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The same growth pattern 
from puberty suggests that modern 
human diversity results 
from changes during pre‑pubertal 
development
Jean‑Claude Pineau 1 & Fernando V. Ramirez Rozzi 2,3*

Patterns of human growth established for one population have rarely been tested in other 
populations. In a previous study, three growth curves from puberty were modelled for each sex in a 
longitudinal study of a Caucasian population based on stature, age at peak of growth and biological 
maturation. Each curve represents the canalisation of growth associated with the type of puberty. The 
high precision (± 3 cm) of individual adult stature predictions shows that growth kinetics are already 
set up at puberty and are canalised depending on biological maturity. Our aim is to assess whether this 
model can be extrapolated to other populations to test whether growth canalisation is a population‑
dependent phenomenon or if the model reflects a canalisation pattern specific to our species. 
The modelled curves predicted adult stature with the same high degree of precision in basketball 
players and the Baka pygmies. Therefore, (1) the relationship between growth kinetics and age at 
maturity is similar in all populations and (2) growth according to pubertal stages follows the same 
canalisation patterns in the populations despite the wide differences in their average adult statures. It 
suggests that morphological diversity in modern humans results from processes taking place in early 
development.

Among primates, humans are distinctive in two main respects, their polymorphism and their very particular 
growth pattern in absolute and relative terms, which defines what is called the ‘human life-cycle’. Despite dif-
ferences in size and shape among modern human populations, human growth characterises by the presence of 
a childhood phase, the long lap of time between birth and age at first reproduction and relatively long brain 
 development1. Maturity in Humans takes twice as long as in chimpanzees, and present accelerated growth at 
puberty that is not observed in our closest relative. Thus, the two main and distinctive traits of the human life 
cycle are the long period of growth (closely linked to the long human lifespan) and the presence of a growth 
spurt in  adolescence1. These aspects have been observed in standard populations as well as in populations at the 
extremes of morphological variation, such as  Pygmies2. In other words, despite the polymorphism of our spe-
cies, there are aspects of growth and development that are similar between populations. The distinction between 
factors that are constant within our species and aspects that vary between populations allows us (1) to better 
understand what characterises our species compared to other species and (2) to establish the aspects that change 
according to the adaptation of different populations to the constraints in their environment.

The characterisation of growth in particular populations is therefore of particular interest from the evolution-
ary point of view. Many studies have been devoted to characterising the growth of different populations. Longi-
tudinal studies of growth have used two methodologies, one based on the relationship between the increase in 
anthropometric characteristics (e.g. stature and weight) according to chronological age and the other relative to 
the biological maturity of individuals. In the latter, pubertal stages are defined from the age at the peak of growth 
and individuals are grouped into three categories according to whether secondary sexual characters show early, 
standard or late puberty according to specific  sample3–10. It is important to note that the degree of biological 
maturity is accompanied by different growth kinetics, so that children with early or late puberty have different 
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kinetics to children with standard  puberty11,12. The correlation observed between adult stature and stature in 
early adolescence has introduced the concept of growth  canalisation13–15.

Studies on growth canalisation are based on and widely applied to studies of so-called standard Caucasian 
populations e.g.16–19, but models have rarely been tested on populations with a different adult morphology. It 
has not been assessed whether growth canalisation established for one population can be extrapolated to track 
growth in another population, in other words, whether growth channels are population-dependent or whether 
the canalisation process reflects a larger phenomenon specific to our species, which can be modelled but is 
independent of phenotypic variations between populations.

In a previous  study20, we modelled growth curves based on age and biological maturation in a so-called 
standard (Caucasian) population, from longitudinal data on stature, chronological age, age of peak of growth 
and secondary pubertal stages (SI, Tables S1–S5). Three mean height growth curves were proposed for each sex 
based on late, standard or early puberty. Each mean curve represents the growth channels of the 50th percentile 
of stature growth associated with each type of puberty. These curves allowed us to predict adult stature from 
the age of 13.3 years in boys and 10–14 years in girls. The high precision (± 3 cm) of adult stature prediction at 
the individual level reveals growth kinetics that are already set up at puberty and follow growth channels that 
depend on biological maturity.

The aim of this study is to evaluate the ability of the model established from the Caucasian population to 
predict the adult stature of two distinct populations with very different average adult statures at the extremes 
of modern human variation: a group of basketball players and a group of Baka Pygmies from Cameroon. If the 
model does predict adult stature in both populations, this would mean that (1) age at maturity plays a key role in 
or is closely related to the type of growth kinetics the individual is following and (2) growth canalisation follows 
the same pathways, both aspects being independent of the average adult stature of populations.

Results
The stature and pubertal stages between 160 and 164 months of age in males, and the stature and age at menarche 
in female between 159 and 178 months are given in Table 1. The results for age and stature at peak growth in 
the Baka are given in Table 2. The percentage of males and females in both groups based on pubertal matura-
tion is shown in Table 3. Among the Baka males, 71.4% have late-onset puberty with growth peaking at 170 to 
182 months. This percentage is significantly higher than in the male basketball players (13.2%). Similarly, 42.3% 
of the Baka female have late-onset puberty with growth peaking between 165 and 177 months. This percentage 
is again significantly higher than in the female basketball players (8.8%).

The values of the correlation coefficient between estimated and actual stature are very high for the two popula-
tions studied (Table 4). In addition, the mean and standard deviations of the difference between estimated adult 
stature and actual stature are relatively small, with a difference of 3 cm for almost all individuals (Tables 5, 6, 
7) (Fig. 1).

Table 1.  Mean, standard deviations and range of age, stature and pubertal stage (male) or age at menarche 
(female) in basketball players.

X ± SD Range

Males (n = 106)

Age (months) 162 ± 1.2 160–164

Stature (cm) 180.2 ± 9.1 156–199

Pubertal stage 2.3 ± 0.7 1–3

Females (n = 80)

Age (months) 171.1 ± 4.8 159–178

Stature (cm) 176.5 ± 7.3 161–191

Menarche age 146 ± 15.3 116–180

Table 2.  Mean, standard deviations and range of age and stature at peak of growth in the Baka.

X ± SD Range

Males (n = 14)

Age (months) 175.6 ± 10.3 156–185

Stature (cm) 138.8 ± 5.6 129–152

Females (n = 26)

Age (months) 157.9 ± 14.9 130–180

Stature (cm) 134.4 ± 6.1 124–150
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Discussion
Many models have been proposed to predict adult  stature21–23. Sperlich et al.24 performed a stature prediction 
for boys affected by untreated constitutional stunting using bone age methods. The prediction for 16 out of 
the 49 boys tested (32.6%) deviates from the final stature by more than 5 cm.  Ostojic25 established a model for 
predicting the stature of young Caucasian boys practising basketball, football, volleyball and swimming using 
the Tanner Whitehouse method based on hand X-rays. This method resulted in a prediction of adult stature 
within -5.8 cm and + 4.5 cm in 95% of cases. Ali et al.26 developed a model for predicting stature from curvilinear 
regression without exposing individuals to X-rays. Their method includes age at peak growth and is therefore 
only applicable beyond 12 years of age for females and 14 years for males. They obtained a prediction within 
− 3.3 and + 5 cm with a 90% confidence interval. Lee et al.27 made a fairly accurate prediction of adult stature 
from a multiple regression that includes biological parameters. However, they introduced into the prediction 
equation the age immediately preceding the age at the peak of growth on the growth curve. For this reason, this 
method is only applicable at the beginning of the pubertal period. Sherar et al.28 validated and demonstrated 
how adult stature can be predicted using reference values obtained from sex-specific and cumulative velocity 
curves. Individuals were classified as having late, standard, or early maturation based on their age at the peak 
of growth. This method gives a rather inaccurate prediction of the stature as adults at ± 5.3 cm in 95% of cases 
observed in 224 males and ± 6.81 cm in 95% of cases in 120 females. The non-invasive method of predicting 
stature based on skeletal age, suggested by Beunen et al.29, makes it possible to differentiate the maturation of 
individuals. The mean deviation of the predicted stature is 2.3 cm with a standard estimation error of 4.7 cm at 
the age of 13 years. More recently, Beunen et al.30 proposed a model for predicting the adult stature of females 
without using skeletal maturation. Adult height is estimated based on stature at age 13 or 14, leg length, sitting 
height, and age at menarche. In 95% of cases, the prediction is in the range of ± 5.4 cm at 13 years and ± 4.6 cm 
at 14 years. Our previous reference  study20 showed that associating biological maturation with chronological 
age makes it possible to differentiate three groups of individuals according to pubertal stages: early, standard 
and late puberty. These three distinct maturation groups were used to model new mean growth kinetics curves, 
all three of which converge to 177 cm in males and 165 cm in females, suggesting that the final average stature 
reached does not depend on the different stages of  puberty31. These growth curves describing canalisation have 
allowed individual growth in males and females to be monitored and show high efficiency in predicting adult 
stature. With previous models, the difference between actual and predicted adult stature is greater than 3 cm in 
95% of cases, whereas our model predictions are within ± 3 cm of the actual adult stature in 95% of cases, and 
are therefore more accurate.

Table 3.  Percentage distribution of biological maturation in basketball players and Baka.

Biological
Basketball 
players Baka pygmies

Maturation Male Female Male Female

Late puberty 13.2 8.8 71.4 42.3

Standard puberty 43.4 57.5 14.3 42.3

Early puberty 43.4 33.7 14.3 15.4

Table 4.  Correlation and standard error between actual and estimated adult stature. Average values (Δ) and 
standard deviation between actual and estimated adult stature and proportion of individuals for whom the 
difference between actual and estimated adult stature is less than 3 cm.

Groups Sex r SE Δ ± sd  ± 3 cm

Basketball Male 0.98 1.7 0.7 ± 1.7 90%

Players Female 0.98 1.7 1.7 ± 2.7 89%

Baka
Male 0.92 1.6 0.7 ± 1.6 95%

Female 0.96 1.7 0.4 ± 1.8 92%

Table 5.  Actual and estimated adult stature by maturity stages in male basketball players.

Stature

Late puberty Standard puberty Early puberty Total

n = 14 n = 46 n = 46 n = 106

Estimated 196.9 ± 10.1 192.7 ± 7.9 193.7 ± 8.5 193.7 ± 8.5

Actual 197.8 ± 10.4 193.7 ± 7.9 193.9 ± 8.2 194.3 ± 8.4
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In previous studies, models to predict adult size were obtained from industrialised populations and eventually 
applied to other populations whose morphology is close to that used to establish it. They have never been applied 

Figure 1.  Regression curve and individual differences between estimated and actual adult stature in male (a) 
and female (b) basketball players and male (c) and female (d) Baka.
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to populations with a very different adult morphology. In our study, we applied the model established from the 
study of a European population to two populations whose morphology lies at the extremes of current human 
variation, a group of basketball players and a population of Baka pygmies. The Baka pygmies is a seminomadic 
population of hunter-gatherers. Although the sample size in our study is limited, having 40 hunter-gatherer indi-
viduals monitored for longitudinal growth from adolescence to the adult stage based on a precise chronology is 
a unique case. The accuracy in the prediction of adult stature for these two populations was surprisingly similar 
to that for the original population, at ± 3 cm. This means that (1) the relationship between growth kinetics and 
age at maturity (around 11–15 years in boys and around 10–14 years in girls) is similar in all three populations 
and (2) that the growth depending on pubertal stages follows the same channels in all three populations despite 
the very wide difference in average adult stature between the Baka pygmies (153.7 cm) and the basketball players 
(197.8 cm). The accuracy of the model in predicting adult stature suggests that adult stature is determined as 
from puberty, that the stature differences between the populations at puberty (Tables 5, 6, 7) are responsible for 
the diversity of adult morphology and that this diverse adult morphology results from different process taking 
place before puberty. Two relationships can thus be distinguished. One is the relationship between biological 
maturity and stature at the onset of puberty, which would then be specific to each population and related to adult 
morphology and polymorphism. The other relationship is the link between growth kinetics at puberty and adult 
stature, resulting in growth canalizations that appear to be the same in all populations and would thus represent 
a characteristic of our species.

The applicability of our model to populations with different adult statures means that the stature difference is 
already present at puberty. It may be suggested that the relationship between biological maturity and stature at 
puberty is specific to each population and may differ between populations from the adaptation of each one to its 
environment. This implies that the changes in growth in relation to environmental adaptation had to take place 
before puberty; any change after this stage would result in a change in the relationship between pubertal growth 
kinetics and adult stature, and the hypothesis of similar canalisations in different populations would therefore 
have limitations. Few studies have been done on growth processes related to the morphological adaptation of a 
given population to its environment. Although the morphology of Inuit, Nilotic (Nuer. Dinka. Turkana) and of 
other groups with a small average adult stature has often been interpreted as adaptations to the environment, the 
growth processes that accompany morphology have unfortunately been very little explored.

The phenotype of Pygmies and other groups outside Africa with a small average stature and living in a forest 
environment has been interpreted as an adaptation to life in the  forest32. In a study on growth in the Aeta (Philip-
pines), Migliano et al.33 proposed that their small adult stature could be due to an early cessation of growth due to 
high mortality. If these results are confirmed, they would suggest that the small stature of the Aeta is not in itself 
an adaptation to life in the forest but a by-product of high mortality. The particularity in the Aeta would then be 
an early arrest of growth to ensure reproduction in a high risk environment. Since it occurs after the pubertal 
stage and thus probably without affecting age and stature at puberty, the hypothesis of a relationship common 
to all populations between growth kinetics at puberty and adult stature cannot be upheld and the possibility of 
extrapolating the model would be seriously limited. However, the lack of calibration of individual growth with 
chronology and some flaws in the statistical methods and interpretation of results cast serious doubts on the 
relevance of these  conclusions34,35. In their study on Pume foragers, Kramer and  Graves36 suggest that girls reach 
a higher proportion of their adult stature at puberty and that growth follows at low velocity in adolescence, and 
even after their first pregnancy, to reach a standard stature. They established that 93% of adult stature is already 
acquired at menarche. However, Walker et al.37 have estimated that 77 to 92% of adult stature is reached by 
10 years of age in several forager and horticulturalist populations, so that 93% of adult stature at 12.5 years of age 
in the Pume does not seem to be of particular note. Furthermore, in basketball players, the proportion of adult 

Table 6.  Actual and estimated adult stature by maturity stages in female basketball players.

Age at menarche

Late puberty Standard puberty Early puberty

Total ≥ 168 141—167  ≤ 140 months

Stature

n 7 46 27 80

Estimated 183.5 ± 81 181.1 ± 73 179.7 ± 77 180.8 ± 75

Actual 181.4 ± 82 179.5 ± 73 178.1 ± 76 179.2 ± 75

Table 7.  Actual and estimated adult stature by maturity stages in the Baka pygmies.

Stature Late puberty Standard puberty Early puberty Total

Male n = 10 n = 2 n = 2 n = 14

Estimated 154.7 ± 4.6 152.7 ± 0.5 151.7 ± 1.9 154 ± 4

Actual 153.7 ± 4.7 153.4 ± 1.9 151.3 ± 1.5 153.3 ± 4.1

Female n = 11 n = 10 n = 5 n = 26

Estimated 146.8 ± 7.3 147.3 ± 5 144.6 ± 4 146.6 ± 5.8

Actual 146.6 ± 7.6 146.7 ± 5.6 144.1 ± 4.7 146.2 ± 6.3
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stature at menarche varies from 97.3% in females with late-onset puberty to 99.1% in females with early-onset 
puberty (Tables 1, 6). In the Baka, stature at the peak of growth represents 91.9% of adult stature (Tables 2, 7), 
and since the menarche occurs later in the Baka, at 14.5 years of  age2, the proportion of adult stature at menarche 
could be higher. To summarise, growth from puberty to adulthood in the Pume does not seem to present any 
particularity that would rule out a relationship between growth kinetics at puberty and adult stature. Other stud-
ies on groups with a small adult stature have not focused on a specific period of growth and only propose more 
general insights suggesting a general slowdown in  growth37,38. In contrast, a longitudinal study of approximately 
550 individuals of known  age2 determined that the small adult stature of the Baka pygmies was the result of a low 
growth rate in early childhood. The follow-up study that  Bayley39 carried out on the Ituri (Dem. Rep. of Congo) 
on births among Efe pygmies suggested that the Efe already have a small stature at birth. The pygmy phenotype 
therefore expresses a changing growth pattern well before puberty.

The idea that changes during the developmental period before puberty can ensure adaptation of a popula-
tion to a particular environment is broadly in agreement with the concept of predictive adaptive  responses40. 
This concept suggests that in mammals, irreversible developmental pathways are taken early in life in order to 
cope with environmental conditions and maximise reproductive fitness as adults. This concept mainly concerns 
processes occurring in the embryonic, foetal and perinatal periods and corresponds to the processes described 
for Pygmies. What is certain is that the earlier these changes take place during development, the less energy is 
required to produce them. Our results lead us to suggest that growth from puberty follows canalisation patterns 
that are shared by populations with very different adult morphologies and that each population is characterised 
by a particular relationship between stature and age at biological maturity. If so, the morphological diversity 
of our species would result from processes that take place in early development, no later than childhood, most 
probably as adaptive responses to environmental constraints.

Materials and methods
The growth canalisation established in the study of a Caucasian population made it possible to predict the adult 
stature of each individual with a very small discrepancy (± 3 cm) (SI). If the result is also satisfactory for other 
populations with different average adult statures, this means that the kinetics are the same and therefore do not 
depend on the population analysed: they are independent of the diversity of adult morphology among popula-
tions and canalisations can therefore be extrapolated.

To test whether the growth kinetics established from a standard reference population can be extrapolated to 
other populations with different adult morphologies, the mean growth curves obtained for the reference popu-
lation (Fig. 2) were used to predict the adult stature of individuals in two populations representing the widest 
variation in human stature, a group of basketball players and a group of Baka pygmies. The first sample consisted 
of 186 adult basketball players (106 males and 80 females), the vast majority of Caucasian origin. As the study 
of this cohort is cross-sectional, the stature, chronological age and pubertal stages between the ages of 160 and 
164 months were identified for boys. The stature of the girls was measured between 159 and 178 months and 
the age at menarche was obtained by questionnaires. The actual adult stature of these individuals is known, with 
the females averaging 179.2 cm and the males 194.3 cm. These data were collected in 2013 and 2014 as part of a 

Figure 2.  Polynomial curves of degree 2 in stature (y = cm) for males and females according to age (t = months). 
These curves were modelled over the age range of 120 to 216 months using average curves that represent growth 
kinetics as a function of biological maturation. In the projection, average stature values converge at around 
177 cm at the age of 216 months (18 years) for males and around 165 cm at the age of 17.5 years for females. The 
standard deviation for stature is 6 cm in males and 5.6 cm in females.
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research project with the French Basketball Federation ("Predictaille" software). All participants and their parents 
gave their oral and written consent to participate in the studies in accordance with the Helsinki Declaration.

The second sample is made up of 40 individuals (26 females and 14 males) from Moange le Bosquet, a Baka 
pygmy village in south-eastern Cameroon. African pygmies, who include many different groups, live in equatorial 
rain forests and grow to an average adult stature of < 155  cm41. Pygmies share a common ancestor and split from 
Bantu-speaking populations at around 60,000 years  BP42. The genetic bases of this very specific phenotype are 
polygenic. They include genes from the growth hormone axis (GH – IGFI) as well as genomic and gene regions 
that relate to the traits  themselves43–45. The pygmy phenotype itself is usually interpreted as an adaptation to life 
in equatorial rain  forests32.

The Baka pygmies have an average adult stature of 146.7 cm (sd = 4.7) in females and 153.5 cm (sd = 6.2) in 
 males2. Birth records had been kept for many years in Moange le Bosquet by nuns in a medical centre run by the 
catholic mission. They are available from 1980 to 1983 and from December 1987 to the present. We conducted 
one field study each year in May–June from 2007 to 2017, and an additional field study in October from 2011 to 
2015. We systematically measured the stature and weight of Baka individuals of known age (3–25 years of age) 
living in the locality. Thanks to the birth records, we were able to describe growth and life history variables based 
on an absolute  chronology2,35,46. The individuals included in the present study are a subset of those included in 
the previous one. We must remember that the Baka pygmies are semi-nomadic hunter-gatherers and although 
our field works were carried out systematically, performing the same measurements on the same individuals for 
many years is a very difficult task as either the individuals are not present in the locality at the time of our stay, 
they have established residence in a camp in the middle of the forest or in another locality. The stature of the 40 
individuals included in our study was measured systematically for 8–10 years from adolescence to adulthood 
(from 12 to 19 years of age). Although this is a limited sample, it represents the only case of hunter-gatherers in 
which a longitudinal study could be conducted by taking measurements at adolescence and adult based on an 
absolute chronological calibration thanks to birth records (also unique case among hunter-gatherers). The sec-
ondary sex characteristics of the males and the age at menarche of the females were not recorded, but the age at 
peak growth in stature was determined from longitudinal data, making it possible to identify whether biological 
maturation was late, standard or early according to the criteria set out in Tables S2 and S3.

Prior informed consent was obtained from all participants and from both parents of any participants aged 
under 18. All methods are non-invasive and were carried out in accordance with relevant guidelines and regula-
tions. The study obtained approval from the French Centre National de la Recherche Scientifique (CNRS), Agence 
National de la Recherche (ANR) and the Institut de Recherche pour le Développement (IRD) and was carried 
out under an international agreement between the IRD and the Cameroon Ministry of Scientific Research and 
Technology.

The association between maturation stage and chronological age allowed mean growth kinetics curves to be 
built that showed a high degree of accuracy in predicting adult stature in the baseline study (SI). By applying 
the growth kinetics curves and the projection of the Z-score obtained with the reference sample, we proposed 
a prediction of adult (18-year-old) stature in both cohorts. The first step was to determine whether puberty was 
late, standard or early in each individual. The Z score for stature was then calculated from the age and mean 
stature value on the corresponding mean curve as a function of biological maturity (Fig. 1, Tables S4, S5). Finally, 
a projection of the Z score was made to estimate stature at the age of 18. For example, one boy Baka reached 
his growth peak at 162 months (13.5 years) and measured 125.4 cm. He thus had a late-onset puberty and his 
growth kinetics are represented by the curve y = − 0.0032  t2 + 1.66 t – 32.2 (Fig. 1). On this curve, the average 
stature at 162 months is 152.7 cm. Thus, Z = (125.4–152.7)/6 = − 4.55, where 6 is the standard deviation for males. 
The projection of his stature to 18 years of age (216 months) is 177 + 6 * (− 4.55) = 149.7 cm. His actual stature at 
18 years of age is 148.1 cm, a difference of 1.8 cm.

The individual differences between the resulting estimates and the actual adult stature values were compared 
and the specified  r2 values and standard estimation errors (SEE) obtained. The values of the lower and upper 
limits within a 95% confidence interval on either side of the mean deviation are given. For all tests, α = 0.05. The 
statistical analysis was carried out using Statistica software (version 6, Tulsa, Olka, USA). If the prediction of adult 
stature in basketball players and the Baka pygmies is effective, the growth kinetics and stature at the beginning 
of puberty, always taking biological maturity into account, will be similar for all populations and will follow the 
same canalisation pattern regardless of adult morphology.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Received: 17 July 2020; Accepted: 21 December 2020
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