).
doi:10.1371/journal.pone.0012760.g001
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(Clemson University, Clemson, South Carolina). The virus was

passaged once through hamsters and once in Vero (African green

monkey kidney) cells. PICV stocks for challenge efficacy studies

were prepared from pooled livers harvested from infected

hamsters. Stocks for cell culture studies were from clarified Vero

cell culture lysates. JUNV was amplified in Vero cells and the virus

stock was prepared from clarified cell culture lysates.

Compounds
The synthesis of MY-24 has previously been reported in

communication form [34]. However, the experimental details

have not been described. Due to the biological potential of MY-24,

the detailed procedures are provided as supporting methodology

(Figure S1 and Text S1). Ribavirin was supplied by ICN

Pharmaceuticals, Inc. (Costa Mesa, CA). For in vivo studies, both

MY-24 and ribavirin were dissolved in sterile saline solution and

administered by intraperitoneal (i.p.) injection.

Cell culture antiviral assays
Vero and Vero 76 cells were obtained from ATCC and

maintained in minimal essential medium (MEM) supplemented

with 0.18% NaHCO3 and 10% fetal bovine serum (FBS; Hyclone

Thermo Scientific, Logan, UT). Cell cultures in 96-well microtiter

plates were ,80% confluent at time of infection with 5 cell culture

50% infectious doses (CCID50) of JUNV, PICV, or TCRV

prepared in MEM containing 2% FBS. Varying concentrations of

MY-24 and ribavirin (positive control) solubilized in MEM were

added to test wells at the time of infection. To determine cell

cytotoxicity, compounds were added to cultures devoid of virus

infection. Plates were incubated at 37uC, 5% CO2, until virus-

infected mock-treated control wells were observed to have

maximal viral cytopathic effect CPE (,7 to 8 days), at which

time cell viability was determined by neutral red (NR) dye uptake

as previously described [17]. The mean effective concentration

(EC50) of each compound and the concentration that reduced cell

viability by 50% (CC50) were determined by regression analysis.

Virus yield reduction (VYR) experiments were conducted to

determine the effect of MY-24 on infectious virus. Concentrations

of compound that reduce virus yield by 1 log10 (EC90) were

determined by regression analysis. Selectivity index (SI) values

were calculated as the CC50/EC50 for the CPE reduction (CPER)

NR-based assays, and as CC50/EC90 for the VYR assays.

TCRV AG129 mouse model development and challenge
efficacy studies

For all studies mice were age and gender matched so that the

group compositions would be similar within experiments. In the

initial experiments, weights were not measured to limit handling

and exposure of the immunocompromised AG129 mice. For the

titration study, mice in each group were challenged by

intraperitoneal (i.p.) injection with varying CCID50 of TCRV

spanning 6 orders of magnitude and observed for 21 days. Because

several of the mice continued to appear ill on day 21, we collected

liver, spleen, brain, and serum for virus titer determination, as

described below.

A longitudinal analysis of viral titers and ALT levels was

performed by sorting mice into groups of 3 to 6 animals and

challenging them with ,200 CCID50 of TCRV. The mice were

observed for 1 to 12 days, and sacrificed on days 1–6, 8, 10, and

12. The day-12 group had 6 animals in anticipation of several

animals succumbing prior to time of sacrifice. Serum was assayed

for viral burden and ALT levels. Tissues were collected for liver,

lung, spleen, and brain virus titer determination, as described

below. Histopathology was also determined at various times

during the course of infection. Tissue sections were fixed in

formalin and sent to the Utah Veterinary Diagnostic Laboratory

(Logan, UT) for histological examination.

In the TCRV challenge MY-24 efficacy experiments, mice were

sorted into groups of 10 to 15 animals for drug treatment groups

and 15 to 25 for the placebo groups. MY-24 treatments were

administered starting 4 h prior or 1, 3 or 5 days after challenge

with 200 CCID50 of TCRV. Animals were treated i.p. once daily

for 7 days with 25 to 150 mg/kg/day of MY-24, 50 mg/kg/day

ribavirin, or saline placebo. In one of the experiments, 5 mice from

each group were sacrificed on day 8 of infection. Serum, liver,

lung, spleen, and brain samples were collected for assaying virus

titers as described below. The mice were observed for 3 to 4 weeks

for signs of morbidity and mortality. Three to six sham-infected

mice were included as normal controls for the infections. A subset

of uninfected animals treated with 75 or 150 mg/kg/day of MY-

24 was also included in the first experiment to assess possible

toxicity.

Hamster PICV challenge MY-24 efficacy studies
Hamsters were weighed on the morning of treatment and

grouped so that the average hamster weight per cage across the

entire experiment varied by less than 5 grams. Animals were

treated as indicated with 5 to 100 mg/kg/day doses of MY-24 or

vehicle placebo 4 h prior to i.p. challenge with ,2 plaque-forming

units (PFU) of PICV. Ribavirin (40 mg/kg/day) was included as a

positive control and given by the same route and following the

same schedule. Five hamsters from each group (up to 10 for the

placebo groups) were sacrificed on day 7 of infection and sera were

collected for assaying alanine aminotransferase activity and virus

titers were determined for both liver and serum samples as

described below. The remaining 10 animals (20 for the placebo

group) were observed 21 days for mortality. Three to four sham-

infected controls were included for comparison to establish

baselines for all test parameters. In separate studies conducted in

uninfected hamsters, tolerability of doses up to 100 mg/kg/day of

MY-24 was evaluated prior to challenge efficacy experiments.

Tissue virus titer determinations
Virus titers were assayed using an infectious cell culture assay as

previously described [17]. Briefly, a specific volume of tissue

homogenate or serum was serially diluted and added to triplicate

wells of Vero 76 cell monolayers in 96-well microplates. The viral

CPE was determined 7–8 days post-virus inoculation and the 50%

endpoints were calculated as described [35]. The assay detection

ranges were 2.8–9.5 log10 CCID50/g of tissue or 1.8–8.5 log10

CCID50/ml of serum. In samples presenting with undetectable

tissue or serum virus, a value of ,2.8 or 1.8 log10 was assigned,

respectively. Conversely, in cases wherein virus exceeded the

detection range, a value of.9.5 or 8.5 log10 was assigned. For

graphic representation and statistical analysis, respective values of

1.8, 2.8, 8.5, or 9.5 log10 were assigned as needed for samples with

undetectable or saturated virus levels.

Serum alanine aminotransferase (ALT) determinations
Detection of ALT in serum is an indirect method for evaluating

liver damage. Per the manufacturer’s recommendations, serum

ALT levels were measured using the ALT (SGPT) Reagent Set

purchased from Pointe Scientific, Inc. (Lincoln Park, MI). The

reagent volumes were adjusted for analysis on 96-well microplates.

MY-24 Efficacy in TCRV Model
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Statistical analysis
Kaplan-Meier survival plots and all statistical evaluations were

done using Prism (GraphPad Software, CA). The log-rank test was

employed for survival analysis. For analyzing differences in viral

titers and ALT levels, a one-way analysis of variance (ANOVA)

with Newman-Keuls post test or the Kruskal-Wallis test with the

Dunn’s post test was performed based on Gaussian distribution of

the data. The Mann-Whitney test (two-tailed) was used for

comparing mean day of death.

Results

In vitro anti-arenavirus activity of MY-24
The activity of the aristeromycin derivative, MY-24, was

investigated in several cell culture-based arenavirus infection

model systems. As shown in Table 1, MY-24 demonstrated

moderate activity against TCRV, JUNV, and PICV by VYR with

EC90 values ranging from 0.9 to 2.4 mM. Notably, by CPER assay,

the clade B arenaviruses (TCRV and JUNV) were found to be

more sensitive to MY-24. Ribavirin, included as a positive control,

was active in the range of 8–16 mM versus the same panel of

arenaviruses. MY-24 had markedly lower CC50 values compared

to ribavirin, resulting a 4-fold difference in VYR SI values ranging

from 12 to 31 for MY-24 and 119 to 135 for ribavirin.

Characterization of TCRV infection in AG129 mice
Because MY-24 demonstrated better antiviral activity against

the more medically relevant clade B arenaviruses in cell culture

(Table 1), we pursued the development of a rodent model based on

challenge with TCRV. We initially challenged weanling hamsters

i.p. with up to 106 CCID50 of TCRV and found them to be

refractory to infection, with no apparent signs of illness or weight

loss (data not shown). We next explored TCRV model

development in AG129 IFN-a/b and -c receptor-deficient mice.

We hypothesized that devoid of the critical IFN antiviral response,

these mice would be susceptible to productive TCRV infection. As

shown in Figure 2, the AG129 mice were sensitive to the virus at

varying degrees based on the viral inoculum, with disease

progressing slowly and animals first succumbing on day 10 of

infection.

Because some of the surviving mice continued to show varying

degrees of mild to moderate disease signs (lethargy, ruffled fur, and

hunched posture) towards the final days of the 3 week study, we

sacrificed all surviving animals on day 21 to measure systemic viral

burden and tissue titers. In the 4 surviving animals that were

challenged with 26103 or greater CCID50, all had 5 to 6 log10 of

virus in the brain and spleen, 2 of 4 had 5 log10 of liver virus, and 3

of 4 had 3.5 to 5 log10 of serum virus (data not shown). Only

,20% of the samples collected from the surviving mice challenged

with 20 or 2 CCID50 of TCRV had detectable levels of virus on

day 21.

A follow-up study was conducted to characterize the progression

of TCRV infection during the acute phase of disease in AG129

mice. As seen in Figure 3A–E, all tissues examined harbored virus.

Table 1. In vitro inhibitory effects of MY-24 and ribavirin against arenavirusesa.

MY-24c Ribavirin c

Virus Assay b
CC50 ±
SD EC50/90 ± SD SI d CC50 ± SD EC50/90 ± SD SI d

TCRV CPER 2868.2 0.960.2 31 11066356 1262.5 92

VYR 0.960.2 31 8.262.0 135

JUNV CPER 3365.7 2.461.2 14 11886356 1165.7 108

VYR 1.160.6 30 1063.9 119

PICV CPER 28615 16610 2 10246217 1668.2 64

VYR 2.461.2 12 7.862.5 132

aData are the mean and standard deviations from 3 separate experiments in Vero (JUNV and PICV) or Vero 76 (TCRV) cells.
bCytopathic effect reduction (CPER) based on neutral red dye uptake by viable cells; virus yield reduction (VYR).
cCC50 and EC50 values are inmM.
dSelectivity index (SI) = CC50/EC50/90.
doi:10.1371/journal.pone.0012760.t001

Figure 2. Survival of AG129 mice challenged with TCRV. Groups
of 5 mice/group were inoculated with the indicated CCID50 dose of
TCRV. Mortality was monitored over a 21-day period. Percent survival
for the 2,000 CCID50 group was based on 4 animals due to the loss of
one animal on day 2 from causes not believed to be related to TCRV
infection.
doi:10.1371/journal.pone.0012760.g002
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The first organ to have significant amounts of TCRV replication

was the spleen, with ,6 log10 CCID50/g on day 4 of the infection,

and sustained virus burden out to day 12 (Figure 3D). In several

spleen samples collected on and after day 8, white pustule-like

spots and a pale light color were evident by gross visual

examination. Virus first became apparent systemically on day 5

in 2 of the 3 mice, with sporadic titers through day 10, and a spike

up to ,7 log10 CCID50/ml detected on day 12 (Figure 3A).

Remarkably, liver virus titer went from undetectable on day 5 to

,6–7 log10 CCID50/g on days 6–12 (Figure 3B). A slight hint of

lung virus could be detected as early as day 5, with a substantial

incremental increase thereafter of approximately 1 log10/day as

disease progressed (Figure 3C). TCRV was found in the brain in 7

of 9 animals on day 8 and later (Figure 3E). It is possible that virus

was present as early as day 7 since we did not include that time

point in the analysis. Overall, ALT levels were fairly normal

despite considerable viral burden; however, a few animals did

show some elevation on days 10 and 12 (Figure 3F). Considering

that the mean day of death in animals that succumb from TCRV

infection is ,12 days, with a range of 10–20 days, it is not

surprising to see peak infectious TCRV loads at day 12. Notably,

the day-12 analysis is likely an underestimate of the viral burden

since the 3 sickest animals had succumbed prior to the time of

sample collection.

Obvious evidence of disease was not histologically observed

until day 8 of infection. Typical liver lesions included moderate

numbers of portal lymphocytes and histiocytes (Figure 4A) and

scattered degenerate/necrotic hepatocytes surrounded by small

numbers of neutrophils or lymphocytes. Spleens of infected mice

had hyperplastic follicles, follicular lympholysis and increased

Figure 3. Time course analysis of tissue TCRV titers and ALT levels in AG129 mice. Groups of 3 animals were sacrificed on the specified
days during infection for analysis of A) serum, B) liver, C) lung, D) spleen, and E) brain virus titers, and F) serum ALT concentration. The day-12 group
started with 6 animals, with 3 succumbing prior to time of sacrifice.
doi:10.1371/journal.pone.0012760.g003
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numbers of interstitial neutrophils (Figure 4B). Findings from day-

10 livers and spleens had similar pathology to that described for

day-8 tissue samples (data not shown). There was no kidney or

brain pathology associated with advanced TCRV infection in the

AG129 mice. However, there was mild perivascular edema with

small numbers of mixed inflammatory cells surrounding larger

vessels in lungs of ,25% of the animals on days 8 and 10 of

infection (data not shown). Taken together, the virus titer and

histological findings indicate that TCRV-induced disease pro-

gresses slowly in the AG129 mice, providing an ample window of

therapeutic opportunity to assess anti-arenaviral drug candidates

in a murine system.

Evaluation of MY-24 prophylaxis in AG129 mice
challenged with TCRV

Having gained an understanding of the natural history of

disease in the AG129 mouse TCRV mouse infection model, we

sought to evaluate MY-24 in the newly established model. MY-24

was dosed at 150 and 75 mg/kg/day i.p. for 7 days. We treated

the mice only once daily to limit handling of the type I and type II

IFN system-compromised AG129 mice. As demonstrated in

Figure 5, MY-24 treatment regimens resulted in 100% protection

against a lethal TCRV challenge dose. Ribavirin was also effective

and protected 89% of the mice from mortality. Six uninfected

mice treated in parallel with 150 mg/kg/day (n = 3) or 75 mg/kg/

day (n = 3) of MY-24 all survived the treatment regimen without

any signs of adverse effects.

Notably, we did observe that the infected animals treated with

MY-24 had ruffled fur and were lethargic compared to the control

animals towards the end of the study, which prompted us to weigh

them on days 18 and 21. Average group weight gain of 1.9

(150 mg/kg/day dose) and 1.1 (75 mg/kg/day dose) grams over

that period suggested to us that they were on their way to recovery.

Some of the ribavirin-treated animals also presented with ruffled

fur and one had left hind leg paralysis. These animals also gained

weight (1 g) from days 18 to 21 and appeared to be in a state of

Figure 4. Histologic examination of liver and spleen sections from TCRV-infected AG129 mice. Representative A) liver and B) spleen
histopathology on day 8 of TCRV infection in AG129 mice. C) Liver and D) spleen tissue from healthy sham-infected mice. Tissues were stained with
hematoxylin and eosin.
doi:10.1371/journal.pone.0012760.g004

Figure 5. MY-24 protects AG129 mice challenged with TCRV
from mortality. Mice were treated i.p. once daily for 7 days with the
indicated mg/kg (mpk) doses of MY-24 or ribavirin. Treatment was
initiated 4 hours prior to infection. Data shown for the high-dose MY-
24, low-dose MY-24, ribavirin, and placebo groups are based on 9, 8, 9,
and 15 animals per group, respectively. ***P,0.001 compared to saline
placebo-treated animals.
doi:10.1371/journal.pone.0012760.g005
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recovery. For comparison, the sham-infected control mice (n = 5)

gained 0.9 g over that 3-day period.

A follow-up evaluation of MY-24 in the AG129 mouse TCRV

infection model was conducted to verify the results from the initial

experiment (Figure 5) and to assess the impact of the compound on

viral burden. Again, dramatic efficacy was observed in mice

treated with MY-24 in the context of survival (Figure 6A).

Complete protection was seen in the 25 and 50 mg/kg/day

groups, with only a single mouse (out of a total of 7) succumbing in

the 100-mg/kg/day group on day 22 of the infection, well after the

Figure 6. MY-24 protects AG129 mice against lethal TCRV infection despite lack of inhibition of viral replication. Mice were treated i.p.
once daily for 7 days with the indicated doses of MY-24 or ribavirin, starting 4 h prior to TCRV challenge. A) Survival data are based on 7, 10, 10, 10,
and 20 animals per group for the high-dose MY-24, intermediate dose MY-24, low-dose MY-24, ribavirin, and placebo groups, respectively. An
additional 4 to 5 mice per group were sacrificed on day 8 of infection for B) serum, C) liver, D) lung, and E) spleen virus titer determinations. **P,0.01,
***P,0.001 compared to saline placebo-treated animals.
doi:10.1371/journal.pone.0012760.g006
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mean day of death (13.7 days) of animals receiving placebo.

Ribavirin protected 90% of challenged mice. By visual inspection

of the animals during the study, several of the ribavirin treated

animals presented with varying degrees of lethargy and ruffled fur

starting on day 12 and thereafter. This was also apparent in some

of the mice in the 100- and 50-mg/kg/day MY-24 groups on day

17 and beyond, but to a lesser degree in the 50-mg/kg/day group.

Despite their ruffled appearance, most of these animals survived

the 28-day observation period. More severe lethargy and ruffling

of fur were observed in placebo-treated animals prior to

succumbing from infection.

In addition to survival, day 8 viral loads from serum and liver,

spleen, lung (Figure 6B–E), and brain tissues (data not shown) were

also examined. Virus was present in all tissues except for brain.

Lack of detectable virus may have been due to a slower

development of brain virus titers in this particular experiment.

MY-24 did not have any impact on viral burden in the viscera,

despite robust protection in the context of overall survival. In

contrast, ribavirin was able to partially knock down titers in serum,

liver, and lung, but not spleen.

Therapeutic efficacy of MY-24 in TCRV-challenged AG129
mice

In the first two experiments, MY-24 treatment was initiated 4 h

prior to TCRV challenge. A third experiment was conducted to

investigate the therapeutic capacity of MY-24. Because TCRV

infection can spread into the brain by day 8 (and possibly day 7)

and because we did not have any information as to the ability of

MY-24 to cross the blood-brain barrier, therapeutic interventions

were started prior to day 6. As seen in Figure 7A, delayed

treatment of TCRV infection in AG129 mice was highly effective

with complete protection afforded when treatment was initiated on

or after day 3, and 90% protection in the group where treatment

started on day 1. Based on individual animal weights tracked

during the course of the experiment, mice receiving placebo

generally began to markedly lose weight during the transition from

day-6 to day-9, and the surviving mice started their recovery after

day 18 (Figure 7B–D). In contrast, the MY-24 day-1 and day-3

treatment groups maintained weight through 12 days, lost

considerable weight on days 15 and 18, followed by recovery

and weight gain by day 21 (Figure 7B, C). Interestingly, most of

the mice in the day-5 treatment initiation group were found to

have a more gradual decrease in weight through day 18, prior to

the recovery phase (Figure 7D).

We also documented ruffling of fur during the course of the

experiment. For the placebo-treated animals, this process began

on about day 7 or 8 and continued throughout the entire

experiment for the surviving animals. In the day-1 MY-24 group,

the ruffled appearance started on day 12 and persisted for most of

the animals through the end of the study. The day-3 group began

to show the ruffled appearance on day 14, but it was noted that by

day 22 the ruffling was less pronounced and improved gradually

afterwards. For the day-5 MY-24 treatment group, mild ruffling

was seen on day 16 of infection and persisted until day 21 with

minimal ruffling noted by day 22. These observations are

consistent with the individual weight change profiles shown in

Figure 7B–D. Remarkably, both the weight change data and our

observations of the mice show that the later the time of initiation,

the more efficacious the MY-24 treatment was.

Evaluation of MY-24 in hamsters challenged with PICV
We also investigated the activity of MY-24 in the well-

established hamster model of acute arenaviral disease based on

challenge with PICV. MY-24 was well-tolerated in preliminary

toxicity studies with doses tested up to 100 mg/kg/day (data not

shown). Doses ranging from 5 to 75 mg/kg/day were evaluated

in the in the first challenge efficacy experiment. As seen in

Figure 8A, there was a slight protective effect evident by the

Figure 7. Post-exposure MY-24 treatment prevents mortality in
TCRV-challenged AG129 mice and delays clinical signs of
illness. Mice (n = 10/group) were treated i.p. once daily for 7 days with
75 mg/kg/day of MY-24 or placebo starting at the indicated days post
infection. A) Survival and a longitudinal analysis of B) body weight were
monitored during the course of the infection. Individual animal weights
were recorded every 3 days for 24 days, with a final weight taken at the
conclusion of the experiment. **P,0.01, ***P,0.001 compared to the
respective saline placebo-treated animals.
doi:10.1371/journal.pone.0012760.g007
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survival curve comparison of the high-dose MY-24 treatment

with the placebo. This was emphasized by a significant increase

in the mean day of death (P,0.05) of hamsters treated with

75 mg/kg/day (11.764.1 days), compared to the placebo group

(9.463.1). The 25- and 5-mg/kg/day doses were ineffective. A

MY-24 dose-dependent decrease in ALT was noted with the

animals that received the 75-mg/kg/day dose presenting with

significantly reduced levels (Figure 8B). Consistent with the lack

of a direct effect on viral titers seen in the TCRV AG129 mouse

infection model (Figure 6B–D), neither liver nor serum PICV

burden was reduced in the MY-24-treated hamsters compared to

animals receiving saline placebo (Figure 8C, D). The positive

control drug, ribavirin, protected 100% of challenged hamsters

from death and reduced viral burden by an average of 4–5.5

log10, and greatly minimized liver disease as reflected by baseline

ALT readings (Figure 8).

Because we observed the most robust protection at the highest

tested dose of 75 mg/kg/day, we also tested a higher dose of MY-

24. Notably, we used smaller hamsters in the subsequent studies to

reduce the MY-24 quantities needed for higher and extended 7-

day duration dosing regimens.

As in the first efficacy study, 75-mg/kg/day of MY-24 had only

a subtle protective effect primarily manifested as a delay in mean

day of death (10.662.3 days compared to 8.961.3 days for the

placebo: P,0.01) and significantly reduced liver disease as

measured by systemic ALT concentrations (3336124 IU/ml

compared to 12956483 IU/ml for the placebo: P,0.001).

Moreover, no reduction in serum or liver viral load was observed

following MY-24 treatment (data not shown). At a dose of

100 mg/kg/day, MY-24 again had no impact on the total number

of surviving hamsters, but similarly delayed the time of death

(13.464.6 days compared to 9.762.7 days for the placebo:

P,0.05). Taken together, increasing of MY-24 dosage and

extending treatment duration did not remarkably improve disease

outcome.

Discussion

MY-24 is an analog of aristeromycin, which is a potent inhibitor

of S-adenosyl-L-homocysteine (AdoHcy, SAH) hydrolase. SAH

hydrolase was first identified as an antiviral target in 1982 [36].

Since that time, a number of compounds, including aristeromycin,

Figure 8. Effect of MY-24 treatment on survival outcome, viral burden, and liver disease in PICV-infected hamsters. Animals in each
group (n = 15) were treated i.p. twice daily for 6 days with MY-24 or ribavirin at the indicated mg/kg/day dose levels. A placebo-treated control group
(n = 25) was included for comparison. Treatment was initiated 4 hours prior to infection and 5 animals per group were sacrificed on day 7 for
evaluation of viral burden and ALT levels. A) Survival analysis, B) serum ALT, C) liver virus titer, and D) serum virus titer. *P,0.05, **P,0.01,
***P,0.001 compared to saline placebo-treated animals.
doi:10.1371/journal.pone.0012760.g008
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have been reported to have broad-spectrum activity versus a

number of viruses, including arenaviruses [28]. In the present

study, we have evaluated MY-24 in two small animal models of

acute arenaviral infection based on activity of the compound in

cell culture.

Despite only observing a slight protective effect in trials

employing the hamster clade A PICV infection model, MY-24

was highly efficacious in the newly developed AG129 mouse

TCRV challenge model. Because of the better cell culture activity

profile of MY-24 against the clade B arenavriuses, it was essential

to test the compound against TCRV. A recent study underscores

the need to test promising compounds targeting the clade B

arenaviral hemorrhagic viruses against TCRV in vivo. Bolken et al.

used a model based on i.p. challenge of in newborn mice [6] to

demonstrate the efficacy of a small molecule inhibitor (ST-294)

with known in vitro activity against clade B NWA, but not the more

distantly related PICV or LASV [4].

Because rodent model systems that employ newborn animals to

produce lethal infection are generally considered to be farther

removed from the human disease being modeled [3], and because

of the difficulty of working with newborn mice, we developed a

new TCRV mouse infection model based on i.p. challenge of

AG129 type I and type II IFN receptor-deficient mice. The use of

the new TCRV mouse model over the existing hamster PICV

model was also advantageous because it greatly reduced the

amount of compound required for our studies. On a mg/kg basis,

a TCRV mouse experiment would require ,5- to 8-fold less drug

to complete compared to hamster models. This can be an

important issue in early stage drug development wherein costly,

time-consuming synthesis of additional compound would be

pursued only if dictated by basic proof-of-concept studies in mice,

prior to advancing to PICV, Pirital virus [37], or BSL-4 arenaviral

hemorrhagic fever guinea pig models [38,39,40]. One must

consider however that the use of the new TCRV model is

probably better suited for investigating the activity of candidate

therapeutics that directly target the virus life-cycle and/or do not

require complete host IFN pathways to impart their antiviral

activity.

Despite the inhibition of arenavirus replication in cell culture

model systems, MY-24 did not reduce the viral burden

systemically nor in the various hamster or mouse tissues examined.

This may suggest that the mode of action in vivo is not based on

SAH hydrolase or other virus-direct antiviral activity. However,

we cannot rule out the possibility that at earlier time points, we

may have observed a significant reduction in serum and/or tissue

viral burden. It is conceivable that viral replication is abrogated at

earlier stages of the infection, yet eventually the titers reach peak

levels at the time of our analysis just prior to when the placebo-

treated mice begin to succumb to the disease. Additional sampling

times shortly after the onset of MY-24 treatment may uncover

differences in viral replication kinetics early during the course of

infection. Nevertheless, the present findings are consistent with the

idea that MY-24 may ameliorate disease by blunting host response

factors that play a role in disease pathogenesis occurring in

response to the viral infection.

In PICV-challenged hamsters, MY-24 significantly reduced

liver disease as indicated by greatly reduced levels of ALT. In the

AG129 mice treated therapeutically, the data are consistent with a

delay in disease pathogenesis as weight loss and visual signs of

disease were delayed in animals that received MY-24. This and the

hamster ALT findings support the theory that the compound is

attenuating the development of disease. A delay in the progression

of disease may facilitate the eventual clearance of the virus from

the system once the humoral immune response has more fully

developed up in the TCRV-infected mice. In hamsters, the delay

in disease pathogenesis does not lead to improved survival, only a

delay in time of death. Presumably, the hypercytokinemia that has

developed in response to the PICV infection in immune

competent animals ultimately triggers excessive vascular leakage

(Gowen et al. unpublished data), believed to be the fatal lesion in

cases of VHF [41,42].

Because our present studies only examined viral titers on day 8

of infection, studies to evaluate viral titers on day 14, 21 and 28 of

infection in MY-24-treated mice are necessary to determine when

the virus is cleared from the blood and tissues, and to assess anti-

TCRV neutralizing antibody levels. Moreover, future studies will

examine the effect of MY-24 treatment on aspartate aminotrans-

ferase (AST) levels in TCRV-infected mice. Elevation of systemic

concentration of AST is indicative of tissue damage and is a known

prognosticator of disease outcome in severe cases of Lassa fever

[14]. Lastly, our findings showed that in mice wherein treatment

was initiated on day 5 of infection, disease was less severe and the

onset of clinical signs of illness was delayed. This may be due to

MY-24 possibly dampening the exaggerated cytokine response

that may occur; however, starting treatment too soon may prevent

a robust early innate immune response. Thus, additional

experiments to investigate the contribution of an overzealous

proinflammatory response to mortality in the AG129 TCRV

mouse infection model, and the impact of MY-24 treatment on

this response, are warranted. These studies will hopefully provide

insights into the mechanism by which mice treated with MY-24

are able to survive TCRV challenge.
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