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Purpose: We performed human, animal, and in vitro studies to examine the potential role of nuclear transport factor 2
(NTF2) in conferring resistance to diabetic retinopathy (DR).
Methods: Blood NTF2 levels were assessed in two groups of patients with type 2 diabetes mellitus. Group P patients had
a history of proliferative DR (PDR), while group N patients did not. The retinal vasculature was examined in diabetic rats
three months after they received an intravitreal injection of a recombinant adeno-associated virus (rAAV) vector
overexpressing NTF2 (rAAV2-NTF2). Control rats were treated with rAAV2 only. Rat retinal capillary endothelial cells
(RRCECs) were infected with rAAV2-NTF2, or with a vector expressing siRNA targeted against NTF2, to assess the
effects of overexpression and inhibition of NTF2 on vascular endothelial growth factor (VEGF) expression (mRNA and
protein). 
Results: There was a strong trend for patients with DR to have lower blood NTF2 levels compared to those who did not
have DR (0.10±0.01 versus 0.20±0.08, p=0.079). There was significantly less retinal blood vessel leakage in diabetic rats
infected with rAAV2-NTF2 compared to controls (16.5±2.9 versus 24.7±7.3, p=0.039). These rats exhibited normal retinal
vasculature and blood-retinal barrier function. VEGF expression was inhibited by NTF2 overexpression and stimulated
by NTF2 inhibition, (protein [0.41±0.05 versus 0.23±0.06] and mRNA [0.37±0.04 versus 0.23±0.06] p<0.01 for all).
Conclusions: These finding suggest that NTF2 is a potential mediator of retinal vasculature integrity. NTF2 may act by
altering VEGF expression, thereby influencing the development of DR in patients with diabetes mellitus.
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Diabetic retinopathy (DR) and consequent vision loss or
impairment is a common complication of type 2 diabetes
mellitus (DM). To date, no effective therapy exists to treat this
associated vision loss. Lack of glucose control and the chronic
nature of the disease are key risk factors, but DR also contains
a hereditary component. The aldose reductase (ALR2) gene
(allele z-4) has been linked to the occurrence of DR [1]. Wang
and colleagues [2] found that Chinese patients with type 2 DM
exhibited phenotypic differences in terms of risk factors for
DR, and that ALR2 was associated with microvascular
complications. A study of Mexican Americans with DM
revealed that retinopathy was linked to two chromosomes
[3], while Suzuki et al. [4] reported that apolipoprotein was
associated with the occurrence of DR. Other studies indicate
that vascular endothelial growth factor (VEGF), genetic
polymorphisms, and mitochondrial rRNA genetic
polymorphisms may contribute to DR pathology [5,6].

The onset of DR among DM patients is variable. Some
patients acquire DR as soon as they develop DM, while others
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either do not exhibit symptoms, or have very mild symptoms
even many years after the onset of DM [7]. An epidemiologic
study of American patients with a 20-year history of DM
revealed that 80% had developed DR [8]. Evidently there is a
distinct cohort of individuals with DM who are somehow
“immune” to the onset of DR. These findings suggest the
existence of a genetic polymorphism that protects retinal
blood vessels from the damage associated with DM. Given
this and the knowledge that no current medication can
effectively control the occurrence and development of DR, it
would seem pertinent to search for and try to identify genes
that may be involved in conferring resistance to DR.

Nuclear transport factor 2 (NTF2) is a small guanosine
5′-diphosphate (GDP) Ran binding protein found in all human
cell types. It is involved in regulating multiple processes,
including cell cycle, immunoreactions, and apoptosis [9-11].
The main function of NTF2 is to facilitate transport of certain
proteins into the nucleus via interaction with nucleoporin
FxFG [12,13]. NTF2 also works as a GDP-dissociation
inhibitor to mediate the GDP-Ran gradient, which is also
involved nucleocytoplasmic transport [14-16]. The
importance of NTF2 is illustrated by the findings that deletion
of this gene results in lethality [17]. With regards to the eye,
it has been reported that partial deletion or mutation of the
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TABLE 1. SUMMARY OF SIGNIFICANT DIFFERENTIAL GENE EXPRESSION AS DETERMINED BY MICROARRAY ANALYSIS.

Gene Description p-value
213726_x_at nf66f09.s1 NCI_CGAP_Co3 Homo sapiens cDNA clone IMAGE:924905 3′ similar to gb:X79535 tubulin beta-2

chain (human); mRNA sequence.
0.00988

209458_x_at hemoglobin, alpha 2 0.00985
206208_at carbonic anhydrase IV 0.00981
1558459_s_at MRNA; cDNA DKFZp686D21117 (from clone DKFZp686D21117) 0.00923
201230_s_at ariadne homolog 2 (Drosophila) 0.00895
226975_at hypothetical protein FLJ25070 0.00895
1553588_at NADH dehydrogenase, subunit 3 (complex I); go_component: mitochondrial inner membrane [goid 0005743]

[evidence P] [pmid 9878551]; go_component: respiratory chain complex I (sensu Eukarya) [goid 0005747] [evidence
NAS]; go_component: mitochondrion [goid 0005739] [evidence IEA]; go_function: NADH dehydrogenase
(ubiquinone) activity [goid 0008137] [evidence NAS] [pmid 9878551]; go_function: oxidoreductase activity [goid
0016491] [evidence IEA]; go_process: mitochondrial electron transport, NADH to ubiquinone [goid 0006120]
[evidence NAS] [pmid 9878551]; Homo sapiens NADH dehydrogenase 3 (MTND3), mRNA.

0.00892

226434_at hypothetical protein MGC22793 0.0084
201788_at DEAD (Asp-Glu-Ala-Asp) box polypeptide 42 0.00824
223440_at lin-10 protein homolog 0.00802
243954_at Hypothetical protein LOC285286 (LOC285286), mRNA 0.00781
205844_at vanin 1 0.00673
228460_at zinc finger protein 319 0.00671
236012_at proteasome (prosome, macropain) inhibitor subunit 1 (PI31) 0.00663
233690_at CDNA: FLJ23090 fis, clone LNG07119 0.00576
202397_at nuclear transport factor 2 0.00542
224776_at putative lysophosphatidic acid acyltransferase 0.00529
201378_s_at NICE-4 protein 0.00515
223365_at DEAH (Asp-Glu-Ala-His) box polypeptide 37 0.00469
217232_x_at Homo sapiens mutant beta-globin (HBB) gene, complete cds 0.00402
211745_x_at hemoglobin, alpha 2 0.00385
219226_at CDC2-related protein kinase 7 0.00286
225819_at transforming growth factor beta regulator 1 0.000514
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NTF2 gene may cause heteroplasia in the eyes of Drosophila
[17]. It has been further suggested that partial loss of NTF2
function might alter the nuclear import of Ran proteins during
the immune response and that the loss of functional alleles
may be associated with the strong eye phenotype [18].

In this study,we obtained blood samples from patients
who suffered DM, but not proliferative DR (PDR), and from
patients who suffered DM and PDR. RNA was extracted from
these samples and subjected to microarray analysis to search
for genes differentially expressed between the two patient
groups and hence perhaps associated with DR. One of these
was NTF2 (Table 1).

The aim of the current study was to determine if NTF2
plays a role in conferring resistance to DR. A series of studies
were performed. NTF2 gene expression was determined in a
cohort of DM patients divided into those with PDR and those
without. In vivo studies with diabetic rats and in vitro studies
using rat retinal capillary endothelial cells (RRCECs)were
performed to assess the effects of overexpression and
inhibition of NTF2 expression on retinal vasculature and
inhibition of retinal damage.

METHODS
Human study: Patients were classified into two groups: those
without PDR (group N) and those with PDR (group P). Group
N patients had a 20 to 25 year history of DM without PDR as

confirmed by retinal photography and fluorescein
angiography. Group P patients had a 20 to 25 year history of
type 2 DM with active PDR in both eyes as confirmed by
retinal photography. 59 patients in both groups were of similar
age (average age 67.3 years old), weight, ethnicity (Han
Chinese), equal gender distribution and resided in or around
Guangzhou City, China. Living standards of patients in both
groups were similar. All patients had been on insulin therapy
for approximately two years. Glucose levels before and after
meals were strictly controlled in Group N but not in Group P.
The diagnosis of PDR was made in accordance with
international standards. Patients with malignant tumors, other
hereditary diseases, severe infectious diseases (i.e.,
tuberculosis, hepatitis B) by biochemical examination and
asked about the disease history, and hypertension or unstable
critical condition were excluded. A total of 22 and 37 patients
met the inclusion criteria for groups N and P over a period of
14 months. Blood samples (2.5 ml) were obtained from 20
patients (we selected) in each group for microarray analysis.
Thereafter, six blood samples from each group of patients
were selected, along with samples from a cohort of healthy
volunteers controls (the NO group, 6 patients were recruited,
they live in Guangzhou China, and average age of 68.5 years,
the blood samples was frozen in −20 °C), for evaluation of
NTF2 gene expression.
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This research was approved by the ethics committee of
Zhongshan Ophthalmic Center, Sun Yet-Sun University.
Each patient signed a consent statement before entering the
study.
Quantitative real time PCR evaluation of NTF2 gene
expression: Total RNA was isolated from patient blood
samples using Trizol reagent (Gibco, Los Angeles, CA) and
purified by Qiagen RNeasy Mini Kit (Qiagen, Venlo, The
Netherlands). Synthesis of cDNA was performed using a
Super-Script II cDNA synthesis Kit (Invitrogen Inc.,
Carlsbad, CA). Real-time PCR (RT–PCR) was performed
using a Hotstar Taq polymerase kit (Qiagen) with SYBR
Green technology (Applied Biosystems Inc., Foster City, CA)
according to the manufacturer’s instructions. Relative gene
expression was determined. The primers used to detect 384
bp NTF2 are described in Table 2.

Construction and packaging of rAAV2-NTF-2: The coding
sequence for NTF2 was obtained from the Sprague-Dawley
(SD) rat cDNA bank and was extended using Golden Taq
(Tiangen Biotech, Beijing, China). The method for

construction and packaging rAAV2-NTF-2 has been
described previously [19]: The oligonucleotide upper primer
are described in Table 3, polymerase chain reaction (PCR)
amplification was performed in a final volume of 50 μl. The
following temperature conditions were used for the reactions:
3 min initial denaturation at 94 °C, then 32 cycles for 30 s
denaturation at 94 °C; 30 s annealing at 56 °C, synthesis for
1 min at 72 °C. The amplified product was subcloned directly
into vector pGEM-T. Gene sequence was verified by
dideoxynucleotide sequencing. Digestion of the recombinant
plasmid pGEM-T-NTF2 with EcoRI acquired the cDNA of
NTF2 extracellular domain which was subcloned into the
EcoRI site of the gene therapy vector pSNAV-2. Recombinant
plasmid was examined by restriction enzyme digestion and
named pSNAV- 2/NTF2.

Transfection of baby hamster kidney (BHK-21) cells with
cells with pSNAV-NTF-2 was performed in six-well plates
using a Lipofectamine 2000 kit (Invitrogen). These cells,
named BHK/NTF-2, were then transferred and cultured in a
110 mm×480 mm flask (Wheaton Inc., Wheaton, IL), then

TABLE 2. QUANTITATIVE REAL TIME PCR EVALUATION OF NTF2 GENE EXPRESSION.

Gene Primer (5′-3′) PCR annealing temp (°C)
NTF2 AGCTTAAGGCGGATGAAGACC 58

GAGGAGGAAACAGCGTGAGTG
β-actin CTTTTAGGATGGCAAGGGACT 58

TGGAACGGTGAAGGTGACA

TABLE 3. CLONING AND SEQUENCING OF THE RAT NTF2 GENE.

Gene Primer (5′-3′) PCR annealing temp (°C)
NTF2 GGAATTCATGGGAGACAAGCCAATTG 56

GGAATTCTCAGCCGAAGTTGTGC

TABLE 4. THE RNAI NTF2 SEQUENCE.

Primer Sequence
Sense GATCCAAGCCAATTTGGGAGCAGATTTTCAAGAGAAATCTG

CTCCCAAATTGGCTTTTTTTTACGCGTG
Antisense ATTCACGCGTAAAAAAAAGCCAATTTGGGAGCAGATTTCTC

TTGAAAATCTGCTCCCAAATTGGCTTG

TABLE 5. QUANTITATIVE REAL TIME PCR EVALUATION OF NTF2 AND VEGF EXPRESSION.

Gene Primer (5′-3′) PCR annealing temp (°C)
NTF2 AAAGAACATCAATGACGCTTGG 57

GGAGCATCTGGAGGAGATAGGA
β-actin CTGGGTATGGAATCCTGTGG 58

TCATCGTACTCCTGCTTGCTG
VEGF TCTTCAAGCCGTCCTGTGTG 58

ACAGTGAACGCTCCAGGATTTA
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infected with HSV1-rc/ΔUL2 (Benyuan Zhengyang Inc.,
Beijing, China; MOI=0.1) when the cell number reached
8×108. The cells were then divided into 250 ml Fernbach
culture flasks for further purification after 48 h culture.

The rAAV2-NTF-2 virus was purified and identified
using RT–PCR as described previously [19]. The titer of
rAAV2-NTF-2 (virus genome/ml [vg/ml]) was detected using
in situ hybridization with a digoxin-labeled cytomegalovirus
probe. The final titer was 1×1012 virus genomes/ml.
In vivo study: overexpression of the NTF2 gene in the rat
retina: Obtained from the animal center of Huazhong
University of Science and Technology were 60, two-month-
old male Sprague Dawley rats, weighing between 150 and 200
g. Rats maintained in an cleaning environment for two weeks
before experimentation. Rats were randomly divided into two
groups, A and B, and containing 30 rats per group. Each rat
in Group A received an intravitreal injection of purified
rAAV2-NTF2 in either the left or right eye (determined
randomly). Rats in Group B were injected with rAAV2 only.
Diabetes animal model were Constructed after rAAV2
treatment one month: after fasting for 12 h [20], the rats were
injected with a single dose of streptozotocin (STZ; 65 mg/kg
intraperitoneal injection in 0.01 M citrate buffer with a pH of
4.5). Nondiabetic control mice received citrate buffer only.
Fasting plasma glucose was examined after 3 days of STZ
injection, and diabetes was confirmed by fasting plasma
glucose value of 16.7 mmol/l or higher using Touch™
Glucometer (Boehringer Mannheim Diagnostics,
Indianapolis, IN). Retinal integrity was assessed two months
later.

Assessment of retinal blood vessel leakage—Retinal
vascular permeability was determined by assessing
fluorescein isothiocyannate-dextran (FITC- dextran) [21-23]
and Evans Blue (EB) retinal leakage [24]. Rats were
anesthetized by intraperitoneal injection of 50 mg/kg
ketamine and 20 mg/kg chlorpromazine. Next, a 100 mg/kg
solution of FITC-dextran solution (Sigma, St Louis, MO) or
45 mg/kg of 3% EB (Sigma) was injected via the tail vein. The
chest was opened after 2 h and an infusion tube connected with
a 14G blunt needle was inserted into the left ventricle. The
right atrial appendage was cut open, and the heart was infused
with fluid contained 0.05 M 1% paraformaldehyde citrate
buffer, pH 3.5, at 250 ml/kg bodyweight. Infusion height was
160 cm, resulting in an equivalent infusion pressure of
120 mmHg. The infusion was maintained for 2 min to remove
any remnant dye in the blood vessels. The eyes of rat were
then removed, and the retina was dissected and mounted to
determine retinal blood vessel leakage (FITC-dextran
leakage) by microscopy.

To assess EB leakage, we dried dissected retinas under
vacuum (45 °C for 5 h). The retinal dry weight was recorded.
The difference in retinal weight between diabetic rats injected
with rAAV2-NTF2 and controls was compared. Next, 120 μl

formamide was added and the solution placed in a 70 °C water
bath for 18 h. The sample was then centrifuged at 7,280 xg for
30 min to separate the dye from the protein. The absorbance
of the 50 μl filtered fluid was detected at wavelengths of 620
nm and 740 nm using a Beckman DU-640 spectrophotometer
(Beckman Coulter, Fullerton, CA). The net absorbance was
calculated by subtracting the absorbance at 740 nm from that
at 620 nm. The concentration of dye was calculated from a
standard curve (determined for each measurement) of EB in
formamide. Samples were analyzed in triplicate and the mean
calculated. The dry weight of the retina (mg) was used to
standardize dye content and values are presented in ng/mg.
The formula was as follows:

EB content in the retina (ng/mg)=[EB concentration in
formamide (ng/μl)×120 (μl)]/dry weight of the retina (mg)
In vitro studies: inhibition of NTF2 expression using siRNA:
In vitro cultured RRCECs were prepared as previously
described [25]. Briefly, rat eyes were cut circumferentially
1.5 mm posterior to the limbus, and the retinas were harvested
and homogenized by two gentle up-and-down strokes in a 15
ml homogenizer (Dounce; Bellco Glass Co., Vineland, NJ).
The homogenate was filtered. The remaining retentate was
digested in 0.066% collagenase for 45 min at 37 °C. The
homogenate was centrifuged (1,000x g for 10 min), and the
pellet was resuspended in human serum-free endothelial-basal
growth medium Invitrogen-Gibco, Grand Island, NY),
supplemented with 20% fetal bovine serum, 50 U/ml
endothelial cell growth factor (Sigma-Aldrich). Cells were
cultured in fibronectin-coated dishes and incubated at 37 °C
in a humidified atmosphere containing 5% CO2. Cultured

Figure 1. NTF2 expression was significantly lower in patients with
PDR. Expression of NTF2 mRNA as determined by real-time PCR
in patients with type 2 diabetes mellitus (DM) and proliferative
diabetic retinopathy (PDR, group P), DM without PDR (group N)
and healthy volunteers (group NO). Asterisk indicates significance
between groups difference (p<0.05).
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RRCECs were transfected with rAAV2-NTF2, or rAAV2-
GFP. Cells were plated in 24 well culture plates, grown
overnight to 70%–80% confluence. Cells were then washed
twice with serum-free human endothelial-serum-free medium
basal growth medium. Next, 1×109 vg/ml rAAV2-NTF2 was
added to each well in the experimental group while 1×109 vg/
ml rAAV2 only was added to control wells. rAAV2-GFP was
added to six separate wells to monitor infection efficiency
(subsequently found to approximate 93%).

A vector containing siRNA for NTF2 was constructed by
cloning the double stranded sequence into the RNAi-Ready
pSIREN-RetroQ ZsGreen vector (pSIREN vector; BD
Biosciences, Franklin Lakes, NJ) to yield the pSIREN-NTF2
siRNA vector. The NTF2 sequences (obtained from Qiagen)
were described in Table 4. RRCECs were infected with
pSIREN-NTF2 siRNA or pSIREN vectors using
Lipofectamine. Real time PCR and western blot analyses were
performed to examine the RNA and protein expression levels
of NTF2 and VEGF two days after infection.

Quantitative real time PCR and western blot
evaluation of NTF2 and VEGF gene and protein
expression—Total RNA was isolated from RRCECs using
Trizol reagent (Gibco, Los Angeles, CA) and purified by
Qiagen RNeasy Mini Kit (Qiagen, Venlo, The Netherlands).
Synthesis of cDNA was performed using a Super-Script II
cDNA synthesis Kit (Invitrogen Inc.). Real-time PCR was
performed using a Hotstar Taq polymerase kit (Qiagen) with
SYBR Green technology (Applied Biosystems Inc., Foster

City, CA) according to the manufacturer’s instructions.
Relative gene expression was determined. The primers were
described in Table 5. Total protein was extracted from
RRCECs using bicinchoninic acid. Isolated protein was mixed
with loading buffer, denatured for 6 min at 60 °C, cooled,
centrifuged for 5 min, and then separated by sodium-dodecyl
sulfate PAGE (SDS–PAGE). Antibodies directed toward
NTF2 and VEGF (Santa Cruz Biotechnology Inc., Santa Cruz,
CA) were used to probe the proteins. A secondary antibody
goat anti-mouseIgG-HRP (1:1,000 dilution, Santa Cruz
Biotechnology Inc., Santa Cruz, CA) was applied, and the
signal was revealed by chemiluminescence. The
polyvinylidene fluoride membranes were reused to detect β-
actin (internal control) by incubating with a mouse anti-
human actin antibody (Gene Co, Hong Kong, China). The
bands detected were analyzed by automatic image analysis,
and the integrated optical density (OPTDI) of each protein
band was normalized to the OPTDI value of the corresponding
β-actin band from the same sample.
Statistical analysis: Normally distributed data were compared
by independent two samples t-test or one-way ANOVA where
appropriate. When a significant difference was detected
between groups differences were detected, multiple
comparisons of means were performed using the Bonferroni
procedure, with type-I error rate at a maximum of
0.017(0.05/3) adjustment. Statistical analyses were performed
using SPSS 15.0 statistics software (SPSS Inc., Chicago, IL),

Figure 2. Retinal sections from diabetic
rats infused with fluorescein
isothiocyanate. Representative images
from rAAV2-infected rats was shown
on A and B. Representative images from
rAAV2-NTF2-infected rats were shown
on C and D. Decreased blood vessel
leakage was apparent in retinas from
group B rats (NTF2 overexpression).
Scale bar=50 μm for A and C, 100 μm
for B and D.
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and differences were considered significant when p<0.05.
Data are presented as the mean±standard deviation (SD).

RESULTS
NTF2 expression in patients: There was a significant overall
difference in NTF2 gene expression among the groups (NO,
N, and P). NTF2 expression was lower in group N patients
compared to NO (control), however this difference was
insignificant (0.20±0.08 versus 0.26±0.09, p=0.479; Figure
1). NTF2 expression was significantly higher in normal
compared to group P patients (0.26±0.09 versus 0.10±0.01;
p=0.004). There was no significant difference in NTF2
expression between group N and P patients.

Effect of NTF2 overexpression on retinal blood vessel leakage
in rats with DM: The FITC-dextran blood vessel leakage area
was significantly decreased in rats treated with rAAV2-NTF2
compared to in control rats (11.3±1.5% versus 23.7±2.8%;
p<0.05). Representative images demonstrating retinal leakage
of FITC dye can be seen in Figure 2.

There was significantly less EB content in retinas from
rAAV2-NTF2 injected as compared to control rats (16.5±2.9
ng/mg retinal dry weight versus 24.7±7.3 ng/mg retinal dry
weight; p=0.039).
Effects of NTF2 overexpression and downregulation on
VEGF expression in RRCECs: Real time PCR revealed that

infection of RRCECs with rAAV2-NTF2 resulted in
significant upregulation of NTF2 mRNA (0.77±0.05 versus
0.51±0.02, p<0.01), In contrast, VEGF mRNA were
significantly decreased in these cells (0.19±0.03 versus
0.28±0.03, p<0.01). NTF2 mRNA were significantly
decreased following transfection with pSIREN-NTF2 siRNA
(0.27±0.06 versus 0.55±0.08; p<0.01). While VEGF mRNA
were significantly increased in these compared to control cells
(0.37±0.04 versus 0.23±0.06; p<0.01). Western blot analyses
confirmed that Infection of RRCECs with rAAV2-NTF2
resulted in significant upregulation of NTF2 protein
expression (1.03±0.20 versus 0.55±0.13,Figure 3A and
Figure 4B; p<0.01). In contrast, VEGF protein levels
(0.76±0.14 versus 1.26±0.17) were significantly decreased in
these cells (Figure 3B and Figure 4D; p<0.01). NTF2 protein
expression levels were significantly decreased following
transfection with pSIREN-NTF2 siRNA (Figure 3C and
0.46±0.07 versus 1.01±0.10; Figure 4F; p<0.01). While
VEGF protein levels were significantly increased in these
compared to control cells (Figure 3D and 0.41±0.05 versus
0.23±0.06; Figure 4H; p<0.01)

DISCUSSION
The results of this study suggest that NTF2 may be involved
in mediating DR in patients with DM. Several lines of
evidence support this assertion. We found NTF2 mRNA

Figure 3. Effects of NTF2 levels on
NTF2 and VEGF mRNA expression.
Overexpression of NTF2 by transfection
of rAAV2-NTF2 increased the
expression level of NTF2 but reduced
the expression of VEGF (A, B).
Downregulation of NTF2 by
transfection with pSIREN-NTF2
siRNA reduced NTF2 expression but
increased VEGF expression (C, D). The
experiments were performed in rat
retinal capillary endothelial cells.
Asterisk (*) indicates a significant
difference between groups (p<0.05).
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expression to be lower in DM patients with PDR (P group)
compared to those without PDR. Even though the difference
in humans was not statistically significant, we also found

overexpression of NTF2 in diabetic rats was associated with
decreased indices of retinal damage. Findings from our in
vitro studies of RRCECs, in which NTF2 expression was

Figure 4. Effects of NTF2 expression on
NTF2 and VEGF protein levels.
Overexpression of NTF2 by
transfection with rAAV2-NTF2
increased NTF2 protein expression but
reduced VEGF protein level (B, D).
Downregulation of NTF2 by
transfection with pSIREN-NTF2
siRNA inhibited NTF2 protein
expression but increased VEGF protein
level (F, H). The experiments were
performed in rat retinal capillary
endothelial cells. Representative
western blots were shown for the effects
of NTF2 overexpression and
downregulation on NTF2 (A, E) and
VEGF (C, G) preotein expression.
Asterisk (*) indicates a significant
difference between the groups (p<0.05).
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upregulated or downregulated, indicated that NTF2
modulates VEGF expression. This is an important observation
given that NTF2 may play a role in mediating the progression
of DR and suggests the need for further studies, particularly
in humans.

DR is among the most prevalent complications associated
with DM. Hence, it is closely related to DM. Several studies
have suggested that there is a genetic component to PDR [2,
3,6,26]. It would appear that genes involved help maintain
functionality of the retinal blood vessels and protects the
surrounding tissue from DM-related damage.

At the beginning of study, we examined NTF2 expression
levels in patients, who had DM with or without PDR for 20–
25 year. Potential confounding factors (e.g., age, gender, types
of illness, and living conditions) were eliminated due to a strict
selection and exclusion criteria of patients. Hence the
differentiating factor between the 2 groups of patients was the
presence or absence of PDR. We found that NTF2 levels in
patients with PDR were significantly lower than in normal
healthy individuals (NO) While there was no significant
difference detected between the patient groups, there was a
strong trend for patients with PDR to have lower NTF2 levels
(p=0.079). This lack of a difference between these groups may
be a reflection of the relatively small sample size.
Nevertheless, this finding encouraged us to further examine
the importance of NTF2 with regards to the development of
DR.

Findings from  a study by Minakhina and colleague s
[17]  have interesting parallels to our own. These researchers
found that low NTF2 gene expression resulted in abnormal
eye growth in Drosophila. Higher NTF2 gene expression was
required to maintain normal eye growth. The number of
compound eyes was significantly decreased in Drosophila
with reduced as compared to normal NTF2 expression. The
decreased frequency of compound eyes in low NTF2
expression Drosophila may have been due to dysplasia of
blood vessels in the eye.

Given that lower VEGF expression is thought to be
associated with DR resistance [27], it is plausible that NTF2
may offer protection from DR by depressing VEGF
expression. Indeed our findings suggest that this may be the
case (at least in part). We found that expression of NTF2 in
RRCECs was inversely related to VEGF expression (both
mRNA and protein). Precisely how NTF2 might influence
VEGF expression is unclear. Further studies examining the
effects of NTF2 on downstream inflammatory and vascular
factors are warranted to clarify this point. Certainly, NTF2
may influence other mediators of DR aside from VEGF.

In summary, the findings from our study implicate NTF2
as a potential mediator of retinal vasculature protection and
suggest that expression levels of this gene may dictate, at least
to some extent, development of PDR in patients with DM. Our
findings also suggest that NTF2 may exert such effects by

altering VEGF expression. Further studies are warranted to
examine potentials pathways through which NTF2 may be
exerting such effects.
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