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Automated human fall detection is an essential area of research due to its health implications in day-to-day life. Detecting and
timely reporting of human falls may lead to saving human life. In this paper, fall detection has been targeted using machine-
learning-based approaches from two perspectives regarding data sources, that is, contact-based and noncontact-based sensors. In
both of these cases, various methods based on deep learning and machine learning techniques have been attempted, and their
performances were compared. The approaches analyze data in fixed time windows and extract features in the time domain or
spatial domain which obtain relative information between consecutive data samples. After experimentation, it was found that the
proposed noncontact-based sensor techniques outperformed the contact-based sensor techniques by a margin of 1.82%. After this,
it was also found that the noncontact-based sensor techniques outperformed the state of the art of noncontact-based sensor results
by a margin of 3.15%. To better suit these techniques for real-world applications, embedded board implementation and privacy
preservation of subject by using advanced methods such as compressive sensing and feature encoding need to be attempted.

1. Introduction

The falls are widespread among elderly individuals due to the
weakening of body parts which occurs due to aging [1].
Sudden falls can affect not only the elderly but also people of
all age groups. Falls can cause injuries ranging from fractures
to concussions and, in extreme cases, even death. Due to this,
falls have recently been an extensively researched topic, and
various automation methods are being studied to detect and
analyze them. Thus, there is a growing need to use the latest
techniques for the automated detection of falls.

Falls can occur in various different ways. Oneill et al., in
their study, classified fall into forward, sideward, and
backward [2]. Out of this, it was observed that forward fall
was the most prominent fall, with 56.33% of all the falls, with
17.60% of falls being backward and 23.23% of falls being
sideward.

Also, the chances of falls increase with increasing age
varying from about 26% of people suffering falls at least once

a year in the age group of 65 to 74 to 36.5% in the age group
above 85 [3]. Thus, detecting falls among the elderly is more
critical due to increased chances of falls and slow recovery
rates. The reasons for falls among the elderly can be many,
and the consequences can be severe if not detected in time.
Unconsciousness resulting from the fall can delay the
treatment process; thus, an automated fall detection system
can help the concerned people know about the fall quickly.
For this purpose, falls can be detected through either con-
tact-based or noncontact-based sensors. Both methods are
equally important in different ways.

There are many methods through which fall detection
can be approached depending on which sensors are used,
like accelerometers, gyroscopes, cameras, and others. In this
paper, we have discussed some ways to detect falls using
vision-based tools and contact-based sensors. Cameras are
becoming very prominent in everyday environments and
can be found in various environments such as railways and
airports. At the same time, accelerometers are the devices
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used for capturing acceleration. When fitted to a body part,
they provide information on the acceleration of the body
parts. Using the information from data captured on accel-
eration and the change in acceleration, detection algorithms
can be designed and trained to perform automatic fall de-
tection. Thus, these two cases provide very different ap-
proaches to fall detection.

Neural networks are becoming very popular in the areas
of fall detection due to increased efliciency in the detection
process. Convolution neural network (CNN) is the method
that specializes in analyzing sequential and visual data [4].
CNNs have been used for tasks such as image classification,
natural language processing, and human activity classifi-
cation. Thus, in this paper, many proposed approaches are
designed based on neural networks architectures.

This work has contributed towards (1) detecting falls
based on cameras and (2) detecting falls based on smart-
phone sensors. Various approaches are applied and tested in
both cases. Then comparisons of these approaches are
presented. Some techniques are also introduced to help
reduce computation time and efficiency.

The paper first provides related works in the field and the
description of the detection dataset used (UP-Fall). Then, the
approaches used for contact-based and noncontact-based
fall detection are discussed, followed by the results and
analysis. Then, finally, conclusions are drawn.

2. Related Works

Recently, in the field of human activity recognition, many
research studies are being done as this is an essential aspect
and has a wide variety of use-cases such as healthcare, sports,
and elderly care. Of the research works done, many utilized a
variety of ways to detect falls, like using classical ML models,
which include Support Vector Machine (SVM), K-nearest
neighbors, and Random Forest, and neural networks based
model. Recently deep learning models have become very
popular due to their promising results.

The falls systems were mainly based on contact-based
and vision-based sensors. Thakur [5], in his research, ana-
lyzed various recent fall detection systems using contact-
based, ambiance-based, and vision-based sensors. Many
datasets are also increasingly becoming available in both
aspects. The two following domains were analyzed for the
work being done in automated human fall detection.

2.1. Machine-Learning-Based Fall Detection Using Contact
Sensors. This type of sensor relies on sensors being fitted on
the subject to detect any sudden motion indicating a fall.
They include using sensors such as accelerometers and
gyroscopes. These sensors are generally fitted on the watch
or mobile phone. These sensors record acceleration of the
body parts on which they are fitted. The change in accel-
eration due to change in the activity changes acceleration is
utilized for fall detection.

Many different approaches in this domain have been
applied and researched utilizing different aspects. Khojasteh
et al. [6], in their research, proposed a fall detection system
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based on wearable devices like smart wristbands where they
utilized a threshold-based solution for this purpose in which
if any change in acceleration crossed a certain threshold,
then fall signal was generated. Kwolek [7] utilized a similar
method based on threshold-based detection on acceler-
ometers. He proposed an innovative solution based on a
fuzzy-based system to authenticate the fall event. Sengiil
et al. [8] used a quaternion algorithm to detect falls and send
a signal to the concerned people with the patient location.
More recently, fall detection using convolutional neural
networks has become popular due to these networks’ ability
to learn features without any data processing and their
robustness and flexibility. Santos et al. [9], in their research,
utilized CNN-based models on the accelerometers-based
dataset.

2.2. Machine-Learning-Based Fall Detection Using Noncon-
tact Vision Sensors. The major advantage of this type of fall
detection is that the user is not required to wear any type of
sensor. However, the user is required to be always inside the
region of operation of the camera. Also, detecting falls on the
border is difficult in these cases [10]. They include the de-
tection of falls using video camera recordings, L.R. sensors,
bioradars, and others.

Many different approaches have been attempted in this
case utilizing machine learning and deep learning tech-
niques, as well as using different preprocessing techniques
like optical flow images, image lightning, and others.
Rougier et al. [11], in their study for detecting fall events
using a video surveillance camera, used the shape defor-
mation of humans in the video frames during the fall for the
detection. Furthermore, shape analysis models were used for
training. Capturing human deformation during the fall is a
good technique as it is very much noticeable in the fall video
frames. Anishchenko et al. [12], in their research, showed the
advantages of using bioradar’s systems to detect human falls.
The research used wavelet transform and neural networks
for fall detection. At the same time, Miao et al. [13] utilized
CNN-based models to detect human-based activity and
further modified them for detecting falls. In a similar ap-
proach, the CNN model using 3D ConvNets was approached
in this case as well. More recently, latent feature polling was
used for detecting falls effectively in ADLs (activities of daily
living) [14].

3. Dataset Description

For this research, we have chosen a publicly available dataset,
the UP-Fall detection dataset [15], after analyzing the var-
ious fall detection datasets [16-20]. Due to variability in
subjects, activities, and different lighting conditions, this
dataset provided real-life conditions for training and testing.
Of all the datasets, the UP-Fall dataset provided more
variability in terms of subjects, activities, frontal and lateral
views, a greater number of trials, and so forth, and it
contained a larger number of videos enough for effectively
training the network. Besides that, it also provided data from
contact-based sensors like accelerometers, gyroscopes, and
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others, which can also be used for trying other approaches to
fall detection. The dataset and features are publicly available
[21]. The dataset consists of 11 activities performed by 17
young, healthy individuals (8 females and 9 males) in the age
group of 18-24 years. Out of the 11 activities performed, 6
consisted of daily human activities, which are lying,
jumping, picking up an object, sitting, standing, and
walking, and 5 consisted of fall activities, out of which two
consisted of falling forward using a hand and knees, two
consisted of falling sideways and backward, and one con-
sisted of falling sitting on a chair. Figure 1 describes the
positions of some of the contact-based and noncontact-
based sensors that were used in the UP-Fall dataset.

For the purpose of the experiment, we have used data
recorded at 18 FPS from the two cameras and Inertial
Measurement Unit (IMU) sensors fitted on the wrist and
right pocket of the subject. We aim to implement a system to
distinguish between fall and nonfall activities using data
from contact-based sensors such as accelerometers as well as
noncontact-based sensors such as cameras.

4. Methodology and Implementation

Human fall detection can be captured through a variety of
methods. The analyzed methods were chosen such that they
are not much affected by the environmental factors and can
be applied to any general setting (not requiring any special
arrangements). The following section describes the methods
and the architectures that were implemented for contact-
based and noncontact-based fall detection (Figure 2).

4.1. Detection Using Contact-Based Sensors. Data from the
triaxial accelerometer was utilized in this case for fall and
nonfall prediction. Two 3-axial accelerometer sensors were
fitted on the subjects in the right pocket and on the right
wrist simulating the wristwatch and cell phone, respectively.
Since the accelerometers are kept very close to the subject,
predicting the fall using them is very institutive for auto-
mated detection. Machine learning architectures and a 1D
CNN-based approach were deployed for this purpose.

Firstly, the 3-axial data received from the accelerometers
was trimmed to 3 seconds in order to capture the fall and
nonfall parts effectively. To standardize the dataset, the data
points were subtracted from the mean and divided by the
standard deviation. Afterward, continuous 1.5 seconds of
fixed arrays were drawn from the normalized data, which
were then appended one after the other in 3rd dimension
order. The obtained flow stacks were passed through the
classifier (ML models and 1D CNN) to predict the fall event.
The overall process outline can be seen in Figure 3. For the
experiments, the dataset was divided into 70% for training
and 30% for testing.

4.1.1. Machine Learning Methods. In this paper, the fol-
lowing machine learning classification methods were
implemented for the detection:

(1) Support Vector Machine (SVM): This method dif-
ferentiates between the classes by creating a hyper-
plane and mapping the inputs on it. The hyperplane
is further optimized by training and then acts as a
decision boundary for prediction. The target of the
algorithm is to maximize the gap between the data
points and the hyperplane. SVM is a very popular
ML algorithm and is used extensively in fall detection
systems [22].

(2) Random Forest (RF): This method is a widely used
machine learning algorithm that works on the
principle of ensemble learning. It works by creating
an ensemble of decision trees through which the
input is passed, and, on the basis of the mode of the
responses received, the output of the algorithm is
computed. The greater number of trees leads to
better accuracy and reduces risks of overfitting [23].

(3) Multilayer Perceptron (MLP): This method is a
feedforward method passing inputs through the
multiple layers before computing the final output.
Each node has a neuron that utilizes a nonlinear
activation function. It uses the back-propagation
technique for the training of the model [24].

The parameters used for the machine learning archi-
tecture used are described in Table 1.

4.1.2. 1D CNN Network. CNN is very good for classifying
sequential data. Thus the data from the 3-axial accelerom-
eters is a good match for applying CNN-related methods.
Lee et al. [25], in their research, analyzed the benefits of
using the 1D CNN process for fall detection. In the research,
1D CNN was shown to be better than most of the traditional
ML methods when using time-sequential data.

The convolutional and pooling layers used in 1D CNN
are one-dimensional with height and width of 1. The al-
gorithm that was used for this purpose is described in
Figure 4. It is a simple convolution method with 1st layer
being convolutional followed by max pooling and then one
more convolutional layer followed by a softmax activation
function for calculating probabilities. The network was
trained for 500 epochs.

4.2. Detection Using Noncontact-Based Sensors. RGB camera
recordings captured from the frontal and the lateral side of
the subject were utilized in this method for predicting the fall
and nonfall events. Additionally, the RGB images were also
converted to optical flow images. Optical flow images are
useful in removing the background noises as they only
capture the motion between the consecutive frames, as
shown in Figure 5. Both RGB and optical flow images were
attempted for the detection. Figure 6 describes the stepwise
procedure that was used for training the dataset. Overall, it
consisted of 5 steps which were dataset collection, seg-
mentation, feature extraction, training of the model, and
classification. These steps are explained in the following
sections.
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FIGURE 1: Position of the sensors. (a) Contact-based sensors located on the human body. (b) Video camera location layout for the lateral and

frontal views.
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FIGURE 2: Overview of the methods and architecture used in the paper.
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F1GuRre 3: The process outline used for fall detection using contact-based sensors: 3-axial data input from accelerometers is processed and
then passed through the classifier, which identifies whether there is a fall or not.

4.2.1. Dataset Used. Camera recordings from the UP-Fall
detection dataset were used as the data input. Videos were
captured from the frontal and lateral sides of the subject at 18
FPS. It comprised 17 subjects performing 11 activities in
three trials, as shown in Table 2. Out of the 11 activities, 5
were classified into fall and 6 into nonfall category.

To keep the computational costs low, the resolution of
the images was reduced to 224x224 from 640 x 480.
Moreover, the recordings were trimmed to 50 frames each,

given that 50 frames are sufficient for identifying any fall or
nonfall event. The dataset was further divided into training
set and testing set in an 80:20 ratio.

4.2.2. Segmentation. As observed from the dataset, detecting
any fall event does not require more than 20 frames. Using
this observation, the sliding window segmentation technique
was attempted to capture video frames containing only the
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TaBLE 1: Parameters used for ML methods.

Architecture used Parameters

Kernel = “radial basis function”
Cc=1
Gamma=0.1
Tolerance = 0.001

SVM method

Estimators =100
Criterion = “Gini”
Sample split=2
Min. sample leaf =1
Max. depth =none

RF method

Activation = “ReLU”
Solver = “Adam”
Max. number of iterations =200
Tolerance = 0.0001
Shuffle = true
Initial learning rate =0.001
Betal (exponential rate decay)=0.9
Beta2 (exponential rate decay) =0.999
Epsilon (numerical stability measure) =10-8

MLP method

1x 90, 3 Channel Input

Fully Connected Layer

Softmax activation function

F1GURE 4: Architecture used in case of 1D CNN for sensor-based
training of the model.

fall event, if present. So, out of the N frames, if L is the length
of the window used, then using a sliding window of 1 frame,
N-L+1 windows were captured, as shown in Figure 7.

4.2.3. Feature Extraction. The target of this step is to get the
most important features that are relevant to the experiment.
This part involves removing the noise from the data and
capturing the part that is most relevant to the training of the
architecture. The noise can be any repetitive data or un-
wanted data points that can affect the convergence of the
model.

For vision-based approaches, the optical flow method
delivers good information for clear movements between the

images and removing any background noises [26]. Thus, for
capturing the motion and removing the background noises,
the effect on the model by converting the RGB images to
optical flow images was analyzed. For this purpose, out of 50
frames, the difference in the intensity of consecutive frames
was taken. Thus, starting from the 1st frame, the difference
between the 1st and 2nd was taken, followed by that between
the 2nd and 3rd, and so on till the 49th and 50th frame. Thus,
in this way, we obtained 49 optical images representing the
activity. Figure 6 describes the effect of converting an RGB
image to an optical flow image in the case of the UP-Fall
dataset.

4.2.4. Model and Training. For training the model with
video recordings as the input, 3D convolutional neural
networks offer the capability to capture spatial information
in time by stacking consecutive video frames. Tran et al. [27],
in their study, analyzed the benefits of using 3D ConvNets
when using video datasets for training. By using stacks of
consecutive frames as the input, they allow capturing the
features that take the spatial video frame data and motion
between the frames into account. Due to this edge offered in
the case of 3D ConvNets, they are increasingly becoming
important in the field of human activity recognition. Thus, in
this paper, 3D ConvNets were utilized for training the
models in the case of noncontact-based sensors.

The training steps used for building the network are as
follows:

(I) The model was trained on the ImageNet dataset
[28]. ImageNet is an extensive image dataset that
comprises more than 14 million images and 1000
classes such as animals, sports, and daily human
activities. This helped the model to learn basic
generic characteristics about the RGB images, such
as identifying border, texture, and color.

(II) From the CNN model trained on the ImageNet
dataset, the input layers were modified to take the
input as 224 x 224 x 20, where 224 x 224 is the size
of the image and 20 is the stack size. Then the model
was fine-tuned on the UCFI101 fall dataset [20],
which comprises 13,320 videos of 101 different
human activities. It helped the model to learn the
features of generic human actions. To avoid biasing
errors, the fall video frames were reduced in order
to contain falls only. 3D ConvNet was used here for
training the models.

(IIT) In the final step, the obtained model was fine-tuned
over the UP-Fall dataset.

The following experiments were done to decide the
configuration to be used for the training phase.

(1) Learning Rate. It is a very important hyperparameter that
decides how the model weights are updated during the
training. Deciding on a proper learning rate is very im-
portant as very small learning rates can make the training
too slow, and higher values can make it too fast to converge
the model optimally. It was observed from a series of
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FiGure 5: RGB and its optical flow image equivalent. Optical flow images help in removing background noises and capture only the motion.
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(iii) Densenet

FIGURE 6: Process pipeline used for fall detection using contact-based sensor.

TaBLE 2: Duration of activities and their classification [15].

Sr. no Description Duration (in seconds) Classification
L. Falling forward with knees 10 Fall
2. Falling backward 10 Fall
3. Falling forward using hands 10 Fall
4. Falling sideward 10 Fall
5. Falling sitting on a chair 10 Fall
6. Standing 60 Nonfall
7. Walking 60 Nonfall
8. Sitting 60 Nonfall
9. Jumping 30 Nonfall
10. Laying 60 Nonfall
11. Picking 10 Nonfall

experiments that the network provided the best results when
the learning rate was between 10> and 10~*. Choosing
higher or lower values affected the accuracy, as lower
learning made the system too slow and higher learning made
too big steps which made it far away from achieving proper
optimization in those cases.

(2) Minibatch Size. Li et al. [29], in their study, showed that
using minibatch size properly with proper experimentation
yields better results than the standard gradient descent.
Minibatch gradient is used to split the dataset into batches,
and then the training of the network is done in batches; that
is, model weights are updated in the batches. Due to a greater
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Figure 7: Sliding window technique used to capture stacks of
consecutive frames. Here frames in orange color are the ones that
contain events important for the detection.

number of updates done using minibatch, a good conver-
gence is obtained by using minibatch gradient descent. We
tried batch sizes in powers of 2. It was observed through a
series of an experiment that a batch size of 1024 was giving
the best results.

(3) Number of Epochs. Epoch is the number of times the
algorithm passes through the training dataset. It is an im-
portant parameter for balancing between the time taken for
training (with greater number of epochs, higher computa-
tion is required) and the saturation obtained. The number of
epochs used was 500 in all the experiments, as proper sat-
uration was seen to be obtained within the 500 epochs.
One more important step in the training process is batch
normalization. Loffe et al. [30], in their research, explained
that making the batch normalization method part of the
minibatch training process can make the training process

much faster. It was further shown that it eliminates the need
for using dropout rates to a great extent. The activation
function ReLU (Rectified Linear Unit) was used in the ex-
periments with batch normalization to avoid overfitting and
faster training.

After fixing the hyperparameters, three different archi-
tectures backbones experimented with the 3D ConvNet to
fine-tune on UP-Fall dataset. These three were chosen to
consider the different types of diverse combinations. In two
phases, the training of the model was done. Firstly, RGB
images were trained on the architectures in two parts, ini-
tially on the frontal view and then on the lateral view. The
optical flow images were trained similarly. The architecture
used was as follows:

(1) VGG-16 [31]. It is a very popular CNN architecture
that is widely used for classification purposes. It
consists of 16 layers for training. It uses 3 x 3 con-
volutional kernels and 2x2 pooling kernels. The
consistent arrangement of these layers is followed
throughout the architecture. The input shape of
224 x224 was used in the architecture. Figure 8
describes the layers of the VGG-16 architecture used.

(2) Xception [32]. Xception is a CNN architecture that is
71 layers deep. With modified depth-wise separable
convolution, it is a modification of Inception v3 with
a parameter that is almost equal to Inception v3.
Figure 9 gives an overview of the Xception archi-
tecture implemented by showing some of the layers
presented.

(3) DenseNet [33]. DenseNet is a CNN architecture in
which the layers are densely concentrated, which
makes its training time somewhat more than other
architectures, but, at the same time, it leads to better
convergence of the model. There are many different
versions of DenseNet, which vary by the difference in
the layer depth. In the experimentation, Dense-
Net201 with 201 layers was used. The major ad-
vantage of using DenseNet as compared to other
architectures is that it is more efficient than the other
models in capturing low-level features of the images.
The overview of the DenseNet architecture can be
seen in Figure 10.

5. Results and Analysis

For evaluating the performance of models, developed ac-
curacy, sensitivity, specificity, precision, and F1-Score were
used. Accuracy defines the correctness of the classification
model. Sensitivity and specificity define the ability of the
system to detect the falls and nonfall events, respectively.
Precision predicts the rate of happening of positive events.
F1-Score is another measure of accuracy focusing on pre-
cision and sensitivity.

Equations (1)-(5) define the formulas used to calculate
them. Here, F.P. denotes False Positive, F.N. denotes False
Negative, T.P. denotes True Positive, and T.N. denotes True
Negative. These values are defined as follows:
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FIGURE 9: Overview of the Xception architecture implemented.
Due to large number of layers present, some of the layers from the
start and end are shown here.
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FIGURE 8: VGG-16 architecture: padding layers in brown, con-
volution layer in blue, pooling layers in green, and dense layers in
orange.
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The models trained on similar datasets were compared
based on these parameters. All the experiments related to
CNN architectures were performed on Python v3.7.3 with
Keras v2.2 [34] framework using TensorFlow as backend,
and ML methods were trained using sklearn library [35]. The
hardware used for the experimentation includes 2 Nvidia
GTX 1080 Ti graphic cards with 32 GB physical RAM and
Intel i7 3.6 GHz processor.

5.1. Using Contact-Based Sensors

5.1.1. Using ML Methods. The 3-axial data obtained from the
accelerometer fitted on the right wrist of the subject was used
for training the model on 3 machine learning methods,
which were Support Vector Machine, Random Forest, and
Multilayer Perceptron. The data obtained from accelerom-
eters captured acceleration along the x-axis, y-axis, and z-
axis in continuous time frames. The data was further divided
into training set and test set in the ratio of 70:30.

The results obtained from the three algorithms are
summarized in Table 3. It can be seen that the RF method
performed the best among all the machine learning methods
on all the performance metrics. The results also suggest that
ML methods can provide significant efficiency on the se-
quential data stream provided by the accelerometers. To
improve on the performance, we further tried the 1D CNN
method.

5.1.2. Using 1D CNN Method. Convolutional neural net-
work methods are very good at training sequential streams of
data; here 1D CNN-based method was implemented. In 1D
CNN, data streams are passed after converting them into 1D
arrays and passing them through multiple 1-dimensional
layers for training. The training was performed for 500
epochi, with a decent gradient optimizer with a learning rate
of 107"

Here the descent gradient optimizer was used with a
negative log-likelihood cost function, as shown in the fol-
lowing equation:

Loss (x) = —log(x). (6)

Figure 11 shows the accuracy/loss plots obtained in this
case. An accuracy of 98.07% was obtained, shown in Table 3.
Thus, it was observed to be better than the other imple-
mented ML algorithms.

5.2. Using Noncontact-Based Sensors. The model’s training
was done in two phases through RGB images and optical
flow images. RGB images included the frames obtained
directly from the camera, while optical flow images were
obtained to capture the motion between the consecutive
frames. Then, in both cases, the dataset was divided into
training set, 80%, and test set, 20%.

The K cross-validation approach was used to remove the
biasing effect, where K refers to the number of different types
of groups the data was split into. It is a beneficial technique
as it helps get the models variety of combination training and
testing datasets. The value of K was chosen to be 5 as
selecting a higher value of K leads to overfitting, and a lower
value of K is not high enough to remove the biasing effect, so
the value of 5 seemed optimal.

5.2.1. Using RGB Cameras. In this experiment, three ar-
chitectures were trained, namely, VGG-16, Xception, and
DenseNet, on lateral and frontal views of the subject. The
learning rate was set at 107°, with batch normalization with
ReLU as an activation function. The network was then
trained for 500 epochs.

Tables 4 and 5 show the summary of the performances of
all the three architectures in lateral and front views, re-
spectively. Figures 12 and 13 highlight the accuracy/loss
plots for lateral and frontal views, respectively.

The frontal view was seen to be slightly better than the
lateral view; this is because the subject occupies more part of
the image in the former case. It can be observed that DenseNet
outperformed other architectures with an accuracy of 98.41%
in the case of lateral camera recordings and with an accuracy
of 99.85% in the case of frontal camera recordings. So, it can
be concluded that DenseNet has better performance than the
other architectures in the case of fall detection.

When compared with the other vision-based fall de-
tection methods reported in the literature [14, 36], which
also implemented CNN-type architectures on UP-Fall de-
tection dataset, as shown in Table 6, it can be seen that the
proposed methodology produced results that are compa-
rable with the state-of-the-art methods.
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TABLE 3: Summary of results of ML methods implemented.

Architecture used

Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-Score (%)

SVM method 94.00 93.54 93.00 94.00 93.26
RF method 96.875 96.77 96.77 96.96 96.77
MLP method 93.75 93.54 93.54 93.93 93.53
1D CNN 98.30 1 97.14 1 98.55
. 1 D CNN training plot for Accuracy/Loss
0
TER3H8 2888 FIEELYILARNEEIFTERISSLER I
— o H H = = A AN AN AN NN N n o onon n O
—— Train-accuracy
—— Train-loss
FiGURE 11: Training accuracy/loss plot obtained in the case of 1D CNN.
TaBLE 4: Summary of results of architectures implemented in case of RGB images from a lateral view.

Architecture used

Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-Score (%)

VGG-16
Xception
DenseNet

97.19 98.25 96.09 98.29 97.16
98.04 96.90 99.26 96.82 98.07
98.41 98.53 98.29 98.53 98.41

TABLE 5:

Summary of results of architectures implemented in case of RGB Images from a frontal view.

Architecture used

Accuracy (%)

Precision (%) Sensitivity (%) Specificity (%) F1-Score (%)

VGG-16 96.58 94.26 98.78 94.39 96.65
Xception 97.80 96.44 96.34 94.39 97.02
DenseNet 99.85 99.87 99.82 99.88 99.84
1.2 4
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FiGgure 12: Continued.
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FI1GURE 12: Accuracy/loss training plot for the case of RGB camera recordings in case of lateral view for the three architectures. (a) VGG-16.
(b) DenseNet. (c) Xception.
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TaBLE 6: Comparison with the literature for fall detection from the frontal view.

Proposal Dataset Method Accuracy (%)

Espinosa et al. [36] UP-Fall CNN 95.25

Yadav et al. [14] UP-Fall CNN 96.70

Proposed method (DenseNet) UP-Fall CNN 99.85

TABLE 7: Summary of results of architectures implemented in case of optical flow images from the lateral view.

Architecture used Accuracy (%) Precision (%)

Sensitivity (%) Specificity (%) F1-Score (%)

VGG-16 94.125 90.57
Xception 96.125 93.617
DenseNet 96.00 94.66

98.5 89.75 94.37
99.00 93.25 96.23
97.5 94.5 96.05

TaBLE 8: Summary of results of architectures implemented in case of optical flow images from the frontal view.

Architecture used Accuracy (%) Precision (%)

Sensitivity (%) Specificity (%) F1-Score (%)

VGG-16 92.625 95.46
Xception 93.625 96.28
DenseNet 96.00 96.46

89.50 95.75 92.38
90.75 96.50 93.43
95.50 96.50 95.97

5.2.2. Using Optical Flow Images. Optical flow images are
constructed based on the information between the con-
secutive frames. They capture the motion, if any, between the
continuous frames and remove background noises. Tables 7
and 8 show the performances of the architectures in the case
of optical flow images of lateral and frontal side views, re-
spectively. They compare the architectures in both the lateral
and frontal views based on accuracy, precision, sensitivity,
specificity, and F1-Score.

The learning rate was kept at 107, batch normalization
with ReLU as activation function was used, and again it was
observed and concluded that the DenseNet architecture gave
better performance than the other architectures in both the
lateral and frontal views. Also, it was observed that the
frontal view was giving better performance when compared
to the lateral view due to the subject occupying more space in
the former case.

In Figures 14 and 15, training accuracy/loss plots are
shown for all three architectures in the case of lateral and
frontal views, respectively.

Overall, two approaches based on the contact- and
noncontact-based sensors data were attempted to detect falls.
Analysis of the results suggests that the 1D CNN method, with
an accuracy of 98.07%, outperformed the traditional machine
learning methods in the case of contact-based sensors.

It can also be seen that dataset preprocessing steps,
which include segmentation and feature extraction, are very
important steps for improving the performance of the
models by leading to better convergence. Similarly, with an
accuracy as high as 99.85% in the case of noncontact sensors,
DenseNet outperformed the other architectures and it is
shown that very good predictions can be made using camera
recordings as well.

The two methods using contact- and noncontact-based
sensors discussed above were totally independent. The key
advantages of the approaches are discussed here. First, user
privacy is a very important concern when going for fall

detection based on video recordings. To tackle this, the
previous recording can be discarded immediately from the
system after processing. In sensor-based detection, only data
from the accelerometer is required, so there are not many
issues of personal privacy there. For further improving
privacy through video camera recording, an optical flow
camera-based approach was also discussed, which allows
only relevant information. Thus, in both approaches, privacy
of an individual can be preserved. Second, in sensor-based
fall detection using 1D CNN, the proposed architecture is
very efficient in terms of high efficiency at a very low
computation cost due to the simplicity of the architecture.

The architectures were implemented on the UP-Fall de-
tection dataset, which includes 17 individuals performing 11
activities. Out of 11 activities, 5 activities were classified as fall,
and the other 6 were classified as nonfall. The actors in the
dataset were aged 18-24 years. Since the fall activity is only
composed of motion, the approaches can be easily transferred
to people of all age groups. So, we think these approaches can
be extended to apply to real-life conditions as well.

It is also very important to discuss the limitations of the
proposed approaches. There are many activities that can be
classified into falls. Detecting different falls happening for a
very short period can be difficult. For achieving very good
efficiency in the case of camera-based detection, the com-
putation cost of the system required will be very high. For
real-time fall detection, the system processing speed would
be required to be on par with the model processing time as
there should not be lag; otherwise, that lag would keep on
accumulating to create a huge difference in time and
memory requirements.

One important difference between the two approaches is
that fall using noncontact-based sensors has low compu-
tation cost, and the user has the flexibility of movement.
Meanwhile, through camera-based fall detection, the user is
required to be inside the frame of the recording. Even falls
happening on the edges could be difficult to recognize.
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FIGURE 15: Accuracy/loss training plot for the case of optical flow images in case of frontal view for the three architectures. (a) VGG-16. (b)

DenseNet. (c) Xception.

6. Conclusions

In this paper, we presented two approaches for fall detection
which were using video camera recordings and acceler-
ometer sensors that are commonly found in smartphones.
These were done using machine learning and deep learning
methods. In the case of contact-based sensors, 1D CNN and
machine learning methods were studied. Then, in the case of
noncontact-based sensors, 3D ConvNets were implemented
utilizing 3 different CNN-based architectures: VGG-16,
Xception, and DenseNet.

From the conducted experiments, various things can be
concluded. In the case of vision-based sensors, from the
three different architectures attempted for implementation,
VGG-16 was found to be computationally faster (due to only
16 layers) with good accuracy and comparable with the
literature. For further improving on the accuracy, DenseNet
is suggested, which performed best among the architectures,
but this was obtained at the cost of increasing computation
due to a greater number of densely connected layers. In the
case of contact-based Sensors, the proposed 1D CNN ar-
chitectures were shown to outperform ML methods. Both
methods have their particular advantages in various con-
ditions. Particularly, sensor-based detection showed various
advantages, which include user privacy, no restricted area for
movement, and simple architecture.

As can be seen from Table 6, our proposed methodology
outperforms the existing architectures with an accuracy of
99.85% as compared to 96.70% of the current state-of-the-art
methods. Further improvements in this research should be
directed towards embedded board implementation and
privacy preservation of the subject by using advanced
methods such as compressive sensing and feature encoding.

Data Availability

The UP-Fall detection data used to support the findings of
this study have been deposited in the UP-Fall repository
(https://sites.google.com/up.edu.mx/har-up/).
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