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ABSTRACT
The selection of therapeutic targets is a critical aspect of antibody-drug conjugate 

research and development. In this study, we applied computational methods to select 
candidate targets overexpressed in three major breast cancer subtypes as compared 
with a range of vital organs and tissues. Microarray data corresponding to over 8,000 
tissue samples were collected from the public domain. Breast cancer samples were 
classified into molecular subtypes using an iterative ensemble approach combining 
six classification algorithms and three feature selection techniques, including a novel 
kernel density-based method. This feature selection method was used in conjunction 
with differential expression and subcellular localization information to assemble a 
primary list of targets. A total of 50 cell membrane targets were identified, including 
one target for which an antibody-drug conjugate is in clinical use, and six targets 
for which antibody-drug conjugates are in clinical trials for the treatment of breast 
cancer and other solid tumors. In addition, 50 extracellular proteins were identified as 
potential targets for non-internalizing strategies and alternative modalities. Candidate 
targets linked with the epithelial-to-mesenchymal transition were identified by 
analyzing differential gene expression in epithelial and mesenchymal tumor-derived 
cell lines. Overall, these results show that mining human gene expression data has 
the power to select and prioritize breast cancer antibody-drug conjugate targets, and 
the potential to lead to new and more effective cancer therapeutics.

INTRODUCTION

Personalized cancer therapies are expected to 
be more effective than conventional treatment and to 
minimize detrimental effects on normal cells [1]. Different 
strategies have been used in the development of cancer 
therapeutic monoclonal antibodies (mAbs) including 
direct and immune-mediated cell killing, and targeting of 
the tumor neovasculature [2]. To improve clinical efficacy 
and to overcome some limitations of first generation 
mAb-based therapeutics, the industry is currently shifting 
towards innovative and more powerful modalities such 
as bi-specific antibodies and antibody-drug conjugates 
(ADCs) [3, 4]. Antibody-drug conjugates offer the ability 
to deliver potent cytotoxic drugs specifically to tumor cells 
[5]. Most current ADC development efforts are focusing 

on cell surface proteins, the binding of which leads to 
ADC internalization by receptor-mediated endocytosis, 
and subsequent release of the cytotoxic payload inside 
tumor cells [6]. The choice of therapeutic target is a 
critical success factor in this endeavor [7].

The computational selection of therapeutic targets 
is a multifaceted process that generally starts with mRNA 
or protein quantitative analysis to identify targets that are 
overexpressed in tumor cells. Depending on the type of 
target and the chosen drug and delivery strategy, candidates 
are then prioritized using various approaches [8–11]. 
These approaches include filtering based on subcellular 
localization, molecular interactions and network modeling, 
analysis of scientific literature and patents, association of 
expression with survival, genotype-phenotype analysis, and 
integration of knowledge from drug and clinical databases. 
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The main criterion for ADC target selection is tumor 
specificity, to avoid toxicity in vital organs and tissues [7, 
12]. To evaluate this property using gene expression data, 
the analysis of “as many samples as possible” is necessary 
given the naturally important phenotypic variation within 
and between individuals [13] and additional noise resulting 
from sample handling and other experimental procedures 
[14]. The Gene Expression Omnibus (GEO) [15] is a major 
functional genomics data repository, currently offering 
public access to over 100,000 samples analyzed with the 
Affymetrix Human Genome U133 Plus 2.0 GeneChip 
[16]. Compiling homogeneous, reliable information using 
variably granular, semi-structured sample annotations is 
difficult, while critical for the overall quality of findings in 
studies reusing public gene expression data [17]. A GEO 
metadata SQL database was created in 2008 [18], which 
made records amenable to programmatic analysis. Although 
sample annotations provide a basis for analysis, various 
technical problems such as inaccuracy in receptor testing 
[19] or a low percentage of tumor cells may affect the 
relevance of a given sample to a given class. Classification 
techniques [20] are thus essential to validate and refine 
annotation-based class labels.

Feature selection is another critical aspect of 
computational target selection. In a recent review, Saeys 
et al. [21] divided bioinformatics feature selection 
techniques into three categories depending on if and how 
the feature search is combined with the classification 
model. The most common approach to select features in 
microarray data consists in ranking and filtering features 
using the Student t-test [22] or the analysis of variance 
(ANOVA) F-test [23]. Limma, a popular software package 
used for differential expression analysis, fits a linear model 
to expression data for each gene, and variance estimates 
are adjusted by borrowing information across genes [24, 
25]. Problems associated with parametric methods include 
distributional assumptions and the dependence of p-values 
on sample size [26, 27]. Another class of supervised 
feature selection techniques makes use of weights acquired 
in the construction of classifiers such as random forests 
[28] or support vector machines [29]. These methods, 
though very effective, do not yield representations 
that are directly interpretable. In this paper, we used 
the coefficient of overlap of kernel densities, a concept 
previously used in social statistics [30], adapted here using 
a locally adaptive form of the kernel density estimate [31, 
32], as a bioinformatics feature selection algorithm. The 
algorithm is easy to interpret, does not depend on sample 
size, accommodates various distributions, and is shown to 
perform equally or better than the above methods in breast 
cancer and tumor-derived cell line classification problems.

In this study, we have applied feature selection and 
classification methods to identify candidate therapeutic 
targets in breast cancer, the most common cancer in women 
and a heterogeneous disease in nature [33]. Breast cancer 
is categorized in three basic therapeutic groups associated 

with distinct molecular subtypes, based on the status of the 
estrogen receptor (ER), the progesterone receptor (PR), 
and the receptor tyrosine-protein kinase erbB-2 (ERBB2, 
a.k.a. HER2) [34]. Although further subdivisions could 
have been made in each group, we focused our analysis on 
the molecular subtypes associated with these three basic 
therapeutic groups (luminal, HER2+ and triple-negative). 
Over 4,500 breast cancer samples were collected and 
classified into these three molecular subtypes. For the 
selection of candidate ADC targets overexpressed in each 
breast cancer subtype, differential gene expression analysis 
was performed against over 3,500 samples from a range of 
vital organs and tissues. Although ADC strategies generally 
rely on their internalization by cancer cells, a recent report 
[35] suggests that non-internalizing ADCs targeting the 
tumor microenvironment may also be effective. For this 
reason, and also to provide candidate targets for alternative 
modalities such as antibody-radionuclide conjugates [36], 
we included both cell surface and extracellular proteins 
in the analysis. We also aimed to prioritize targets linked 
with metastasis, since this is the main cause of mortality 
in patients with solid tumors including breast cancer [37]. 
Metastasis involves a series of steps where specific tumor 
cells break through the basement membrane and invade 
subjacent stromal cell layers, and traverse the endothelium 
into blood microvessels where they travel to and infiltrate 
distant sites [38]. The first step in this series of events 
involves phenotypic changes in subpopulations of cells 
at the invasive margins of carcinomas, which acquire 
traits that are important for motility and dissemination, a 
conversion called the epithelial-to-mesenchymal transition 
(EMT) [39]. Resistance to therapy and recurrence have 
been linked with stem cell properties of mesenchymal cells 
including self-renewal, motility, resistance to apoptosis, 
cell cycle arrest, suppression of immune responses and 
enhanced drug transport [40, 41]. Many of the phenomena 
surrounding EMT and metastasis have been studied in cell 
line models [42, 43]. Here, we performed classification and 
differential gene expression analysis in a large collection of 
tumor-derived cell lines [44, 45], to further prioritize targets 
linked with the mesenchymal phenotype and metastasis.

RESULTS

Our approach for target selection and prioritization 
is schematized in Figure 1. In brief, breast cancer 
samples were classified into three molecular subtypes. 
Differential gene expression analysis was performed 
against normal tissues to identify genes overexpressed in 
each subtype. Subcellular localization information was 
used in conjunction with gene expression data to select 
a primary list of cell surface and extracellular candidate 
targets. In parallel, differential gene expression analysis 
was performed in epithelial against mesenchymal tumor-
derived cell lines to identify, among selected targets, those 
also potentially linked with EMT.



Oncotargetwww.impactjournals.com/oncotarget 2557

Breast sample classification

Breast samples (total of 5,379) were initially 
assigned to one of four classes: normal, luminal, HER2+ 
and triple-negative, based on sample annotations and 
receptor status. Class labels were validated using 
repeated cross-validation combining three feature 
selection methods, six classification algorithms and 
two multiclass classification strategies (Figure 2). The 
performance of all approaches was compared using 
analysis of variance. The kernel-based feature selection 
technique slightly surpassed the other two algorithms 
(p<1E-3). The other factors (multiclass classification 
strategy, classification algorithm and number of features) 
all affected performance (p<1E-10). The accuracy under 
one-against-one (OAO) classification was higher than 
under one-against-all (OAA) classification. The best 
performing classification algorithms were: support vector 
machines (SVM), random forests (RFO) and bagging, 
followed by k-nearest neighbors (KNN), J48 and naïve 
Bayes. Accuracy increased as the number of features 
increased in 2
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under OAO classification. This information was used 
in model selection for iterative ensemble classification. 
For the final classification of breast samples, filter-based 
feature selection was performed by selecting the top 
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 ranking features using three statistics (q-value 

from Limma, overlapping coefficient of kernel densities 
and weight of SVM), and at each iteration classifiers were 
trained on all labeled instances. In total, 36 predictions 
were made for each sample (three feature selection 

methods, two classification methods, and six increasing 
number of features). Labels assigned with high confidence 
(>95% of votes) by the ensemble of experts were fed back 
into the data and used for subsequent feature selection 
and training of the classifiers. Complete convergence was 
achieved after 15 iterations. At this point, 5,107 samples 
were assigned class labels unanimously among experts 
(100% of votes), and 70 samples were assigned class 
labels with high confidence (>95% of votes). An additional 
82 samples were labeled with reasonable confidence 
(>75% of votes), and 120 samples were left unlabeled. 
As a final result, a total of 5,259 samples were labeled, 
in the following classes: 549 normal, 3,085 luminal, 479 
HER2+ and 1,146 triple-negative breast cancer. Among 
labeled samples, 4,808 (91%) retained original labels 
assigned using sample annotations and receptor status. 
Figure 3 shows representative gene expression of markers 
used for classification in the above classes. The top 64 
genes for each of six binary classification problems were 
selected and hierarchical clustering was performed within 
each class, and within two groups of genes, the first one 
consisting of features used for the binary classification 
problems involving breast cancer against normal samples, 
(Figure 3, top gene dendrogram), and the second group 
comprising genes used for classification problems 
involving breast cancer molecular subtypes (Figure 3, 
lower gene dendrogram). Distinct gene clusters with low 
and high expression characteristic of each class are clearly 
visible.

Cell line classification

Epithelial and mesenchymal cell lines were 
identified in a collection of 359 cell lines, to perform 
differential expression analysis and identify candidate 
targets linked with EMT and metastasis. We used results 
from a previous study in the NCI60 panel [46] to identify 

Figure 1: Overview of the approach for target selection and prioritization. ADC, antibody-drug conjugate.
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five groups of cell lines having homogeneous gene 
expression patterns in respect to four major gene clusters. 
These groups of cell lines were assigned the following 
class labels: epithelial (10), mesenchymal (23), mixed 
(12), melanoma (8) and leukemia (6) (Supplementary 
Data, Table S1). Class labels were validated using repeated 
cross-validation (Figure 4). The accuracy for each 
combination of factors was similar to that obtained in the 
classification of breast samples, although in this case the 
three feature selection methods performed equally well, 
and the best performing classification algorithms were 
SVM and KNN, followed by naïve Bayes, RFO, bagging 
and J48. Classification accuracy was close to 100% for 
the two best performing classification algorithms in 
combination with the three feature selection methods, with 
feature numbers in 2

5

10k

k
( )

=
, under OAO classification. For 

the iterative classification of 300 additional cell lines, 
feature selection was performed independently in three 
sets of NCI60 replicates, classifiers were trained on each 
set of replicates, and predictions were made on each 
unlabeled cell line replicate. In total, 324 predictions were 

made for each cell line (three sets of labeled replicates, 
three unlabeled replicates, three feature selection methods, 
two classification methods, and six increasing number of 
features). In this case, convergence was achieved after 
seven iterations. At this point, 266 of the initially unlabeled 
cell lines were assigned class labels unanimously among 
experts (100% of votes), and six cell lines were assigned 
class labels with high confidence (>95% of votes). An 
additional 20 cell lines were labeled with reasonable 
confidence (>75% of votes), and the remaining 8 cell lines 
were left unlabeled. Of the total 359 cell lines, 108 were 
labeled as epithelial, 88 as mixed, 66 as mesenchymal, 15 
as melanoma and 74 as leukemia (Supplementary Data, 
Table S2). Representative gene expression of markers 
used for classification in the above cell lines classes 
is shown in Figure 5. The top 64 genes for each of ten 
binary classification problems were selected, hierarchical 
clustering was performed within each class, and within 
two groups of genes, the first one consisting of features 
used for the binary classification problems involving the 
epithelial, mixed and mesenchymal classes only (Figure 5, 

Figure 2: Repeated cross-validation of class labels assigned using receptor status in breast cancer and normal breast 
tissue samples. A) One-against-one feature selection and classification. B) One-against-all feature selection and classification. LIMMA, 
linear models for microarray; OVL, overlap of locally adaptive kernel densities; WSV, weight of support vectors; BAG, bagging; J48, C4.5 
decision tree; KNN, k-nearest neighbors, NBA, naive Bayes; RFO, random forests; SVM, support vector machine.
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top gene dendrogram), and the second group comprising 
genes used for classification problems involving the 
melanoma and the leukemia classes (Figure 5, lower gene 
dendrogram). Gene expression was highly homogeneous 
and characterized by major gene clusters with low and 
high expression within each class. Two classes (leukemia 
and melanoma) were dominated by specific tissues and 
the other classes (epithelial, mesenchymal and mixed) 
contained cell lines from many different tissues (Figure 6).

Target selection and prioritization

Among 19,674 probesets defined in the Entrez 
Gene custom CDF [47], 18,282 were matched to 
human genes from the HUGO Gene Nomenclature 

Committee (HGNC) database of human genes [48], 
and 16,811 were of type “protein-coding gene”. From 
this list of genes, a total of 1,713 genes respected 
the following conditions and were included in a list 
of potential cell membrane targets: gene ontology 
annotation [49] contained GO:0005886 (plasma 
membrane) or Uniprot subcellular location annotation 
[50] contained the following term: “cell membrane”, 
and Uniprot topological domain annotation contained 
at least one transmembrane and one extracellular 
domain. In addition, 1,369 genes respected the 
following conditions and were included in a list of 
potential extracellular targets: gene ontology annotation 
contained GO:0005576 (extracellular region) or Uniprot 
subcellular location annotation contained one of the 

Figure 3: Heatmap and intra-class hierarchical clustering of 5,259 breast cancer and normal breast tissue samples. Top 
and lower horizontal color bars show sample class and receptor status (ER, PR and HER2), respectively. The top gene dendrogram represents 
features used for the binary classification problems involving breast cancer against normal samples, and the lower gene dendrogram 
comprises features used for binary classification problems involving the different breast cancer molecular subtypes.
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following terms: “extracellular matrix”, “extracellular 
space” or “secreted”. To identify genes overexpressed 
in cancer, gene expression in breast cancer samples was 
compared with gene expression in normal tissues. For 
each breast cancer molecular subtype (luminal, HER2+ 
and triple-negative), genes were ordered according 
to the mean rank of differential expression in cancer 
versus normal tissues, and the top 50 membrane and 
extracellular protein-coding genes were retained 
(Tables 1 and 2). Batch effects were evaluated using 
series (experiments) as a surrogate, and were found to 
be random and relatively inert as compared with the 
tissue and status effects (Supplementary Data, Figures 
S1 and S2). Epithelial and mesenchymal marker genes 
were identified by comparing gene expression in 
corresponding cell line classes, and filtering genes with 
a differential expression ratio greater than 2 or smaller 
than 0.5, and an overlap of kernel densities smaller than 
0.6. Four membrane and 13 extracellular targets were 
also in the mesenchymal gene set (Tables 1 and 2).

DISCUSSION

“Ideal” targets, with very high expression in one or 
more tumor types and very low expression in all normal 
tissues are rare. The best example of such targets is ERBB2, 
which is incidentally the only target for which an ADC 
(trastuzumab emtansine) is currently commercialized for 
the treatment of breast cancer [51]. In this study, to select 
candidate ADC targets, we performed gene expression 
analysis in three breast cancer subtypes versus a range of 
normal organs and tissues. Our results show that metadata 
mining and sample classification are instrumental in 
the assembly of large datasets representative of patient 
populations, and that feature selection methods and the 
incorporation of biological knowledge are essential for the 
selection of clinically relevant targets. Although currently 
available ADC target data may be too scarce for a formal 
discussion about sensitivity and specificity, the selection 
of targets for which ADCs are in clinical development is 
nevertheless a good indicator of the validity of our approach.

Figure 4: Repeated cross-validation of assigned class labels in NCI60 cell lines. A) One-against-one feature selection and 
classification. B) One-against-all feature selection and classification. LIMMA, linear models for microarray; OVL, overlap of locally 
adaptive kernel densities; WSV, weight of support vectors; BAG, bagging; J48, C4.5 decision tree; KNN, k-nearest neighbors, NBA, naive 
Bayes; RFO, random forests; SVM, support vector machine.



Oncotarget2561www.impactjournals.com/oncotarget

Our list of cell membrane candidates contained one 
target for which an ADC is already in clinical use and six 
additional targets for which antibody-drug conjugates 
are in clinical trials for the treatment of breast cancer 
and other solid tumors (Table 3). Combining a recent 
review on ADCs in clinical trials [52] and a search of 
the ClinicalTrials.gov database [53, 54] revealed that 
our list of cell membrane targets contained the majority 
of target antigens for ADCs in clinical development for 
the treatment of breast cancer, with the possible exception 
of the tumor-associated calcium signal transducer 2 
(TACSTD2), a recently identified ADC target for triple-
negative breast cancer [55]. In our analysis, we found that 
this target, although displaying a high level of expression 
in breast cancer, also had a relatively high expression 
in a number of normal organs and tissues including 
the skin, lungs, and kidneys and did not score high for 

this reason. According to the list presented in [6], the 
only candidate target in our list for which an ADC was 
previously discontinued is mucin-1 (MUC1), for lack 
of efficacy in ovarian cancer therapy [56, 57]. Clinical 
efficacy, however, does not depend only on the selected 
target but also on the design and components of the ADC 
(drug, linker and antibody). In fact, there is still interest 
in MUC1: an ADC targeting a specific glycol-epitope of 
MUC1 (SAR-566658), as well as an anti-MUC1 chimeric 
antigen receptor (CAR) T cell therapy are currently in 
clinical trials [54]. Other selected targets in clinical trials 
for CAR T cell therapy, an approach that also requires 
highly tumor-specific targets [58–60], include ERBB2, 
mucin-16 (MUC16), prominin 1 (PROM1) and the 
prolyl endopeptidase FAP (FAP) [54]. Overall, the high 
proportion of clinically relevant targets suggests that our 
target selection method is valid and that our list of targets 

Figure 5: Heatmap and intra-class hierarchical clustering of 351 tumor-derived cell lines. Top and lower horizontal color 
bars show cell line class and tissue origin, respectively. The top gene dendrogram represents features used for the binary classification 
problems involving the epithelial, mixed and mesenchymal classes only, and the lower gene comprises genes used for binary classification 
problems involving the melanoma and the leukemia classes. CNS, central nervous system; CT, connective tissue; HLS, hematopoietic and 
lymphatic system; SM, synovial membrane.
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may contain new candidates with a high potential for ADC 
development. A number of these are at various stages of 
pre-clinical research and development, which further 
validates our findings. Selected examples are discussed 
below, with a focus on triple-negative breast cancer.

Targeted therapies are currently unavailable for 
the treatment of triple-negative cancer, and patients in 
this group have a generally poorer prognosis [61]. Of 
the cell membrane targets in our list, MUC16 and the 
cancer/testis antigen 83 (CT83) had the most interesting 
profiles with high expression in triple-negative tumors 
and lower expression in all normal tissues examined. An 
ADC against MUC16 is in development by Genentech, 
primarily for the treatment of ovarian cancer [62]. CT83, 
on the other hand, is to our knowledge absent from current 
ADC development pipelines and has only been recently 
identified as a potential target in lung cancer [63]. Other 
genes with high differential expression ratio in triple-
negative tumors versus all normal tissues included FAP, 
the disintegrin and metalloproteinase domain-containing 
protein 12 (ADAM12) and the low density lipoprotein 
receptor-related protein 8 (LRP8). FAP is a membrane 
protein of the serine protease family involved in the 

proteolysis of the extracellular matrix, which contributes 
to invasiveness in malignant cancers [64, 65]. In xenograft 
models, FAP5-DM1 induced long-lasting inhibition of 
tumor growth and complete regressions in different solid 
tumors with no detectable side effects [66]. LRP8 has 
only been recently identified as a potential target in triple-
negative breast cancer [67] and is not currently, to our 
knowledge, considered for ADC development. ADAM12 
is involved in a variety of biological processes involving 
cell-cell and cell-matrix interactions, and is also known as 
a potential drug target in breast cancer [68]. Interestingly, 
two of the abovementioned potential targets, namely FAP 
and ADAM12, are also known to be involved in the EMT 
[69–71].

In this study, gene expression data mining was 
preferred as a medium for target selection and prioritization 
because of the near-transcriptome coverage of modern 
microarray platforms and the public availability of thousands 
of human gene expression datasets. Mass spectrometry-
based proteomics data analysis would, in contrast, provide 
better estimates of the quantity of interest (the actual protein 
abundance), although in a lower number of publically 
available samples, and at a typically lower resolution. 

Figure 6: Distribution of tissues of origin and classes in tumor-derived cell lines. CNS, central nervous system; CT, connective 
tissue; HLS, hematopoietic and lymphatic system; SM, synovial membrane.
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Table 1: Membrane ADC targets, mean expression in breast cancer and normal tissues
Breast cancer Normal tissues

HER2 LUM TN Blood BM Breast Colon Heart Kidney Liver Lung Pancreas Skin Stomach

Mesenchymal targets

ADAM12 9.48 9.61 9.09 5.99 4.87 8.58 5.19 5.99 6.03 5.29 6.14 7.02 6.27 6.41

CDH11 9.96 10.16 9.52 4.37 4.88 9.19 7.64 8.34 8.40 6.10 10.08 8.55 8.63 9.45

F2RL2 7.57 8.06 6.88 4.88 4.23 7.08 5.34 6.11 5.11 6.56 4.97 6.92 6.43 7.55

FAP 10.07 10.09 9.53 3.97 3.30 8.58 3.93 5.65 4.71 4.47 7.32 8.09 8.04 5.64

Epithelial targets

CDH1 10.82 10.41 9.92 4.81 7.44 9.44 11.19 4.07 9.40 10.07 9.46 10.12 10.25 9.29

CDH3 9.92 8.40 10.28 3.61 3.49 9.52 4.40 4.20 7.54 3.96 6.86 5.93 9.61 5.13

EPHB3 8.56 8.51 9.26 6.02 6.10 8.67 8.21 6.57 6.99 6.51 7.29 8.12 8.90 9.70

ERBB2 12.84 9.57 8.51 6.15 5.48 8.20 8.71 8.74 8.90 7.63 8.36 7.69 8.67 8.56

ERBB3 10.78 11.37 10.15 5.53 5.27 10.08 11.47 7.96 10.50 10.58 10.06 9.60 10.52 10.64

IGSF9 9.30 8.47 8.63 4.54 4.52 6.32 9.17 5.65 5.16 7.19 4.75 5.59 8.07 6.83

ITGB6 9.88 8.22 7.92 3.30 3.35 7.86 8.16 5.67 8.22 4.24 9.15 7.62 6.40 6.74

MUC1 11.02 11.86 9.87 5.80 7.29 9.62 10.85 6.32 10.66 5.71 12.04 10.52 8.38 12.19

MUC16 4.48 3.94 6.76 2.62 2.77 4.48 2.59 3.95 2.50 2.54 3.89 2.81 3.56 4.23

PVRL4 9.23 8.49 8.73 5.59 5.96 7.48 6.09 6.48 6.49 5.50 6.65 6.58 8.88 6.82

TLCD1 9.11 8.36 8.21 4.66 5.47 6.56 8.26 6.70 8.10 7.44 7.52 6.99 8.80 7.03

Other targets

BAMBI 10.88 10.56 10.77 6.67 8.07 10.18 8.89 10.02 10.24 9.72 9.58 8.95 8.35 8.34

BMPR1B 6.69 9.32 6.89 4.29 4.82 6.73 5.19 7.44 8.37 6.31 7.11 7.31 6.55 8.25

CA12 9.30 11.86 8.27 5.74 5.77 9.86 12.59 6.95 12.82 6.08 7.81 9.73 11.53 8.93

CLSTN2 6.11 8.84 5.62 3.67 4.67 8.13 4.70 7.43 7.08 5.32 5.44 6.16 6.35 6.98

CT83 5.21 4.40 7.66 4.31 4.37 4.60 4.32 5.42 4.57 4.33 4.34 4.83 4.16 5.49

FPR3 8.92 8.37 8.93 6.01 5.43 7.51 7.50 7.57 6.76 7.88 8.56 7.90 7.23 7.53

FZD7 9.05 9.41 10.48 4.68 5.86 11.37 8.39 9.40 8.93 6.58 9.10 8.48 10.21 9.76

GABRP 7.64 7.39 11.53 3.26 3.08 11.48 4.27 5.29 6.34 6.07 4.79 6.06 8.21 6.96

GPNMB 13.19 12.82 13.15 6.09 7.79 13.19 10.74 13.08 10.80 10.44 12.57 11.67 13.92 11.59

GPR19 6.32 5.57 7.08 6.94 5.50 4.78 4.65 4.83 4.14 4.52 4.26 6.08 4.41 5.60

GRIA2 3.10 5.71 3.66 2.07 2.47 5.21 2.17 2.94 3.47 3.04 2.39 5.36 4.91 5.66

KCNS3 9.85 9.68 9.12 3.91 5.08 9.37 8.63 7.91 8.11 7.77 10.47 8.80 8.89 9.38

KIAA1324 10.06 10.67 8.48 8.79 5.85 10.00 9.46 5.68 4.62 5.11 7.65 10.56 7.74 10.03

LAMP5 7.98 8.69 7.10 6.99 6.96 6.23 5.08 5.33 5.87 5.62 6.03 7.27 5.66 6.36

LDLRAD3 10.07 10.70 10.46 8.71 7.71 10.49 7.06 8.07 7.77 7.80 8.20 9.13 10.75 8.77

LRP8 8.30 7.27 8.67 7.47 7.90 6.42 6.36 7.00 6.34 5.58 7.14 6.90 6.96 7.25

MMP14 8.88 8.74 8.69 5.47 5.43 7.17 6.74 7.39 7.27 6.33 7.50 7.46 7.85 8.45

NKAIN1 6.02 7.95 5.88 4.30 4.67 5.31 4.95 5.17 4.96 5.43 4.79 5.86 6.04 6.59

NPY1R 6.76 10.95 8.55 3.26 4.36 11.73 9.39 7.16 11.49 10.01 8.11 10.25 10.98 8.36

PMEPA1 10.88 10.43 10.45 6.80 5.98 10.24 8.87 9.58 8.81 7.12 9.46 9.98 9.35 9.29

PRLR 8.30 8.61 7.42 5.15 5.65 7.19 6.61 6.31 7.77 7.21 5.37 6.85 6.12 7.17

(Continued )
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Breast cancer Normal tissues

HER2 LUM TN Blood BM Breast Colon Heart Kidney Liver Lung Pancreas Skin Stomach

PROM1 10.01 7.94 11.23 4.88 8.04 10.08 11.50 8.46 10.71 7.33 7.89 9.85 7.61 10.59

PTPRT 5.13 7.53 4.78 4.43 4.40 6.72 4.94 5.83 5.51 5.21 5.51 6.10 4.99 6.20

SDC1 12.12 11.00 11.26 6.02 7.10 9.51 10.82 5.30 11.26 12.33 10.88 9.36 12.43 9.96

SLC16A6 8.60 9.74 7.56 9.90 8.65 7.51 6.15 6.70 6.65 7.04 8.22 7.27 8.54 7.48

SLC2A10 11.00 11.01 9.30 2.71 5.83 10.09 9.78 7.05 7.78 10.88 9.40 9.72 8.71 9.59

SLC39A6 10.16 12.20 9.96 8.24 8.58 10.73 8.08 8.89 9.49 8.26 9.12 9.76 10.00 9.19

SLC4A11 8.66 7.42 8.04 5.87 5.74 7.48 5.96 7.00 8.37 6.09 6.52 6.66 7.86 7.49

TPBG 11.59 12.31 11.17 6.56 7.08 11.44 10.21 9.45 9.59 7.91 9.84 10.21 10.90 10.71

TREM2 8.37 8.53 8.12 4.32 4.20 7.06 5.47 6.29 4.39 4.62 8.36 6.13 4.98 5.49

TRPV6 8.68 6.09 7.25 5.07 4.68 6.20 4.70 5.76 6.30 6.00 4.20 7.94 6.92 7.50

TTYH1 4.77 4.29 6.30 3.59 3.80 5.87 3.78 4.99 3.54 4.55 3.00 5.70 4.70 4.94

UNC5A 6.50 5.81 4.28 3.67 3.64 4.41 2.97 4.75 3.41 3.55 3.54 4.34 2.70 5.45

VANGL2 8.31 8.36 9.37 5.39 5.58 8.24 7.40 7.58 7.72 6.58 7.70 7.72 9.76 8.73

VTCN1 8.92 9.44 10.10 4.19 4.64 10.30 4.12 5.52 8.47 5.76 5.19 8.35 7.00 6.34

HER2, HER2-positive; LUM, luminal; TN, triple-negative; BM, bone marrow.

Table 2: Extracellular ADC targets, mean expression in breast cancer and normal tissues
Breast cancer Normal tissues

HER2 LUM TN Blood BM Breast Colon Heart Kidney Liver Lung Pancreas Skin Stomach

Mesenchymal targets

COL11A1 10.88 10.64 10.42 3.21 3.75 5.86 3.62 3.50 4.24 3.79 4.35 6.02 7.10 4.19

COL12A1 10.24 10.27 9.53 3.75 4.43 8.41 6.28 8.10 7.37 6.23 7.79 7.95 9.22 8.49

COL1A1 14.13 14.02 13.23 4.70 7.43 11.35 9.49 10.56 9.22 9.43 10.67 11.45 12.90 12.30

COL1A2 14.62 14.72 14.20 5.35 7.12 13.50 10.95 11.78 10.46 10.06 12.61 12.69 13.79 12.90

COL3A1 14.49 14.60 14.17 3.82 5.87 13.80 12.26 12.20 11.25 11.81 12.51 13.08 13.73 13.73

COL5A1 11.45 11.30 10.64 4.47 5.76 9.70 8.25 9.16 7.51 8.12 9.30 9.25 10.43 10.64

COL5A2 12.45 12.36 11.79 4.84 5.16 10.95 8.75 9.59 8.39 8.97 9.95 10.21 10.87 10.86

COL6A3 13.84 14.00 13.31 6.30 6.87 13.67 10.57 12.48 9.84 10.28 12.86 12.60 12.99 13.05

COL8A1 9.13 9.28 8.64 4.23 4.51 7.98 5.37 8.18 6.95 5.73 9.08 7.42 6.69 7.45

FN1 12.77 12.56 12.03 4.64 4.97 9.64 8.50 10.24 8.54 12.59 12.24 9.51 9.79 10.30

INHBA 9.58 9.44 9.35 3.71 8.08 6.07 3.51 6.54 5.12 7.59 8.45 7.13 6.21 5.65

POSTN 13.62 13.89 13.19 3.63 4.43 12.11 10.54 10.00 9.43 8.16 11.25 9.71 12.79 12.30

THBS2 12.83 12.69 12.18 5.69 5.51 12.04 6.24 10.50 9.03 9.83 9.59 10.62 12.64 9.76

Epithelial targets

AZGP1 12.94 13.21 11.30 3.78 4.29 13.16 6.83 10.05 11.65 13.70 8.30 11.15 12.58 10.21

Other targets

AEBP1 12.54 12.35 11.43 6.94 7.42 10.92 7.88 9.01 9.56 9.09 10.53 9.53 11.08 10.37

AGR3 7.34 12.61 5.33 2.93 3.48 8.98 13.24 3.66 5.31 3.27 12.27 9.55 6.70 8.04

ASPN 10.83 11.50 10.08 4.50 4.40 10.01 7.68 10.56 8.87 10.00 9.64 10.44 9.68 10.32

BRINP3 6.87 3.53 3.93 2.73 2.68 3.28 7.45 4.48 5.10 2.80 5.18 4.38 3.14 3.67

(Continued )
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Correlation between mRNA and protein levels was found 
to be relatively poor in a number of studies [72]. This lack 
of correlation may be due in part to experimental noise 
and biases unique to each technique. The quantification of 
analytes (mRNA and peptides) using indirect signals (probe 
and peak intensities) may also contribute to this discrepancy. 
In a recent study, Schwanhaüsser et al. [73] quantified 
cellular mRNA and protein expression levels and turnover 
in mouse cells and found that the cellular abundance of 

proteins was mostly controlled at the level of translation. 
However, Wilhelm et al. [74] recently analyzed mRNA and 
protein levels in human tissues and demonstrated that the 
translation rate is a constant characteristic of a transcript, and 
that the amount of protein in a cell is primarily controlled 
by transcription. This result is important: it implicates that 
differential expression at the mRNA level should correspond 
to differential abundance at the protein level, although not 
necessarily in a linear fashion.

Breast cancer Normal tissues

HER2 LUM TN Blood BM Breast Colon Heart Kidney Liver Lung Pancreas Skin Stomach

CHI3L1 10.08 9.34 11.62 11.32 12.17 9.56 5.08 6.33 9.29 10.02 9.26 7.51 11.12 6.59

CILP 10.66 11.34 9.70 6.38 6.03 11.10 7.36 10.11 7.52 7.58 7.62 9.18 10.87 9.55

COL10A1 11.07 11.20 10.07 5.97 6.17 6.27 5.31 5.88 5.93 6.41 6.54 8.05 5.89 6.43

COMP 9.79 9.88 8.63 4.41 3.88 5.72 3.83 5.49 4.73 3.86 5.81 6.26 8.63 5.21

CST1 7.39 7.32 6.40 3.60 3.55 3.55 3.75 4.09 3.08 3.61 3.61 4.58 4.32 3.89

CTHRC1 13.16 13.07 13.08 4.20 6.55 11.38 7.23 8.30 7.44 6.27 9.32 10.62 11.55 8.99

CXCL10 11.36 10.12 11.78 7.11 6.55 7.98 8.04 8.00 8.31 9.89 9.49 8.45 7.15 8.77

CXCL11 9.11 7.87 9.27 3.91 4.16 5.54 5.71 4.94 5.48 6.22 7.38 8.09 5.11 6.43

CXCL13 9.53 8.19 9.71 3.20 3.35 4.86 8.48 4.01 3.56 5.90 6.00 5.79 3.85 8.85

CXCL9 11.39 10.06 11.32 6.16 6.06 8.64 8.14 7.90 8.15 9.88 9.57 8.56 7.75 8.45

EPYC 6.77 6.18 6.09 2.66 3.52 4.00 3.03 4.56 3.60 3.03 3.31 4.77 2.89 4.51

FDCSP 6.98 6.60 10.32 3.55 3.62 8.41 7.91 4.03 3.45 4.48 4.60 6.05 4.52 7.47

GRP 7.84 8.71 6.83 3.99 3.75 7.56 4.12 4.72 4.48 4.73 7.45 6.24 5.21 8.28

IBSP 6.99 6.14 6.51 4.08 4.28 3.24 3.44 5.31 3.87 4.55 3.30 4.38 3.47 5.28

IL4I1 7.73 6.96 8.15 5.74 4.67 4.95 5.40 5.64 5.07 5.53 5.76 6.08 5.69 6.03

LUM 13.80 13.80 13.18 2.68 5.20 13.63 11.24 12.48 12.00 10.27 13.66 13.24 12.28 12.88

MATN3 6.57 7.82 6.11 2.55 2.86 5.58 3.58 3.10 5.32 2.94 7.43 5.53 5.45 3.80

MDK 10.07 9.55 9.43 4.86 5.96 8.09 8.14 6.22 6.60 6.17 7.93 8.07 6.32 8.20

MFAP2 9.47 9.69 10.09 2.32 3.64 7.71 4.64 5.35 4.98 4.77 9.13 8.58 8.99 7.80

MGP 13.36 14.17 13.82 4.21 4.95 14.48 8.78 13.63 13.00 8.76 13.64 13.16 12.22 13.34

MMP1 9.46 7.05 9.60 4.14 3.30 3.49 7.23 4.37 5.63 3.50 6.09 8.79 4.57 8.50

MMP11 9.60 9.49 8.85 5.10 5.33 6.00 5.93 7.55 6.61 5.37 5.46 7.09 5.67 7.84

MMP12 8.24 7.10 9.63 4.31 4.98 6.60 10.16 6.46 6.35 4.99 6.62 7.94 6.27 7.96

MMP13 8.32 7.67 7.48 3.74 4.41 4.01 3.47 4.38 3.65 4.39 3.70 4.47 3.77 4.82

MMP3 9.01 8.72 8.82 4.64 4.89 7.30 6.47 6.05 5.01 4.95 4.47 6.13 6.06 7.91

MMP7 9.04 9.02 11.65 4.09 4.86 10.94 5.84 6.79 11.22 7.51 9.23 11.38 9.29 9.07

MUCL1 13.93 10.70 8.81 3.84 4.48 13.03 4.57 5.79 5.07 4.67 5.25 5.35 13.44 6.28

MXRA5 12.84 12.69 12.28 4.13 5.90 11.95 9.47 9.94 9.54 9.41 9.68 10.53 12.17 11.36

SCUBE2 8.39 11.43 7.35 4.47 3.90 10.78 8.03 6.98 5.44 5.97 7.77 8.41 9.14 9.07

SFRP4 9.63 10.06 9.14 4.87 5.38 10.51 5.37 7.66 6.96 5.69 8.34 9.12 7.13 8.30

STC2 7.87 10.45 8.27 4.36 4.86 10.36 4.75 7.48 7.17 5.14 7.12 8.45 6.33 6.66

ZG16B 9.87 10.73 8.26 7.03 7.88 9.00 9.62 4.58 3.81 4.87 5.75 6.31 9.87 9.21

HER2, HER2-positive; LUM, luminal; TN, triple-negative; BM, bone marrow.
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Apart from tumor specificity, other factors such 
as tumor-specific aberrant subcellular localization 
may influence target selection. The glycoprotein nmb 
(GPNMB), for example, was characterized with high 
expression in all breast cancer subtypes versus normal 
tissues in average, but with relatively high expression 
in some normal tissues (breast, heart, lung and skin). 
GPNMB subcellular localization, however, tends to be 
restricted to intracellular compartments in normal cells, 
while being enriched on the cell surface in tumor cells 
[75]. In other cases, normal tissues may be considered 
expandables in some patients. In our list of candidate 
targets, some genes including, for example, the gamma-
aminobutyric acid receptor subunit pi (GABRP) and 
cadherin 3, type 1 (CDH3), were characterized by high 
expression in breast cancer versus normal tissues, but 
with relatively high levels in normal breast. Toxicity in 
healthy breast tissue could be a concern and such targets 
may be appropriate only for subsets of patients undergoing 
complete mastectomy.

Exploratory gene expression analysis was 
performed to select candidate ADC targets, for further 
experimental validation at the protein level, in cell line 
and animal models and ultimately in clinical trials. Any 
of the genes in our list, EMT-related or not, respects the 
fundamental criterion for ADC target selection (high 
expression in tumor cells and lower expression in normal 
tissues). Although membrane proteins represent more 
attractive targets for use in ADC internalization strategies, 
extracellular proteins may also prove useful, given that 
strategies such as that reported in [35] are developed 
and tested. Some of the selected ADC targets would be 
interesting candidates in triple-negative tumors. These 
deserve even higher attention for further experimental 
testing and validation, because triple-negative breast 
cancer patients have currently no targeted therapy 
options, and have a generally poorer prognosis. The same 
approach could be used to mine gene expression data in 
other cancers, and to identify additional targets for ADC 
development.

MATERIALS AND METHODS

Microarray data collection

Raw microarray data corresponding to 101,334 
samples analyzed using the Affymetrix Human Genome 
U133 Plus 2.0 platform [16] was obtained from the GEO 
database [15] using custom Perl scripts. Additional, 
tumor-derived cell line gene expression profiling data 
was downloaded from the CellMiner database [76] 
and the caBIG database [77]. To have a complete set 
with three replicates for each of the 359 unique cell 
lines, additional samples from GEO (GSM274690, 
GSM274785, GSM559851, GSM886956, GSM887076, 
GSM887415, GSM887651) were added to those datasets. 
Data analysis was performed using R version 3.1.1 
[78] and Bioconductor version 3.0 [79]. CEL files were 
read in R with the affy package [80] using BrainArray 
Entrez Gene custom chip definition file version 18 [47], 
and normalized using the MAS 5.0 algorithm [81]. Pre-
processed microarray data was stored in indexed binary 
files for efficient storage and retrieval.

Metadata analysis

Metadata associated with 101,334 samples (sample 
id, series id, title, description, source, characteristics) and the 
corresponding 3,643 series (series id, title, summary, overall 
design, pubmed ids) were retrieved using GEOmetadb [18] 
and stored in a SQLite database. Publications (pubmed id, 
year, journal, title, abstract) linked with the experiments 
were retrieved using Bioperl utilities [82] and stored in the 
database. A new table was created for the purpose of sample 
re-annotation. This table was populated using dedicated 
Java software comprising a search engine translating 
Boolean queries into SQL statements and a spreadsheet-
like interface allowing direct and programmatic editing 
of annotations. Breast cancer samples (4,853 tumor) and 
normal tissue samples (1,067 blood, 291 bone marrow, 526 
breast, 353 colon, 50 heart, 279 kidney, 287 liver, 478 lung, 

Table 3: Selected targets for ADCs in clinical trials for the treatment of breast cancer and other solid tumors
Target Drug Company

ERBB2 T-DM1 Roche/Genentech

GPNMB CDX-011 Celldex Therapeutics

SLC39A6 SGN-LIV1A Seatle Genetics

TPBG PF-06263507 Pfizer/Oxford Biomedica

MUC1 SAR-566658 Sanofi

MUC16 DMUC-5754A Roche

PVRL4 AGS-22M6E Astellas
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85 pancreas, 334 skin and 25 stomach) were selected from 
over 200 experiments using this tool (Supplementary Data, 
GEO Series).

Breast sample classification

Gene expression data was collected for a total of 
5,379 breast samples. Receptor status data (ER, PR and 
HER2) was available in sample annotations for 3,500 
samples (1,766 complete, 1,734 partial). For each receptor, 
two locally adaptive kernel densities were estimated 
in annotated samples (positive, negative), and receptor 
status in other samples was predicted by assigning the 
label corresponding to the maximum posterior [83]. 
Samples were then assigned to one of four classes: normal 
(annotated as normal), luminal (ER+ and/or PR+), HER2+ 
(ER-, PR-, and HER2+) and triple-negative (ER-, PR-, 
HER2-). Classes were compared one-against-one (OAO) 
and one-against-all (OAA) for multiclass classification 
[84]. Filter-based feature selection was performed by 
selecting the top 2

1

10k

k
( )

=
 features ranked using three 

different statistics: q-values derived from linear models 
for microarray (Limma) moderated t-test [24, 85], the 
overlapping coefficient of locally adaptive kernel density 
estimates [30, 31], and the weight of support vector 
machines (SVM) [29]. Locally adaptive kernel densities 
and overlapping coefficients were computed using an in-
house R package implemented with Rcpp [86]. The weight 
of SVM were computed using the e1071 R package [87]. 
To estimate classification error for combinations of feature 
selection and classification algorithms, repeated (ten 
times) five-fold stratified cross-validation was performed 
[88, 89]. Classification was achieved using six algorithms 
implemented in the RWeka package [90]: bagging [91], 
J48 (C4.5 decision tree) [92], k-nearest neighbors (KNN) 
[93], naive Bayes [94], random forests (RFO) [95] and 
support vectors machines (SVM) [96]. For the OAO 
classification, class labels were assigned where the 
maximum label allocation was reached (three in six binary 
classification problems). For OAA classification, class 
labels were assigned where only one label was assigned 
among four classification problems. For each combination 
of factors in the cross-validation, the accuracy was 
calculated as the sum of correct predictions divided 
by the total number of predictions. The performance of 
combinations of feature selection methods, classification 
algorithms, number of features and classification strategies 
was compared using analysis of variance, and the best 
performing combinations were retained for ensemble 
classification [97]. An iterative method [98] was used to 
assign labels to breast samples. Labels assigned with high 
confidence (>95% of votes) by an ensemble of experts 
(36 votes from the combination of three feature selection 
methods, two classification methods, and six increasing 
number of features) were fed back into the data and 
used for subsequent feature selection and training of the 

classifiers. This procedure was repeated until the number 
of predictions was stable over a number of iterations, or 
until complete convergence was achieved.

Cell line classification

Results from Ross et al. [46] were used to label 
NCI60 cell lines according to patterns of expression in 
the epithelial, mesenchymal, melanoma and leukemia 
gene clusters (Supplementary, Table S1). Cell lines 
having high levels of expression of genes in the epithelial 
cluster and low expression in the mesenchymal cluster 
were labeled as epithelial, and cell lines characterized 
by the opposite pattern were labeled as mesenchymal. 
Cell lines having intermediate expression profiles 
between these two classes were labeled as mixed. Cell 
lines having levels of expression characteristic of the 
melanoma and leukemia gene clusters were labeled as 
melanoma and leukemia, respectively. Assigned class 
labels were validated using repeated cross-validation 
as described above, with the difference that feature 
selection was performed separately in three sets of 
replicates, and validation was performed in the two 
remaining sets. For the OAO classification, class labels 
were assigned where the maximum label allocation was 
reached (four in ten binary classification problems), 
and for the OAA classification, class labels were 
assigned where only one label was assigned among 
five classification problems. For the classification of 
unlabeled cell lines, starting with the NCI60 panel, each 
cell line replicate was randomly assigned to one of three 
sets, and for each set, filter-based feature selection was 
performed using three statistics as described above. 
Classifiers were trained on each set of labeled replicates, 
and predictions were made on each unlabeled cell line 
replicate. Iterative ensemble classification method was 
used as described above to assign labels to the new 
cell lines using 324 votes from an ensemble of experts 
(combination of three sets of labeled replicates, three 
feature selection methods, two classification methods, 
six increasing number of features, and three unlabeled 
replicates).

Target selection and prioritization

To identify genes specific to or overexpressed in 
breast cancer, expression profiles in each molecular subtype 
were compared with gene expression in major organs and 
tissues were toxicity would likely be a serious concern 
(blood, bone marrow, colon, heart, kidney, liver, lung, 
pancreas, skin and stomach). An initial filtering was done 
to retrieve genes with a maximum ratio (normal/cancer) of 
2, an average ratio (cancer/normal) greater than 2 and an 
average overlapping coefficient [30, 31] smaller than 0.6. 
Subcellular localization data was obtained from Uniprot 
annotations [50] and the Gene Ontology Annotation (GOA) 
database [49]. For each molecular subtype, protein-coding 
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genes were ranked according to the mean rank of ratios in 
cancer versus normal tissues, and the top 50 (balanced with 
respect to the three subtypes) cell membrane or extracellular 
protein-coding genes were retained. Batch effects were 
evaluated by extracting the first two principal components 
(52% of total variance) from the 1,000 genes with highest 
total variance in breast cancer and normal tissues, and 
visualizing patterns associated with tissue source, sample 
status and experiments. In addition, batch effects were 
quantified using linear mixed models [99] with tissue and 
status as fixed effects and series as random effect, and were 
compared with the amplitude of differential expression 
in the breast cancer subtype(s) in which the target was 
identified versus normal tissues. To prioritize targets 
linked with EMT, differential gene expression analysis was 
performed between epithelial and mesenchymal tumor-
derived cell lines. The same parameters (expression ratio 
> 2 and overlapping coefficient < 0.6) were used for the 
selection of EMT-related targets.
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