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Abstract: Ammonia is a promising hydrogen storage material because it is easy to store
and decompose into COX-free hydrogen. A Ru-based catalyst exhibits good catalytic per-
formance in ammonia decomposition, and enhancing the interaction between the Ru atoms
and the support is an important way to further improve its catalytic activity. In this study,
CeO2 was prepared by calcination using a cerium-based metal–organic framework (MOF)
as the precursor, and the number of oxygen vacancies on the surface of CeO2 was regu-
lated by hydrogen reduction. The XPS and Raman results showed that abundant oxygen
vacancies were formed on the surface of these CeO2, and their number increased with an
increase in the reduction time. The Ru/CeO2-4 h catalyst, using CeO2 reduced for 4 h as
the support, exhibited good catalytic activity in ammonia decomposition, reaching 98.9%
ammonia conversion and 39.74 mmol gcat

−1 min−1 hydrogen yield under the condition
of GHSV = 36,000 mL gcat

−1 h−1 at 500 ◦C. The XAFS results demonstrated that Ru was
stably anchored with oxygen vacancies on the surface of CeO2 via Ru-O-Ce bonds. Density
functional theory calculations further showed that these bondings lower the reaction energy
barrier for N-H bond cleavage, thereby significantly enhancing the catalytic activity.

Keywords: Ru catalyst; ammonia decomposition; oxygen vacancy; metal–organic
frameworks

1. Introduction
Hydrogen energy storage and transportation is an important link restricting the

development of hydrogen energy. The flammable and explosive characteristics of hydrogen
make its transportation a difficult problem [1,2]. Ammonia is considered to be a promising
hydrogen storage medium, which has the advantages of easy liquefaction (25 ◦C, 8.6 bar),
high-volume hydrogen density (120 kg cm−3), low manufacturing cost, and itself being a
carbon free fuel [1,3]. The properties of ammonia are conducive to the overall improvement
of production, storage, and transportation infrastructure [4–6].

The decomposition reaction of ammonia is an endothermic process, manifested as follows:

2NH3 (g) → N2 (g) + 3H2 (g) ∆H = 91.2 kJ mol−1 (1)

To achieve the complete conversion of ammonia, the decomposition temperature
usually needs to be maintained over 800 ◦C, which would consume a large amount of
energy. Thus, developing novelly efficient catalysts to reduce the energy consumption is
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very important for the industrial application of ammonia decomposition to hydrogen [7].
In recent years, the development of ammonia decomposition catalysts has made great
progress [8–11]. Fe, Co, Ni, Ru, and other metal catalysts have been widely researched,
providing a variety of options for the development of ammonia decomposition technology.
Among these metals, Ru is the most effective active center due to its excellent catalytic
activity at low and medium temperatures [12–15]. Meanwhile, the selection of the carrier is
also very important. As reported in previous work, the strong metal–support interaction
(SMSI) between Ru and the carrier could further enhance the catalytic activity of the Ru
catalyst for NH3 decomposition [16–22].

Metal oxides, such as CeO2 [23–25], MgO [26,27], La2O3 [28], Al2O3 [29–31], ZrO2 [32,33],
are widely used as carriers for Ru catalysts in the ammonia decomposition process due
to their surface acidity/basicity, surface oxygen vacancy, reoxidation properties, and the
interaction between metal and support. Among these carriers, CeO2 showed higher NH3

decomposition catalytic activity than Ru/Al2O3 due to the strong SMSI and electronic
modification of Ru active sites by CeO2 [34]. Hu et al. [35] loaded Ru single atoms onto
cerium oxide nanospheres (CeO2-Nss) prepared by an improved colloidal deposition
method and cerium oxide nanorods (CeO2-NRs) prepared by the hydrothermal method.
N2 and H2 on CeO2-Ns and CeO2-NR catalysts are more easily desorbed than MgO-
supported catalysts prepared by other methods. According to the research, Ru/CeO2 has
great potential as the ammonia decomposition catalyst.

For the last few years, the application of the metal–organic framework (MOF) in
catalyst preparation has been widely studied [36]. The MOF structure combines inorganic
metals and organic linkers with a high surface area, diversity of assemblies, and uniform
porosity. These advantages give the MOF the potential to be the catalyst, catalyst support,
or precursor in many chemical reactions [37]. There have been numerous reports on the
preparation of CeO2 using MOF structures. Sivan et al. [38] reported a Ce-BTC-derived
Ru/CeO2 catalyst with highly dispersed Ru, and it shows excellent and more stable
performance in NH3 synthesis. He et al. [39] reported that the high-porosity Ru/CeO2

catalyst prepared with Ce-UiO-66 improved the catalytic performance of CO2 methanation
compared with the CeO2-supported Ru catalyst prepared by the traditional method. Chen
et al. [40] used CeO2 obtained by pyrolysis of Ce-MOF for toluene combustion; when
compared with CeO2 prepared by the precipitation method, MOF-CeO2 exhibits a better
catalytic activity due to its structure and abundant oxygen vacancy. According to the
research, CeO2 derived from Ce-MOF could exhibit superior surface properties to support
the Ru metal, and this strategy is a potential path to prepare high-performance ammonia
decomposition catalysts.

In this study, the Ce-BPDC was synthesized as the precursor, followed by calcination in
air and reduction in hydrogen atmosphere to obtain CeO2 with abundant oxygen vacancies.
The number of oxygen vacancies on the surface of CeO2 were adjusted by controlling
the reduction time. Then, the Ru catalysts supported on these CeO2 were prepared by
impregnation, and their catalytic performances on ammonia decomposition were evaluated.
Furthermore, these catalysts were comprehensively characterized to explore the relationship
between the structure and catalytic properties, as well as the reaction mechanism.

2. Results and Discussion
2.1. Structural Characterization of Carrier and Catalyst

The characterization results of Ce-BPDC are consistent with the results in the literature
(see Supporting Information for detailed description). The PXRD results of CeO2-t obtained
by calcining Ce-BPDC at 500 ◦C and then reducing in the H2/Ar atmosphere for different
times (t = 0, 0.5, 1, 1.5, 2, 3, 4 h) are given in Figure S4. The pattern of the CeO2 standard
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sample showed diffraction peaks at 28.5, 33.1, 47.5, 56.3, 59.1, 69.4, 76.7, 79.1, and 87.4,
corresponding with a face-centered cubic phase of the CeO2 fluorite structure. Compared
with that of CeO2, the diffraction peaks of CeO2-t shifted toward a higher angle, which
could be attributed to the transformation of Ce4+ to Ce3+ during the calcination process of
Ce-BPDC [41]. The N2 adsorption/desorption isotherms of CeO2-t are given in Figure S5.
The specific surface area of cerium oxide obtained by the calcination of Ce-BPDC decreased
significantly from 1502 m2 g−1 to about 45 m2 g−1. After loading Ru, the specific surface
area of the catalyst did not change significantly. The morphology of CeO2-t was charac-
terized by SEM and TEM (Figures S6 and S7). The results show that the morphology of
CeO2-t after calcination was basically similar to that of the Ce-BPDC precursor, while its
crystal particle size decreases.

The Ru/CeO2-t catalysts were prepared by the impregnation method with RuCl3, and
their PXRD patterns are shown in Figure 1. It was found that the face-centered cubic phase
of CeO2 fluorite structure was retained, and no characteristic diffraction peak of Ru was
observed, indicating that Ru was highly dispersed on the surface of the support [42]. The Ru
content in these catalysts was characterized through Inductively Coupled Plasma Optical
Emission Spectrometry (ICP-OES). The results show that the Ru loading of Ru/CeO2-t
(t = 0, 0.5, 1, 1.5, 2, 3, 4 h) was 4.29, 4.42, 4.34, 4.46, 4.20, 4.32, and 4.19 wt%, respectively.
In order to have a deeper understanding of the catalyst microstructure and the dispersion
of Ru on the CeO2 support, detailed observations were made using HRTEM. The lattice
stripes of Ru and CeO2 can be observed in Figure S8. The spacing of 0.31 nm corresponds to
the (111) face of CeO2. After doping Ru, a small number of Ru nanoparticles was observed
on the surface of CeO2, and its lattice spacing was about 0.21 nm, corresponding to the
(101) face of Ru substance. The EDS (Figure S8) results show that Ru was evenly dispersed
on the surface of CeO2-t. The particle size of Ru in the catalyst Ru/CeO2-t (t = 0, 0.5, 1, 1.5,
2, 3, 4 h) was mainly concentrated between 1.5 and 4 nm (Figure S9).
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Figure 1. The PXRD profile of the Ru/CeO2-t.

2.2. Comparison of Catalytic Performance of Ammonia Decomposition to Hydrogen

The ammonia decomposition performance of the catalyst was tested in a self-built
fixed-bed reactor (Figure S10), where 0.05 g catalyst was mixed with 2.95 g quartz sand
and then transferred to a reactor equipped with quartz cotton. By injecting 50% NH3/Ar
gas, the system temperature was adjusted to the corresponding reaction temperature. The
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catalyst was evaluated at a certain gas hourly space velocity (GHSV) in the temperature
range of 375–500 ◦C. The detailed procedures are listed in the Supporting Information.

Under the GHSV condition of 12,000 mL gcat
−1 h−1, the catalytic activities of Ru/CeO2-t

and Ru/CeO2-C (Ru supported on the commercial CeO2) catalysts in NH3 decomposition
were compared and analyzed, as presented in Table 1. It was found that, compared with
Ru/CeO2-C, the catalytic performance of the MOF-derived CeO2-supported Ru catalyst
significantly improved. In addition, the ammonia decomposition performance increased
significantly with the increase in the reaction temperature. Meanwhile, the catalytic activity
also increased on increasing the reduction time, during which the catalytic activity of
Ru/CeO2-4 h is the highest. The ammonia conversion rate of Ru/CeO2-4 h reached 98.38%
at 475 ◦C and 100% at 500 ◦C, respectively. In order to evaluate the practical application
potential of Ru/CeO2-4 h catalyst, the ammonia decomposition performance at high GHSV
(36,000 mL gcat

−1 h−1) was evaluated. And the results are shown in Figure S11. It can
be seen that Ru/CeO2-4 h still maintained a high catalytic activity, and the ammonia con-
version rate was up to 97.04% at 475 ◦C and 98.9% at 500 ◦C, respectively. The hydrogen
production rate was calculated according to the ammonia conversion of the catalyst (de-
scribed in Section 3.3). Under the condition of GHSV = 36,000 mL gcat

−1 h−1, the hydrogen
production rate of Ru/CeO2-4 h was 38.99 mmol gcat

−1 min−1 at 475 ◦C and 39.74 mmol
gcat

−1 min−1 at 500 ◦C, respectively. Under similar conditions, the synthesized Ru/CeO2-t
catalyst was compared with the reported Ru catalysts, as shown in Table S2. It is worth
noting that the catalytic activity of Ru/CeO2-4 h remained in the first echelon.

Table 1. NH3 conversion of Ru/CeO2-t catalyst at GHSV = 12,000 mL gcat
−1 h−1.

NH3 Conv./% a

T ◦C
375 400 425 450 475 500

Ru/CeO2-C 7.87 16.86 33.47 52.66 73.75 85.16
Ru/CeO2-0 h 23.41 45.26 64.44 78.95 91.88 95.95

Ru/CeO2-0.5 h 30.24 55.79 73.53 86.24 92.95 96.99
Ru/CeO2-1 h 34.92 57.94 75.56 87.79 95.7 97.72

Ru/CeO2-1.5 h 38.85 61.37 78.57 89.77 97.11 99.01
Ru/CeO2-2 h 37.98 58.97 76 87.84 96.63 98.13
Ru/CeO2-3 h 42.86 64.91 81.04 92.19 98.22 99.90
Ru/CeO2-4 h 43.58 65.10 81.74 92.39 98.38 100.00

a The calculation formula of NH3 conv./% is XNH3 (%) =
[NH3 ]in−[NH3 ]out

[NH3 ]out
× 100%, which is described in detail in

Section 3.3.

In order to evaluate the long-term stability of the catalyst, the Ru/CeO2-4 h catalyst
was subjected to a 50 h stability test under GHSV = 36,000 mL gcat

−1 h−1. The results are
shown in Figure S12. No catalytic performance attenuation was observed after the 50 h test,
which demonstrated that Ru/CeO2-4 h had excellent catalytic stability in the ammonia
decomposition reaction.

2.3. Surface Chemical State of the Carrier and the Catalyst

It has been reported that hydrogen can react with lattice oxygen (OL) in CeO2 to
form H2O, while inducing the reduction of Ce4+ to Ce3+ and generating oxygen vacancies
(OV) [43]. The existence of OV can enhance the SMSI between Ru and CeO2 support,
and perhaps, this is the reason that Ru/CeO2-4 h exhibits excellent catalytic activity and
stability. To systematically investigate the existence of OV on the surface of CeO2-t, Raman
spectroscopy and the XPS test were performed.

OV can cause lattice distortions that create new characteristic peaks in the Raman
spectrum or change the position and intensity of existing peaks [44]. Thus, Raman spec-
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troscopy was used to reveal the defect location of the samples in this work, and the results
are shown in Figure 2. The Raman peaks of CeO2-t and Ru/CeO2-t at 456 and 605 cm−1

can be attributed to the octahedral symmetric tensile vibration mode (F2g) and the defect
induction mode (D) [45]. Since the D-mode peak is caused by the presence of Ce3+, the
intensity ratio of the D-peak to the F2g peak (ID/IF2g) can be used to reflect the relative
concentration of OV in CeO2 and Ru/CeO2 [46]. The results are given in Table S3. The
ID/IF2g value increased on increasing the reduction time, indicating that more OV were
formed on the surface of CeO2. The Raman spectrum of CeO2-C is shown in Figure S13.
It was found that CeO2 prepared from the Ce-BPDC precursor had greater reducibility in
a H2/Ar atmosphere than commercial CeO2, resulting in more OV generation during the
reduction process.
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Figure 2. Raman spectra of various supports (a) and catalysts (b).

In addition, the surface electronic states and chemical compositions of Ru/CeO2-t and
the carrier CeO2 were studied by XPS. Ru 3p XPS measurements were performed to study
the Ru valence states (Figure S14), which exhibited characteristic peaks of Ru0 (462.2 eV)
and Ru4+ (465.2 eV). The different chemical valence states of Ru on these samples may
be due to the charge transfer between CeO2 carriers and Ru nanoparticles. In order to
verify this, the Ce 3d spectra were recorded. The Ce 3d spectra of CeO2-t are shown in
Figure S15, and the Ce 3d spectra of Ru/CeO2-t are shown in Figure 3a, which were divided
into 10 groups due to the hybridization of Ce 4f orbitals with O 2p valence bands [47].
The six peaks at 882.4, 889.4, 898.4, 901, 907.3, and 916.9 eV are attributed to the Ce4+

species, while the other four peaks at 881.4, 885.4, 899, and 903.6 eV are attributed to the
Ce3+ species [48]. Each cerium cation is coordinated by eight oxygen anions, and due
to the electronic structure of cerium, charge is reversibly transferred between Ce4+ and
Ce3+ [49]. Thus, the emergence of Ce3+ species is usually accompanied by the formation
of OV on the CeO2 surface [50]. The concentration of OV can be inferred from the relative
atomic ratio of Ce3+/(Ce4+ + Ce3+), as shown in Table S4. It can be observed that the
concentration of OV on the surface of CeO2-t and Ru/CeO2-t increased with an increase in
the reduction time, which is consistent with the Raman results. Among these catalysts, the
Ce3+/(Ce4+ + Ce3+) ratio of Ru/CeO2-4 h was the highest, indicating that the most OV was
generated in Ru/CeO2-4 h, which accorded with the test results of the catalyst performance.
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Figure 3. The (a) Ce 3d and (b) O 1s XPS profiles of Ru/CeO2-t.

To further confirm the variation law of OV, the O 1s XPS spectra of Ru/CeO2-t catalysts
were collected (Figure 3b). The peak at 529.1–529.6 eV corresponds to the OL, the peak at
531.1 eV corresponds to OV, and the peak observed at 533.4 eV is attributed to chemisorbed
oxygen (OC) in CeO2 [51]. The number of OV can be quantified according to the ratio of
OV/(OL + OC + OV) [52]. The results are shown in Table S4. It decreased in the order of
Ru/CeO2-4 h > Ru/CeO2-3 h > Ru/CeO2-2 h > Ru/CeO2-1.5 h > Ru/CeO2-1 h > Ru/CeO2-
0.5 h, indicating that the number of OV at Ru/CeO2-4 h was the highest. The concentration
of OV on the CeO2-t surface showed the same trend. The results were consistent with the
Raman results and the Ce 3d XPS spectra.

Figure S16 presents the Ce 3d and O 1s XPS spectra of hydrogen-reduced commercial
CeO2, with the quantified Ce3+/(Ce3+ + Ce4+) and OV/(OV + OL + OC) ratios summarized
in Table S5. The results (Tables S4 and S5) demonstrate that CeO2 derived from Ce-BPDC
displayed a superior reducibility. This result is consistent with the Raman result.

According to the literature, the surface basicity of the catalyst is conducive to ammonia
decomposition; usually, the stronger the surface basicity, the higher the activity [53]. CO2-
TPD was used to characterize the distribution of the surface basicity of the catalyst, and the
results are shown in Figure S17. The number and intensity of basic sites can be determined
according to the area and location of the desorption peaks. A certain number of weakly
basic sites, moderately strong basic sites, and strong basic sites appeared in these catalysts.
The area above 500 ◦C was a strong basicity site; the basicity strength increased with the
increase in the reduction time. The desorption amount of CO2 on the surface of Ru/CeO2-
4 h was the largest. From the above analysis, it can be concluded that the density of
strong basic sites of Ru/CeO2-4 h was the largest, which is also in good agreement with
the ammonia decomposition activity of the catalyst. As an electron donor, OV increases
the electron density of the adjacent metal site and enhances the Lewis basic site. On the
surface of CeO2, oxygen ions near the OV can act as Lewis base sites. The increase in OV

could increase the basicity sites on the surface of CeO2 to a certain extent [54]. Therefore,
the concentration of OV on the surface of Ru/CeO2-4 h catalyst is the highest. This was
consistent with the Raman and XPS results.

To further clarify the electronic states and coordination environment evolution of
Ru species, we conducted Ru K-edge X-ray absorption fine structure (XAFS) tests on the
Ru/CeO2-t (t = 0, 0.5, 1, 2, 3, 4 h) catalysts and used Ru foil (Ru0) and RuO2 (Ru4+) as
reference standards. As shown in Figure S18a, the absorption edge positions of all the
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Ru/CeO2-t samples were similar to those of the RuO2 standard samples, confirming that
Ru mainly existed in the +4 valence state (Ru4+). Figure S18b shows the Fourier transform
Ru K-edge extended X-ray absorption fine structure (EXAFS) curves of all the samples.
The figure shows two different peaks, 1.41 Å (the first shell) and 2.43 Å (the second shell),
corresponding to Ru-O and Ru-Ru coordination, respectively. Then, a wavelet transform
(WT) analysis was conducted on the EXAFS data, thereby further exploring in detail the
contributions of different coordination shells to the Ru/CeO2-t EXAFS signal. In Figure 4,
two main maximum intensities can be observed, which belong to the first coordination
shell of Ru-O-Ce and the second coordination shell of Ru-Ru, respectively. The results show
that Ru was stably anchored on the carrier surface through the Ru-O-Ce bond, and it was
found that, with the increase in the reduction time, Ru-Ru gradually weakened, while the
strength of the Ru-O-Ce bond increased. This further indicates that the interaction between
Ru and the carrier increases with an increase in the reduction time.
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Figure 4. The WT-EXAFS of the Ru K-edge of Ru/CeO2-t, (a) Ru foil, (b) RuO2, (c–h) Ru/CeO2-t
(t = 0, 0.5, 1, 2, 3, 4 h).

2.4. Reaction Mechanism

To gain a deeper understanding of the OV impact on ammonia decomposition, we con-
ducted density functional theory (DFT) calculations and developed three reaction models:
CeO2, Ru/CeO2, and Ru/CeO2-OV (Figure S19). Figures S21 and S22 illustrate the reaction
process of ammonia on the catalyst surface. The NH3 decomposition reaction follows a
well-defined pathway: initially, NH3 is adsorbed onto the catalyst surface; subsequently,
it undergoes a gradual dehydrogenation process; finally, N2 and H2 are generated and
released from the surface.

As shown in Figure 5, the dehydrogenation potential energy of Ru/CeO2-OV was
lower than that of CeO2 and Ru/CeO2, which is due to the stronger adsorption of NH3 by
this catalyst. It can be seen from the figure that the breaking of the N-H bond is the rate-
determining step of the reaction. The reaction energy barrier required for the N-H cleavage
of the Ru/CeO2-OV system is lower than that of Ru/CeO2 and CeO2, thereby significantly
improving the catalytic activity. Furthermore, Figure S20 compares the adsorption energy
data of NH3 on the three models. The results show that the Ru/CeO2-OV model had the
highest adsorption intensity for NH3, reaching 1.021 eV, while the adsorption energies of
the Ru/CeO2 and CeO2 models were 0.813 eV and 0.605 eV, respectively. This discovery
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clearly indicates that the presence of oxygen vacancies can reduce the reaction energy
barrier for N-H bond breaking and significantly enhance the adsorption capacity of the
catalyst for NH3. This phenomenon is due to the strong interaction between the metal and
the carrier, which helps to improve the catalytic performance.
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3. Experimental Section
3.1. Materials

Ammonium cerium nitrate (Ce(NH4)2(NO3)6, ≥98%), 4-4’ diphenyl dicarboxylic acid
(H2BPDC, 99%), N, N-dimethylformamide (C3H7NO, DMF, ≥99.5%), acetone (C3H6O,
≥99.5%), anhydrous ethanol (C2H5OH, ≥99.7%), ruthenium trichloride (RuCl3, ≥99.9%)
purchased from Aladdin Co., Ltd., and deionized water for laboratory use.

3.2. Catalyst Preparation

Ce-BPDC was synthesized by an improved hydrothermal method. The detailed
preparation process is in the Supporting Information. After the successful synthesis of
Ce-BPDC, it was calcined at 500 ◦C for 5 h to obtain CeO2. The CeO2 was reduced in the
H2/Ar atmosphere for different durations (t = 0, 0.5, 1, 1.5, 2, 3, 4 h; 0 means the CeO2

sample was not reduced) at 500 ◦C, and the obtained samples were recorded as CeO2-t.
The detailed preparation process of the carrier can be found in the Supporting Information.
Briefly, 1 g of CeO2-t (t = 0, 0.5, 1, 1.5, 2, 3, 4 h) and 0.108 g (0.52 mmol) of RuCl3, respectively,
were weighed and mixed in different glass bottles. Subsequently, 15 mL of deionized water
was added to each vial and stirred on a mixing table for 8 h to obtain a gray solution.
The solution was washed three times with deionized water, and the resulting precipitate
was dried overnight in an 80 ◦C oven and finally allowed to yield the Ru catalyst. The
experimental amount of Ru for each catalyst was 5 wt%. The resulting sample was named
as the Ru/CeO2-t (t = 0, 0.5, 1, 1.5, 2, 3, 4 h) catalyst.

3.3. Catalyst Activity Evaluation

The hydrogen production evaluation process of ammonia decomposition catalyst was
carried out in a fixed-bed reactor. Typically, 0.05 g of catalyst (40–60 mesh) was fully mixed
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with 2.95 g of quartz sand (40–60 mesh) and then transferred to a reactor equipped with
quartz cotton. Before the activity test, the catalyst was heated to 200 ◦C with a ramp rate of
5 ◦C/min in 5% H2/Ar (50 mL/min) and reduced at 200 ◦C for 2 h. After switching to 50%
NH3/Ar, the system temperature was adjusted to the corresponding reaction temperature.
The catalyst was evaluated at a certain gas hourly space velocity (GHSV) in the temperature
range of 325–600 ◦C at atmospheric pressure. The feed gas and the yield were analyzed by
online gas chromatography (GC) equipped with a thermal conductivity detector (TCD).
The conversion rate of NH3 (XNH3 ) and the generation rate of H2 (rH2 ) were calculated
using the following formula:

XNH3(%) =
[V N2

]
out

/[V NH3
]
out

[V N2
]
out

/[V NH3
]
out

+ 0.5
× 100%

rH2(mmol/gcat/min) =
VNH3
22.4 × XNH3 × 1.5

mcat

where [VN2]out, and [VNH3]out are the volume percentage of N2 and NH3 in the effluent,
respectively. VNH3 is the NH3 flow rate (mL/min), and mcat is the mass of the catalyst (g).

4. Conclusions
In this study, Ce-MOF-derived CeO2 carriers were prepared by calcining Ce-BPDC,

and then the obtained CeO2 was reduced in a H2/Ar atmosphere for different times
(t = 0, 0.5, 1, 1.5, 2, 3, 4 h). Finally, a series of Ru-based catalysts were prepared by the
impregnation method. The ammonia decomposition results showed that the performance
of the Ru/CeO2-t was superior to that of the commercial CeO2-supported Ru catalyst.
Under the condition of GHSV = 36,000 mL gcat

−1 h−1, the ammonia conversion rate and
hydrogen production rate of Ru/CeO2-4 h at 500 ◦C were 98.9% and 39.74 mmol gcat

−1

min−1, respectively. Furthermore, the catalytic activity remained stable after continuous
testing for 50 h. The XRD, SEM, and TEM results showed that Ru was well dispersed
on the surface of CeO2-t. The Raman and XPS characterization results showed that, with
the extension of the reduction time, the number of oxygen vacancies in these samples
increased. This phenomenon can be attributed to the valence state transformation from
Ce4+ to Ce3+ on the surface of CeO2 during the hydrogen reduction process, thereby
inducing the generation of more OV. The results of the synchrotron radiation showed that
an increase in oxygen vacancy concentration can enhance the interaction between the metal
and the carrier. The DFT calculation determined that the rate-determining step of ammonia
decomposition was the cleavage of the N-H bond, and the existence of oxygen vacancies
can significantly reduce the reaction energy barrier of N-H cleavage, thereby improving
the ammonia decomposition performance. These findings highlight a new idea for the
design of ammonia decomposition catalysts and might open up new possibilities for the
development of MOF-based catalysts in industrial application.

Supplementary Materials: The following Supporting Information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules30112301/s1: Table S1: NH3 conversion of Ru/CeO2-C
catalyst at GHSV = 12,000 mL gcat

−1 h−1. Table S2: Comparison of the synthesized catalysts with
Ru-based catalysts reported in the literature. Table S3: The Raman quantification results. Table S4:
XPS quantitative results of CeO2-t and Ru/CeO2-t. Table S5: XPS quantitative results of CeO2-C and
Ru/CeO2-C. Figure S1: The XRD profile of the Ce-BPDC (a) and the SEM images of the Ce-BPDC (b).
Figure S2: N2 adsorption/desorption isotherms (a) and aperture distribution curve (b) of Ce-BPDC.
Figure S3: The TGA curve of the Ce-BPDC. Figure S4: The XRD profile of the CeO2-t. Figure S5:
The N2 adsorption isotherm of the derivative cerium oxide (a) and its corresponding catalyst (b).
Figure S6: The SEM of the CeO2-0 h (a), CeO2-0.5 h (b), CeO2-1 h (c), CeO2-1.5 h (d), CeO2-2 h (e),

https://www.mdpi.com/article/10.3390/molecules30112301/s1
https://www.mdpi.com/article/10.3390/molecules30112301/s1
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CeO2-3 h (f). Figure S7: The TEM of the CeO2-t. Figure S8: The TEM and the corresponding EDS
of Ru/CeO2-t. Figure S9: The AC-STEM of Ru/CeO2-0 h (a), Ru/CeO2-0.5 h (b), Ru/CeO2-1 h
(c), Ru/CeO2-1.5 h (d), Ru/CeO2-2 h (e), Ru/CeO2-3 h(f), Ru/CeO2-4 h(g). Figure S10: Schematic
diagram of a fixed-bed reactor. Figure S11: NH3 conversion diagram of Ru/CeO2-4 h catalyst, GHSV
= 36,000 mL gcat

−1 h−1. Figure S12. Stability test of Ru/CeO2-4 h catalyst, GHSV = 36,000 mL gcat
−1

h−1. Figure S13: Raman spectra of CeO2-C (a) and Ru/CeO2-C (b). Figure S14: The Ru 3p3/2 XPS
of Ru/CeO2-t. Figure S15: The (a) Ce 3d and (b) O 1s XPS of CeO2-t. Figure S16: The (a) Ce 3d and
(b) O 1s XPS of CeO2-C, (c) Ce 3d and (d) O 1s XPS of Ru/CeO2-C. Figure S17: CO2-TPD curves for
catalyst. Figure S18: XAS characterization results: (a) Ru K-edge XANES spectra of Ru/CeO2-t and
(b) Fourier transform K3-weighted EXAFS spectra. Figure S19: Adsorption energy of NH3 on surfaces
of CeO2, Ru/CeO2, and Ru/CeO2-Ov models. Figure S20: The reaction process of ammonia on
Ru/CeO2 catalyst surface. Figure S21: The reaction process of ammonia on Ru/CeO2 catalyst surface.
Figure S22: The reaction process of ammonia on Ru/CeO2-OV catalyst surface. Figure S23: Ce 3d (a)
and O 1s (b) spectra of catalyst Ru/CeO2-2 h before and after pretreatment. References [55–76] are
cited in the supplementary materials.
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