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Abstract: The treatment of psoriasis has been revolutionized by the emergence of biological ther-
apies. Monoclonal antibodies (mAb) generally have complex pharmacokinetic (PK) properties
with nonlinear distribution and elimination. In recent years, several population pharmacoki-
netic/pharmacodynamic (PK/PD) models capable of describing different types of mAb have been
published. This study aims to summarize the findings of a literature search about population PK/PD
modeling and therapeutic drug monitoring (TDM) of mAb in psoriasis. A total of 22 articles corre-
sponding to population PK/PD models of tumor necrosis factor (TNF)-α inhibitors (adalimumab and
golimumab), interleukin (IL)-23 inhibitors (guselkumab, tildrakizumab, and risankizumab), IL-23/IL-
12 inhibitor (ustekinumab), and IL-17 inhibitors (secukinumab, ixekizumab, and brodalumab) were
collected. A summary of the clinical trials conducted so far in psoriasis was included, together with
the current structural population PK and PD models. The most significant and clinical covariates
were body weight (BW) and the presence of immunogenicity on clearance (CL). The lack of consensus
on PK/PD relationships has prevented establishing an adequate dosage and, therefore, accentuates
the need for TDM in psoriasis.

Keywords: psoriasis; monoclonal antibodies; pharmacokinetics/pharmacodynamic models; thera-
peutic drug monitoring

1. Introduction

Psoriasis is a chronic autoimmune and inflammatory skin disease associated with phys-
ical and psychological burdens characterized by erythematic plaques with adherent shiny
scales [1]. The country-specific prevalence of psoriasis varies from 0.14% (95% uncertainty
interval 0.05% to 0.40%) in east Asia to 1.99% (0.64% to 6.60%) in Australasia. Additionally,
the prevalence is high in western Europe (1.92%, 1.07% to 3.46%), central Europe (1.83%,
0.62% to 5.32%), and North America (1.50%, 0.63% to 3.60%). Its age of onset shows a
bimodal distribution, with peaks at 30–39 years and 60–69 years in men, and 10 years earlier
in women [2]. The phenotypes of this disease are plaque psoriasis or psoriasis vulgaris,
guttate psoriasis, inverse psoriasis, and erythrodermic psoriasis, which differ in terms of
their clinical and morphological characteristics [3–5]. In addition, nail psoriasis is reported
to affect more than half of the patients [6].
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1.1. Pathophysiology of Psoriasis

A complex and not fully understood pathogenesis is exhibited in psoriasis. Ex-
ternal factors can trigger an interaction between skin cells, pro-inflammatory immuno-
cytes (i.e., tumor necrosis factor (TNF)-α and interferon (IFN)-α), and biologic signaling
molecules in genetically predisposed individuals [7,8]. This interaction stimulates the
myeloid dendritic cells (mDC) in the lymph nodes to release interleukin (IL)-12 and IL-23 to
promote the cellular immune response of T helper lymphocytes (Th) type 1 (Th1), 17 (Th17),
and 22 (Th22) T cells. Activated Th migrate to the skin guided by a gradient of chemokine
and produce abundant psoriatic cytokines (i.e., IL-17, IFN-γ, TNF-α, and IL-22). The
cytokine-mediated effects on keratinocytes influence typical psoriatic inflammation [9–13].
Molecular and genetic studies in specific psoriasis phenotypes have identified different
inflammatory pathways that may coexist and evolve over time. The identification of the
main inflammatory pathways through individual molecular descriptors represents a future
step to guide personalized therapy [14]. In this sense, different classes of possible biomark-
ers have been explored in psoriasis (Figure 1), but further replication and validation are
required [15–17].

1.2. Clinical Endpoints of Psoriasis

The severity of psoriasis will be determined by the extent of the disease, the location
of the lesions, the degree of inflammation, and the impact on quality of life. According
to the most important clinical guidelines (Figure 1), the evaluation of psoriasis severity
and the levels of its treatment responses is generally based on the percentage of the total
Body Surface Area (BSA) affected, Psoriasis Area Severity Index (PASI), Physician Global
Assessment (PGA), and Dermatologic Life Quality Index (DLQI) [18,19].
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2. Pharmacokinetic/Pharmacodynamic Properties of Monoclonal Antibodies
in Psoriasis

Despite the increasing number of therapeutic monoclonal antibodies (mAb) on the
market and in the drug development process for psoriasis treatment, the pharmacokinetic
(PK) and pharmacodynamic (PD) properties of these molecules are more specific. In this
regard, non-linear mixed-effects modeling allows for the accurate quantification of the
central tendency and the different sources of the variability of mAb by considering data
from all individuals simultaneously. The aims of this review are (i) to describe the main
factors involved in the management of psoriasis disease with biological therapy, and (ii) to
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provide insights into the role of therapeutic drug monitoring (TDM) through population
PK and PK/PD modeling strategies in the mAb treatment of patients with psoriasis.

2.1. Pharmacokinetic Properties

Monoclonal antibodies are heterodimeric glycoprotein macromolecules of type-G
immunoglobulin recognizing a single epitope on a target antigen in a bivalent manner [25].
They are produced and engineered by hybridoma technology, developed for the first time
by Köhler and Milstein in 1975 [26]. Due to their molecular size and their three-dimensional
conformation, the PK and PD properties of mAbs are considerably different compared with
those related to small-molecule drugs (SDM) [27].

The low permeability and high degradation of mAbs throughout the gastrointesti-
nal tract lead to intravenous, subcutaneous, or intramuscular administration [28], and
no significant improvement has been published to overcome the limitations of the oral
administration of mAbs. Consequently, the most frequent routes of the administration of
mAb in psoriasis follow intravenous (IV) or subcutaneous (SC) injections [29]. Regarding
the distribution and tissue infiltration, mAbs can easily move from the SC space most
probably via diffusion and/or convection through lymphatic capillaries, and they can be
able to reach the intracellular space of targets beyond systemic circulation by pinocytosis
or by receptor-mediated endocytosis [30].

The large size and physicochemical properties (charge and hydrophobicity) explain
the distribution of mAbs mainly in the vascular and interstitial fluids. Usually, tissue
distribution represents 5 to 15% of the total amount of mAb, and distribution into the brain
is quite restricted (0.1%) [31]. A significant fraction of mAb in the body may be found if
mAb-tissue target binding occurs with high affinity. Therefore, large apparent volumes of
distribution in steady state (Vss) could be estimated for mAbs. In cases where the binding
capacity of tissue is limited, nonlinear distribution is more probable and Vss decreases in a
dose or concentration-dependent manner [32].

In regard to mAbs metabolism and excretion, the impacts of the renal and biliary
pathways are insignificant [33]. Due to the null role of enzymatic processes related to the
metabolism and excretion of mAb, the interaction with other substrates of these enzymes
is negligible [34–37]. mAbs exhibit specific and non-specific types of binding, depending
on the fragment of the antibody. The first one occurs when the antigen-binding fragment
(Fab) attaches to the target antigen. The second one appears after the fragment crystal-
lizable (Fc) region binds to cell surface receptors, such as the Fcγ receptor (FcγR) on the
immune effector cells and the neonatal Fc receptor (FcRn) on different cell types, as well
as components of the complement system (i.e., complement C1q) [25]. For such reasons,
mAb distribution can be directly influenced by the density and expression of the target
antigen. The two parallel metabolic pathways, i.e., specific and non-specific. are involved
in mAb disposition, and their impact changes over time based on the available free mAb
in the plasma and the dose administered. Metabolism through the reticuloendothelial
system via pinocytosis/proteolysis represents the linear and non-specific clearance, which
may be relevant at certain dose levels due to the larger endothelial surface area in the
gut, muscle, and skin [38]. The specific pathway is initiated after the internalization of
the receptor–drug complex, which allows the drug to enter the cell and then be inacti-
vated by cytoplasmic endosomes. However, FcRn can bind IgG and mAbs at the acidic
pH conditions of the lysosome, escape from proteolysis, and be directed back to the cell
membrane [39–41]. Both pathways have been mechanistically described in population
PK models through a target-mediated drug disposition (TMDD) approach and its quasi-
equilibrium or rapid binding approximations, quasi-steady-state approximation, and even
simpler Michaelis–Menten kinetics.

One more key aspect in the PK of mAb is the rescue from lysosomal degradation
by binding to FcRn in endothelial cells, which is crucial for the long half-life and low
clearance rate reported for most therapeutic mAbs [42,43]. These mechanisms result in
clearance values of mAbs for psoriasis that range from 90 to 560 mL/day, leading to half-
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lives between 11 and 30 days. Several covariates have been identified in PK studies to
partially explain inter-individual differences in mAb exposure, such as FcRn and FcγR
gene expression, genetic polymorphism, target properties, and covariates associated with
increased clearance, such as the generation of antidrug antibodies (ADA), low serum
albumin and high serum C-reactive protein levels (CRP), gender, and high body weight
(BW) [27,30].

2.2. Pharmacodynamic Properties

The mAbs for treating psoriasis are designed to block either the specific receptors
or soluble mediators of the main pathways in the progress and chronicity of psoriasis,
including TNF-α, IL-12/23, and IL-17 [11] (Figure 2). The PD effect of mAb is delayed to the
time course of its plasma concentrations, which has been described using PK/PD models,
such as indirect responses and transduction models, in order to describe the exposure–
response (E–R) relationship [44,45]. The following parameters are mostly determined: kin,
formation rate of psoriatic skin lesions; kout, remission rate of psoriatic skin lesions; Emax,
maximum mAb effect; and EC50 or IC50, serum mAb concentration causing 50% of the
maximum effect.
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Compared with SDM, mAbs offer therapeutic exclusivity, a higher safety profile, and
an increase in clinical efficacy [46,47]. The relative change in the PASI of patients receiving
novel mAbs (guselkumab and brodalumab) has reached 90–100% PASI reduction, which
has led to an adjustment of the primary endpoint of PASI75 to PASI90 or PASI100 in clinical
trials [48] (Table 1).

Table 1. List of biologics approved for psoriasis.

Drug Structure Mechanism
of Action Route Dosing Regimen PASI75

(%)
PASI90

(%)
PASI100

(%) Side Effect

Etanercept Fusion protein TNF-α receptor
binding SC 25 mg BIW or

50 mg QW
W12: 49
[49,50]

W12:
21–22
[49,50]

Infections,
malignancies, and

heart failure

Adalimumab Monoclonal
antibody TNF-α binding SC 80 mg LD + 40 mg

Q2W
W16: 71

[51]
W16: 37

[51] W16: 14 [51]

URI, nasopharyngitis,
sinusitis,

non-melanoma skin
cancer, and
heart failure

thromboembolic
events

Infliximab Monoclonal
antibody TNF-α binding SC

5 mg/kg induction
at W 0, 2 and 6,

then Q8W

W10: 75.5
[52]–80

[53]
W50: 54.5

[52]–61
[53]

W10: 57
[53]

W50: 34.3
[52]–45

[53]

URI, headache,
fatigue, and

squamous cell or
basal cell cancers

Certolizumab
pegol

Pegylated
antigen-binding

fragment
TNF-α binding SC 200 or 400 mg Q2W

W16:
76–83 [54]

W48:
81–87 [54]

W16:
44–55 [54]

W48:
60–62 [54]

W16: 13–19
[54]

W48: 24–38
[54]

URI, nasopharyngitis,
and cell carcinoma
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Table 1. Cont.

Drug Structure Mechanism
of Action Route Dosing Regimen PASI75

(%)
PASI90

(%)
PASI100

(%) Side Effect

Golimumab Monoclonal
antibody TNF-α binding SC 50 or 100 mg Q4W

W14: 58
[55]

W24: 66
[55]

W14: 24
[55]

W24: 32
[55]

Infections and
cutaneous squamous

cell carcinoma

Ustekinumab Monoclonal
antibody

IL-12 and
IL-23 binding SC 45 or 90 mg at W

0 & 4, then Q12W

W12:
66.4–75.7

[56,57]

W12:
36.7–50.9

[56,57]

W12:
12.5–50.9

[56,57]

URI, nasopharyngitis,
headache, and

arthralgia

Secukinumab Monoclonal
antibody IL-17A binding SC 300 mg Ws 0–4,

then Q4W

W12:
81.6–77.1

[58]

W12:
54.2–59.2

[58]
W52: 58

[59]

W12:
24.1–28.6

[58]
W52: 39.2

[58]

Nasopharyngitis,
headache, and

diarrhea during
induction

Ixekizumab Monoclonal
antibody IL-17A binding SC

160 mg W 0, 80 mg
Q2W for 3 months,

then Q4W

W12: 77.5
[60]

W60: 83
[60]

W12: 64.6
[59]

W12: 59.7
[60]

W60: 73
[61]

W12: 33.6
[59]

W12: 30.8
[60]

W60: 55 [60]

URI, nasopharyngitis,
and headache

Brodalumab Monoclonal
antibody IL-17A binding SC 210 mg Q1W for

3 Ws, then Q2W

W12: 83.3
[61]–86.3

[62]
W52: 80

[62]

W12: 69
[63] –70.3

[61]
W52:

73–75 [62]

W12:
36.7–44.4

[62]
w52: 53–56

[62]

URI, nasopharyngitis,
headache, and

arthralgia

Guselkumab Monoclonal
antibody IL-23 binding SC 100 mg at W0 & 4,

then Q8W

W16: 86.5
[64]–91.2

[63]
W48: 87.8

[63]

W16: 70
[63]–73.3

[63]
W48: 76.3

[63]

W16: 34.1
[64]–37.4

[63]
W48: 47.4

[63]

URI and
nasopharyngitis

Tildrakizumab Monoclonal
antibody IL-23 binding SC 100 or 200 mg at

W0 & 4, then Q12W
W12:

61–66 [65]
W12:

35–39 [65]
W12: 12–42

[65] Nasopharyngitis

Risankizumab Monoclonal
antibody IL-23 binding SC 150 mg at W0 & 4,

then Q12W

W16:88.7
[66]

W52:92.8
[66]

W16: 73.2
[66]

W52: 85.6
[66]

W16: 47.2
[66]

W52: 60 [66]

URI, nasopharyngitis,
and headache

Abbreviations: DNA, deoxyribonucleic acid; PDE4, phosphodiesterase-4; NF-κB, nuclear factor kappa B; TNF-α,
tumor necrosis factor-alpha; IL, interleukin; IV, intravenous; IM, intramuscular; OR, oral; SC, subcutaneous; D,
dose; W, week; QW, every week; QD, every day; BID, twice a day; TID, three times a day; BIW, twice a week; Q2W,
once every 2 weeks; Q4W, once every 4 weeks; Q8W, once every 8 weeks; Q12W, once every 12 weeks; URI, upper
respiratory infection.

3. Monoclonal Antibody Approved for Psoriasis

The selection of the optimal treatment for psoriasis depends on the severity of the
disease [67]. Mild or limited-extent psoriasis is managed by topical treatment, while the
moderate to severe types usually require a combination of phototherapy and systemic
therapies [68]. Biological agents, such as mAb, have been the most successful approach in
the management of this disease in the last decade (Table 1).

The use of mAbs is indicated in psoriasis when (i) effective control of psoriasis is
not achieved with oral and phototherapy treatments, (ii) in patients who have rapid
regrowth (3 months or less) after suspending any treatment, (iii) when higher doses of
conventional systemic drugs are required with the increased associated risk of adverse
effects, (iv) in patients with comorbidities for which the use of systemic agents, such
as methotrexate or cyclosporine, are contraindicated, (v) when a patient is unable to
tolerate the traditional systemic therapy, or (vi) the patient is at high risk of toxicity with
methotrexate, cyclosporine, acitretin, or phototherapy, even in the absence of analytical
alterations [23].

4. Population Pharmacokinetic/Pharmacodynamic Models for Monoclonal Antibodies
in Psoriasis

An English systematic literature search was performed in databases of the field of
Health Sciences—Embase, MEDLINE (via PubMed), and Scopus—to identify popula-
tion pharmacokinetic/pharmacodynamic (PK/PD) models of therapeutic mAbs for the
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treatment of psoriasis. The following request was used in PubMed: (“Population pharma-
cokinetic/pharmacodynamic modeling” [Title/Abstract]) OR (“NONMEM” [Title /Ab-
stract]) OR (“Exposure–response relationships” [Title/Abstract]) AND (“Name of the mAb”
[Title/Abstract]) AND (“Psoriasis” [Title/Abstract]). Furthermore, to reduce the number
of articles not recovered by the study, a manual search for population models was made by
reviewing the bibliographies of relevant journal articles. The eligible articles were human-
subject studies published between 1 January 2000 and 1 January 2021. The presented models
were obtained through nonlinear mixed-effects modeling with the NONMEM software.

Table 2 shows the studies included in the population pharmacokinetic/pharmacodynamic
models. Tables 3 and 4 summarize the PK and PD outcomes, respectively, from the
published models. The mAbs for which a PK or PK/PD model has been developed and
published in patients with psoriasis are shown below.

Table 2. Published pharmacokinetics clinical trials of monoclonal antibodies indicated for psoriasis.

Drug Study (Phase) Disease Dose Regimens Subjects
(Samples)

PD Endpoint
(Samples)

Adalimumab
M02-528 (II) [69]

Pso 40 mg Q2W/QW (SC) [70] 827 P [70] PASI, PASI75 [70]REVEAL (III) [51]

Golimumab GO-REVEAL (III) [55] PsA 50 or 100 Q4W (SC) [71] 337
P (2029) [71]

Ustekinumab

NCT00267956 (II) [72] PsA 90 mg, W 0–3, 12, and 16 (SC) [73] 130 P (1594) [73]
PHOENIX 1 (III) [56]

Pso
45 or 90 mg, W 0, 4, then Q12W (SC)

[74–77]

1937 P (9938) [74]
PHOENIX 2 (III) [57] 1312 P [75] PASI (11624) [75]
PSUMMIT I (III) [76]
PSUMMIT II (III) [78] 925 P (2837) [79] PASI (3429), ACR

(8561) [79]
BSTOP/PSORTD [77] 491 P (797) [77] PASI (1590) [77]

Secukinumab

Hueber et al. (I) [80]

Pso

25–300 mg, then Q4W (SC) [81]

1233 P [81] Total IL-17 [81]

Rich et al. (II) [82]
Reich et al. (II) [83]
Papp et al. (II) [84]

1–10 mg/kg, sD (IV) [81]ERASURE & FIXTURE
(III) [58]

JUNCTURE (III) [85]

Ixekizumab

I1F-MC-RHAJ (II) [86]

Pso

10–150 mg, W 0, 2, 4,
then Q4W (SC) [87] 115 P (651) [87] PASI (2096), PASI75

[87]UNCOVER-1 (III) [59]
UNCOVER-2 (III) [60] 80 mg Q2W/Q4W (SC) [88] 2888 P (2097) [88] PASI, PASI75, sPGA

[88]UNCOVER-3 (III) [60]

Brodalumab

NCT00867100 (I) [89]

Pso

7–700 mg, sD (SC, IV) [90,91]
57 HV, 25 P [92] PASI [92]NCT01937260 (I) 140 or 210 mg, sD (SC) [91]

NCT00975637 (II) [93] 70–280 mg first D, W 1, 2, then
Q2W/Q4W (SC) [90–92] 196 P (1526) [90]

AMAGINE-1 (III) [61] 140 and/or 210 mg, W 0, 1, 2, then
Q2W (SC) [91]

AMAGINE-2 (III) [62] 140 and/or 210 mg, W 0, 1, 2, then
Q2W/Q4W/Q8W (SC) [91] 622 P (7725) [91] PASI (2220), PGA

(2456) [94]AMAGINE-3 (III) [62]

Guselkumab

X-PLORE (II) [95]

Pso

1.5 mg Q12W (SC) [94] 238 P (2014) [94] PASI (17580), PGA
(18986) [96]15 mg Q8W (SC) [94]

VOYAGE 1 (III) [63] 50 mg Q12W (SC) [94–97] 1459 P (13031) [96]100 mg Q8W (SC) [94]
VOYAGE 2 (III) [64] 200 mg Q12W (SC) [94] 1454 P (13014) [97]

Tildrakizumab

P05776 (I) [98]

Pso

0.1, 0.5, 3 and 10 mg/kg,
sD (IV) [98] 31 HV (340) [99]

50 or 200 mg, sD (SC) [98,99]

P06306 (I) [100] 10 mg/kg, sD (IV) [100] 53 HV (648) [99]50–400 mg, sD (SC) [99,100]
P009 (I) [101] 200 mg, sD (SC) [99,101] 19 P (309) [99,101]

P05495 (IIb) [102] 5–200 W 0, 4, then Q12W (SC)
[99,102] 349 P (4679) [99,102]

reSURFACE 1 (III) [103] 100 or 200 W 0, 4, then Q12W (SC)
[99,103,104]

763 P (6329) [99] PASI75, 90 and 100
[104]reSURFACE 2 (III) [103] 883 P (5016) [99]
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Table 2. Cont.

Drug Study (Phase) Disease Dose Regimens Subjects
(Samples)

PD Endpoint
(Samples)

Risankizumab

NCT02596217/M16-513 (I) [105]

Pso

18–1200 mg, sD (SC) [105]
1899 HV and P

(13123) [105]
NCT01577550/1311.1 (I) [106] 0.01–5 mg/kg, sD (IV), 0.25–1 mg/kg,

sD (SC) [105]NCT02054481/1311.2 (II) [107]
NCT03000075 (II/III) [108] 18 mg sD (SC), 90 or 180 W 0, 4, 16

(SC) [105,109] 2095 P [110]
PASI75, 90 and

100, sPGA
[110,111]

NCT03022045 (III) [109]
UltIMMa-1 (III) [112] 75 or 150 mg W 0, 4,

then Q12W (SC) [110] 1903 P [110]UltIMMa-2 (III) [112]
NCT02672852/IMMhance (III) [105] 150 mg W 0, 4, then Q12W or 150 mg

Q12W (SC) [105,108,109,112] 1732 P [111]NCT02694523/IMMvent (III) [105]
Abbreviations: Pso, psoriasis; PsA, psoriasis arthritis; SC, subcutaneous; IV, intravenous; sD, single dose; W,
week; QW, every week; Q2W, once every 2 weeks; Q4W, once every 4 weeks; Q8W, once every 8 weeks; Q12W,
once every 12 weeks; P, patients; HV, healthy volunteers; PASI, Psoriasis Area and Severity Index; PGA, static
Physician’s Global Assessment.

Table 3. Population pharmacokinetic parameters of monoclonal antibodies in psoriasis.

mAb Model

PK Parameters

Covariates
(Parameters)

ka, 1/d
(%RSE)

ka IIV,
%CV

(%RSE)

CL, L/d
(%RSE)

CL IIV,
%CV

(%RSE)

VC, L
(%RSE)

VC IIV,
%CV
(%RSE)

Q, L/d
(%RSE)

Q IIV %
(%RSE)

VP, L
(%RSE)

VP IIV,
%CV

(%RSE)

Km,
µg/mL
(%RSE)

Vmax,
mg/day
(%RSE)

Vmax, IIV,
%CV

(%RSE)

Adalimumab
[70]

1-CMT, LE 0.625
(28.8)

0.586
(3.8) 62 (8.6) 11.4

(5.6)
43.6

(31.5)

BW and study
(CL/F)

BW and study
(V/F)

Golimumab
[71]

1-CMT, LE 0.908 1.38 37.6 24.9 37.9

BW, ADA, CRP,
and smoking

(CL/F)
BW (V/F)

Ustekinumab
[74,75]

1-CMT, LE 0.354
(16.2) 0 (fixed) 0.465

(2.0) 41.0 (3.0) 15.7
(2.0)

33.2
(3.9)

BW, DB, ADA, Alb,
CrCL, ALK, and

sex (CL/F)
BW, DB, and race

(V/F)

Ustekinumab
[77]

1-CMT, LE 0.23
(16.1) 0.44 (6.7) 44.7

(10.3)
10.2
(8.2)

36.5
(28.9)

Cr and ADA
(CL/F)

BW (V/F)

Secukinumab
[81]

2-CMT, LE 0.18 (3.6) 35 0.19 (1.9) 32
3.61
(2.6) 30

0.39
(4.6)

2.87
(1.9) 18

BW (CL)
BW (VC)

Brodalumab
[92]

2-CMT, LE &
NLE

0.255
(10.2)

75.1
(27.8) 0.28 3.9

(5.1)
29

(12.8) 1.01 2.89 0.01
(fixed) 4.39 (7.4) 31.5 (6.9)

Brodalumab
[92]

2-CMT, LE &
NLE

0.236
(0.64) 57.9 (14) 0.223

(0.62) 69.2 (13) 4.62
(0.90)

69.6
(19)

0.697
(13) 15 (fixed) 1.84

(0.61) 85.6 (17) 0.02
(fixed) 5.16 (2.0) 37.8 (12)

BW and age (CL)
BW and age (VC)

BW and age
(Vmax)

Brodalumab
[91]

2-CMT, LE &
NLE

0.300
(2.8) 62.6

0.155
(0.20) 57.5

4.68
(0.99) 25.5

0.328
(5.34) 91

2.41
(3.08) 189

0.02
(fixed)

6.07
(0.53)

2-CMT,
LE &
NLE

BW (CL)
BW(VC)

BW(Vmax)

Guselkumab
[94] 1-CMT, LE 4.93 (4.9) 0.567

(3.7)
30.7

(23.3)
14.3
(3.4)

22.9
(26.0)

Guselkumab
[97]

1-CMT, LE 1.11
(14.1) 129 (22.9) 0.516

(1.19)
35.6

(6.54)
13.5

(1.08)
28.0

(9.85)

BW and DB
(CL/F)

BW (V/F)

Tildrakizumab
[99]

1-CMT, LE 0.458
(6.8) 68 (17) 0.297

(1.1) 29 (5.9) 10.7
(1.1)

21
(15)

Age, BW, Alb, sex,
race, and ethnicity

(CL)
Age, BW, and sex

(VC)

Risankizumab
[105] 2-CMT, LE 0.229

(4.8) 63 (5.5) 0.243
(1.8) 24 (3.6) 4.86

(3.8)
34

(6.6)
0.656
(3.7)

4.25
(2.0)

BW, Alb, Cr,
hs-CRP, and ADA

≥ 128 (CL)

Risankizumab
[109]

2-CMT, LE 0.230
(4.8) 3.36

0.244
(1.8) 5.5

4.87
(3.8) 11.1

0.648
(3.7)

4.25
(2.0)

BW, Alb, Cr, and
hs-CRP (CL)

BW (VC)
BW (VP)

Abbreviations: CMT, compartment; LE, linear elimination; NLE, nonlinear elimination; F, bioavailability; ka,
absorption rate constant; CL, clearance; VC, central volume of distribution; Q, intercompartmental transfer
clearance; VP, peripheral volume of distribution; Km, Michaelis–Menten constant; Vmax, velocity for nonlinear
elimination; IIV, interindividual variability, RSE, relative standard error; BW, body weight; DB, diabetes; ADA,
antidrug antibodies; CrCL, creatinine clearance; CRP, baseline C-reactive protein level; Alb, albumin; ALK,
alkaline phosphatase; Cr, serum creatinine concentration; hs-CRP, high-sensitivity C-reactive protein.
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Table 4. Population pharmacodynamic parameters of monoclonal antibodies in psoriasis.

mAb Model

PD Parameters

Covariates
(Parameters)

kin, PASI
units/d
(%RSE)

kin IIV,
%CV

(%RSE)

kout, 1/d
(%RSE)

kout IIV,
%CV

(%RSE)
Emax (%RSE) γ

EC50 or IC50
µg/mL (%RSE)

EC50 or IC50
IIV, %CV
(%RSE)

Ustekinumab
[75] Indirect response

0.615 (2.5) 60 (6.1) 0.0313 (1.9) 54 (4.7) 0.929 (0.2) 0.606 (3.4) 283 (7.2)
HTA, MTX (IC50)

Sex (kin)
Smoking (kout)

Ustekinumab
[77]

SM: 15.5
(4.4)

SM: 0.02
(6.9)

SM: 43.6
(7.3)

SM: 43.6
(7.3) 1 (fixed)

SM: 0.14
(15.0) SM: 148.3 (9.5)

MM: 15.8
(4.2)

MM: 0.02
(7.3)

MM: 41.4
(7.6)

MM: 41.4
(7.6)

MM 1: 0.07
(17.3)

MM 2: 1.21
(22.2)

MM: 42.7 (58.2)

Ixekizumab [87] Indirect response 0.89 0.0564 1 (fixed) 0.776 (13.5) R: 0.97 (60.3)
NR: 1.46 (35.1)

R: 1660 (22.8)
NR: 581 (44.2)

PASI75-W12
(EC50)

Ixekizumab [88]
Logistic regression

(sPGA) 5.27 (3.6) 0.184 (34) CRP (EC50)
BW, PP (Emax)

Logistic regression
(PASI75, 90, and 100)

6.02 (4)/5.54
(5)/5.73 (11)

0.354 (6)/0.268
(4)/0.169 (8)

BW, PP, baseline
PASI (Emax)

Brodalumab
[92] Indirect response 0.862

(40.1) 0.06389 1 (fixed) 2.86 (49.7) 136 (19.8)

Guselkumab
[94]

Latent variable
indirect response

(joint model)

0.0212 (5.69) 6.24 (4.93) 0.066 (21.3)

Guselkumab
[96] 0.0212 (1.96) 5.35 (1.54) 0.038 (6.22) BW (IC50, kout)

Tildrakizumab
[104]

Logistic regression
(PASI75, 90 and 100)

PASI75: 62.16 PASI75: 0.36
PASI90: 37.89 PASI90: 0.46

PASI100: 14.63 PASI100: 0.55
Indirect response 1 0.25 (4.8) 183

Risankizumab
[109]

Logistic regression
(sPGA) sPGA: 0.431 (31.6) sPGA: 0.916 (1.90)

hs-CRP (EC50)
Logistic regression

(PASI75, 90, and 100)

PASI75: 0.939
(1.21)

PASI75: 0.203
(34.3)

PASI90: 0.812
(2.44)

PASI90: 0.812
(2.44)

PASI100: 0.642
(9.49)

PASI100: 0.642
(9.49)

Risankizu-mab
[109]

Logistic regression
(sPGA) sPGA: 0.916 sPGA: 0.431

Logistic regression
(PASI75, 90, and 100)

PASI75: 0.939 PASI75: 0.203
PASI90: 0.812 PASI90: 0.441

PASI100: 0.642 PASI100: 2.36

Abbreviations: kin, formation rate of psoriatic skin lesions; kout, remission rate of psoriatic skin lesion; Emax,
maximum drug effect; EC50 or IC50, serum drug concentration causing 50% of the maximum effect; γ, Hill’s
coefficient; IIV, interindividual variability, RSE, relative standard error; sPGA: static Physician’s Global Assessment;
PASI: Psoriasis Activity and Severity Index; SM, single model; MM, mixture model; R, responder patients; NR,
non-responder patients; PASI75-W12, PASI75 responder status at the week 12 primary; HTA, hypertension; MTX,
past methotrexate use; CRP, baseline C-reactive protein level; BW, body weight; PP, palmoplantar psoriasis;
hs-CRP, high-sensitivity C-reactive protein.

4.1. Adalimumab

The PK properties of adalimumab and the factors influencing the adalimumab ex-
posure levels in patients with moderate to severe chronic plaque psoriasis from phase II
(M02-528) [69] and phase III (REVEAL) [51] clinical trials (Table 2) were characterized by
Mostafa et al. [70]. The final structural model was a one-compartment model with linear
elimination (Table 3). As in previous studies [113], the mean adalimumab concentration
was between 5.2 and 18.2 µg/mL at week 12 (M02-528 study) and weeks 16 and 33 (RE-
VEAL study). Additionally, patients with a reduction in the PASI score of at least 75%
(PASI75 responders) achieved mean adalimumab concentrations three-fold higher than
those in non-responder patients. The final estimates of the apparent clearance (CL/F) and
the apparent volume of distribution (V/F) were similar to those observed in a previous
investigation of patients with rheumatoid arthritis treated with the same dose of adali-
mumab [114]. The study type and BW were selected as statistically significant covariates,
accounting for 19% and 29% of the variability in adalimumab CL/F and V/F, respectively.
The assessment of immunogenicity on adalimumab efficacy and safety did not identify any
significant relationship between positive and negative ADA patients, although CL/F was
two-fold higher for positive patients, resulting in lower adalimumab exposure levels.

4.2. Golimumab

A population PK model approach allowed describing the concentration–time profile of
golimumab and identifying patient and disease factors affecting its PK properties [71]. The
study was performed in patients with active psoriatic arthritis (PsA) from a phase III study
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(GO-REVEAL) [55] (Table 2). The final structural PK model was a one-compartment model
with first-order absorption and elimination. The population estimates for golimumab were
CL/F = 1.38 L/d, V/F = 24.9 L, and ka = 0.908 day−1, with IIV of 37.6% and 37.9% for CL/F
and V/F, respectively. ADA, CRP, and smoking status were identified as significant covari-
ates for CL/F, and BW for CL/F and V/F. The covariates inclusion reduced approximately
10% of the IIV for CL/F and V/F.

4.3. Ustekinumab

A population PK modeling approach was developed for ustekinumab in patients with
moderate to severe plaque psoriasis [74] using two phase III clinical trials (PHOENIX 1
and PHOENIX 2) [56,57] and in patients with active PsA [73] from a phase II clinical trial
(NCT00267956) [72]. A one-compartment open model with first-order absorption and
first-order elimination was selected as the structural PK model for ustekinumab. The PK
of ustekinumab was comparable between patients with psoriasis [74], patients with PsA
from phase II [73] and phase III [79] studies, and real-world patients [77]. The attempts to
incorporate the IIV in the term of ka were successful in the model-building process for PsA
patients in the phase II study, but not for patients with psoriasis from PHOENIX 1 and 2,
probably because a full characterization of the absorption phase of ustekinumab was limited
due to the sparse sampling scheme designed for phase III studies.

Several covariates were identified and quantified, including BW, diabetes, and positive
immune response ADA to ustekinumab (contributed to more than 20% of the changes in
CL/F and/or V/F of ustekinumab for psoriatic [74] and PsA [73] patients (Table 3)). In ad-
dition, BW was reported to be the only covariate associated with increased V/F [77]. Based
on the clinical relevance approach of the covariates, only BW justified a dose adjustment
regimen for patients with moderate to severe psoriasis and PsA.

Once the PK of ustekinumab was determined, Zhou et al. [75] investigated the rela-
tionship between serum concentration–time data with longitudinal measures of psoriasis
clinical severity using PASI. The effect, which accounted for the inhibition of the production
of a p-40 subunit of both IL-12 and IL-23, was described by a sigmoid function with an indi-
rect response model. The higher CL/F estimates for partial responders and non-responders
suggested a decrease in the ustekinumab exposure levels compared with responder patients.
The median serum drug concentration causing 50% of the maximum inhibitory effect (IC50)
in responders was 30-fold lower than that in partial responders. Therefore, this study
demonstrated that, to reach comparable efficacy, partial responders may require higher
doses of ustekinumab and/or more frequent administration. A large IIV for IC50 was
estimated (283%), but none of the tested covariables showed any significant relationship
(Table 4). Moreover, the distribution of random effects of IC50 indicated an asymmetric
bimodal distribution, but the inclusion of a mixed model did not substantially improve
the fit. The predicted PASI 75 response rate from 100 replicates of the trials supported the
observed PASI75 % response rates observed for both ustekinumab dose levels at week 28
in PHOENIX 1 and PHOENIX 2.

The second E–R model was performed by Pan et al. using real-world data of patients
from a clinical site network integrating 60 dermatology centers across the United Kingdom
(BSTOP and PSORTD studies) [77]. In general terms, similar results were obtained in both
models; for instance, a substantial IIV of the serum drug concentration causing 50% of
the maximum effect (EC50) (148.3%) was not associated with any of the tested covariates.
However, unlike Zhou et al. [75], the use of a mixture model to account for the bimodal
distribution of EC50 significantly improved the model fitting. In the mixed model, two sub-
populations were identified: responder patients (EC50 = 0.07 µg/mL) and non-responder
patients (EC50 = 1.21 µg/mL) (Table 4). The model simulations suggested that dose esca-
lation/interval reduction may improve the probability of response in partial-responder
patients, but not in non-responders. On the other hand, Pan et al. [77] demonstrated
the clinical relevance of ustekinumab through the concentration at 4 (Ctrough) weeks and
change in PASI from the baseline as a guide to determine the clinical outcome at 6 months,
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which can be included in a Bayesian therapeutic drug monitoring (TDM) algorithm to aid
individualized ustekinumab dosing.

4.4. Secukinumab

The PK properties of secukinumab were characterized using pooled results from six
clinical trials: five phase I or II studies and one phase III study in patients with psoria-
sis (Table 2) [58,80,82–84]. The PK data were best described by a two-compartment PK
model with first-order absorption for SC administration and with zero-order infusion for
IV administration [81]. Secukinumab shows a long half-life and slow serum clearance (CL)
(0.19 L/day). The estimated volume of distribution is low, with a central compartment
volume of distribution (VC) of 3.61 L and a peripheral compartment volume of distribution
(VP) of 2.87 L. An allometric relationship between BW and CL and the volume of distribu-
tion characterized the influence of BW on the PK disposition parameters of secukinumab
(Table 3).

4.5. Ixekizumab

The PK of ixekizumab was described by a two-compartment model with first-order
absorption and elimination by Tham et al. [87]. An IIV higher than 200% was observed in
the maximum placebo effect (PLBM) and EC50, but the model’s performance improved
with the inclusion of the PASI75 responder status at week 12 as a significant covariate
on the EC50 parameter. The population EC50 values of ixekizumab stratified by PASI75
non-responder and responder status at week 12 were 1.46 and 0.97 µg/mL, respectively
(Table 4). This fact proved the existence of distinct levels of sensitivity to ixekizumab in
patients and the possibility that non-responder patients may potentially become responders
if they receive doses that allow them to receive sufficient exposure levels. Weight-related
demographics, such as screening weight, BSA, and body mass index, did not affect the
PASI scores.

Chigutsa et al. [88] described the relationship between the ixekizumab concentrations
and the efficacy response in terms of static Physician’s Global Assessment (sPGA) and PASI
via an ordered categorical model and a separate logistic regression model, respectively.
The drug effect was linked through an Emax model with ixekizumab serum through the
concentration levels at week 12. The models were able to accurately identify the proportion
of responders using both efficacy measures, with higher concentrations associated with
higher response levels. Higher concentration ranges were attained with 80 mg every
2 weeks, [90] which was associated with higher response levels. Even though factors,
such as an increase in BW, higher baseline CRP concentration and palmoplantar psoriasis
involvement, and lower baseline disease state, could statistically influence the response,
none of them were clinically relevant (Table 4).

4.6. Brodalumab

Population PK models have been reported for brodalumab in plaque psoriasis patients,
incorporating a two-compartment model with a depot compartment for SC absorption and
parallel linear and nonlinear (Michaelis-Menten) elimination pathways [90–92]. The final
estimates of the parameters of ka, Vc, Vp, CL, and maximal velocity for nonlinear elimi-
nation (Vmax) were similar between the three investigations (Table 3). Notable differences
were found in the parameter estimates of CL and inter-compartmental clearance (Q). In the
model developed by Timmerman et al. [91], CL and Q were approximately 25% and 53%
lower, respectively, compared to the analyses of Endres et al. and Salinger et al., based
on phase I and II data. Minor differences in Vmax were found (6.07 vs. 4.39–5.40 mg/d).
A fixed Km parameter was assumed by Endres et al. [90] (0.02 mg/mL), which was also
considered by Timmerman et al. [91]. The mean predicted maximum concentration (Cmax)
and area under the plasma concentration–time curve (AUC) at steady-state were 20 µg/mL
and 225 µg day/mL, respectively [91]. The total BW had a significant impact on the CL,
VC, and Vmax parameters, and no other covariates were identified as significant.
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The PK–PASI relationship was characterized by Salinger et al. [92] through the inclu-
sion of a signal compartment with an indirect response model of psoriatic plaques, where
the signal suppressed plaque formation. The estimated IC50 was 2.86 mg/mL (SE: 50%)
and the endogenous psoriatic plaque formation rate constant was 0.862 PASI units/day
(Table 4).

4.7. Guselkumab

A confirmatory population PK analysis was implemented using a one-compartment
linear model with first-order absorption and linear elimination, with IIV on CL/F and
V/F [95,97]. The final estimates of the parameters were comparable between the two analyses,
but parameter ka was four-fold higher for Hu et al. [94] (4.93 1/d) than that for Yao et al. [97]
(1.11 1/d) (Table 3). Some PK differences were explained through BW, which resulted in
28% and 32% IIV of CL/F and V/F, respectively. The model-predicted median steady-state
minimum Ctrough and AUCtau after 100 mg SC administration of guselkumab every 8 weeks
in psoriasis patients with a BW ≥ 90 kg was approximately 34% and 29% lower, respectively
than those in patients weighing <90 kg. At the same time, guselkumab exposure was
slightly reduced in diabetic patients, who had 12% higher CL/F than nondiabetic patients.
However, no dose adjustment was recommended based on the BW bands [97].

Longitudinal, joint, and landmark E–R modeling analyses for two ordered cate-
gorical endpoints (PASI and PGA) [95,96] were performed with data from patients of
phase II and III guselkumab clinical trials (Table 2). The estimates of kout and Emax were
comparable between the joint models, whereas IC50 was two-fold higher in the first pub-
lished joint model for guselkumab [94] (Table 4). All models supported the guselkumab
100 mg every 8 weeks regimen as a cost-effective dose for the treatment of moderate to
severe psoriasis Additionally, an effect of BW on E–R, independent of PK, was identified by
Hu et al. [96].

4.8. Tildrakizumab

The population PK of tildrakizumab was described by a one-compartment model with
first-order absorption and elimination kinetics, and IIV variability on CL, VC, and ka. The
database contained information from six clinical trials, including information from healthy
volunteers and patients with moderate to severe psoriasis (Table 2). The estimate of CL
(0.32 L/day) was low and limited VC (10.8 L) was obtained (Table 3). The absorption and
elimination half-lives were 1.5 days and 23.4 days, respectively, with an absorption lag time
of 1.2 h. With the clinical regimen, the steady-state was achieved by 16 weeks. Healthy
subjects showed 31% higher bioavailability than those with lower BW [99].

An Emax logistic-regression E–R model was used to describe the week-12 PASI re-
sponses with the average concentration (Cavg) of tildrakizumab during weeks 1–12 as the
exposure metric (Table 4). At week 12, Emax was estimated at 62.2, 37.9, and 14.6% of
responders for PASI75, 90, and 100, respectively. Individuals with higher BW had a lower
response rate to placebo compared with lighter subjects. An indirect response PK/PD
model with drug suppression of plaque formation and the placebo-induced healing rate
was also developed to describe the longitudinal PASI reduction over 72 weeks [104].

4.9. Risankizumab

A population PK model of risankizumab was established with data from numerous
clinical trials including patients with moderate to severe plaque, pustular, and erythro-
dermic psoriasis [105,108] (Table 2). The PK behavior of risankizumab was described
using a two-compartment model with linear absorption and disposition (Table 3). The
risankizumab steady-state exposures (Cmax, AUCtau, and Ctrough) following the adminis-
tration of 150 mg SC in Japanese patients with pustular or erythrodermic psoriasis were
approximately 17% higher than those in non-Japanese patients with moderate to severe
plaque psoriasis. The covariate analysis identified several covariates on CL, but only BW
and ADA showed clinically relevant changes in exposure [105,108].
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The E–R relationships between the model-estimated risankizumab Cavg and the ob-
served percentage of subjects achieving PASI75, PASI90, PASI100, and sPGA0/1 were
characterized through an Emax model [110,111] (Table 4). The estimated EC50 values to
achieve PASI75, PASI90, PASI100, and sPGA0/1 responses at week 16 and week 52 were
significantly lower than the estimated Cavg value over weeks 0–16 and weeks 40–52. The
estimated probabilities for the PASI75, PASI90, and sPGA0/1 responses were comparable
at weeks 16 and 52. The covariate analysis identified high-sensitivity C-reactive protein
(hs-CRP) as a statistically significant covariate for risankizumab EC50. Asian race was a
statistically significant covariate for risankizumab EC50 for the PASI100 response at week
16. The exposure–efficacy relationships in Japanese patients were consistent with the re-
lationships for patients in global phase III trials. A plateau of efficacy at week 16 was
predicted after the 150 mg SC regimen, which resulted in PASI90 and sPGA0/1 response
probabilities higher than 75%.

5. Therapeutic Drug Monitoring of Monoclonal Antibodies in Psoriasis

Treatments for an immune-mediated inflammatory disease, such as psoriasis, have
been enhanced with the development of biologics. However, some patients are not able
to achieve an adequate clinical response to mAb-based therapy. Some patients present
an insufficient response in the induction phase of the treatment, which is called primary
non-response, or after initial clinical benefit, they lose the ability to respond, which is called
secondary non-response [115,116]. The IIV of the clinical response to standard biologic
doses in patients with psoriasis may be explained by differences in the amount of drug
available at the target tissue, which in turn is induced by adherence, physiological and
genetic mechanisms, and PK covariates, such as BW and drug immunogenicity [117,118].
Increasing evidence indicates that a way to explain all these concerns about mAb could
be TDM.

The term TDM was defined in 1997 by Watson et al. as the measurement of a prescribed
xenobiotic in serum or biological fluids at a single or multiple time points, with a view to in-
fluencing prescription and individualizing the dosage regimen to achieve maximal clinical
efficacy and minimize adverse effects [119]. Distinction should be made between reactive
and proactive TDM. Reactive TDM is performed in patients failing treatment in order to
guide decision-making, whereas proactive TDM is performed in responding patients to
optimize therapy and potentially prevent future flare-ups and loss–of–response [120]. The
implementation of TDM is essential to define the optimal dose ranges for each patient for a
given biologic in psoriasis. The TDM for biological agents in immune-mediated inflamma-
tory diseases involves the measurement of drug levels and ADA. Dose increase, interval
shortening, and/or the addition of an immunomodulator are proposed, with subsequent
re-evaluation of the drug concentration until the therapeutic goals are achieved [41].

In the last decade, the data in favor of TDM in psoriasis are growing. Based on the
distribution of a survey among dermatologists who participated in Belgian Dermatol-
ogy Days 2019 and Skin Inflammation & Psoriasis International Network Congress 2019,
Schots et al. [121] indicated that 70% of the total study cohort admitted the need for TDM,
implying the necessity in the daily dermatology routine for active interaction about the
accessibility, utility, and application of TDM assays. However, over the years, there has been
much confusion about what exposure metrics are informative in patients with psoriasis.
Most of the studies reported in the literature have measured drug levels, but very little
information has been used to evaluate the relationship between the mAb levels and clinical
response to treatment [122]. Therefore, the selection of TDM in mAb for psoriasis may be
beneficial due to the large IIV observed in clinical trials, its chronic administration that
leads to the appearance of time-dependent changes in PK or PD parameters, and the role of
disease progression in the increase of clearance and decrease in the response over time.

The attempts to establish therapeutic ranges and the incidence of ADA of some
mAbs employed for the treatment of psoriasis are shown in Table 5. Takahashi et al. [123]
identified the infliximab Ctrough for responder patients at 0.92 µg/mL. Recently, the NOR-



Pharmaceutics 2022, 14, 654 13 of 24

wegian DRUg Monitoring study was published [124] to assess the efficacy of TDM in
patients on infliximab treatment regarding the achievement of remission, as well as to
maintain immune-mediated inflammatory disease control. Additionally, among patients
with immune-mediated inflammatory diseases undergoing maintenance therapy with
infliximab, proactive TDM was more effective than treatment without TDM in sustaining
disease control without disease worsening [125]. For adalimumab, Menting et al. [113]
defined a window based on Ctrough from 3.51 to 7.00 µg/mL corresponding to the optimal
clinical response. This window was confirmed by the Psoriasis Stratification to Optimize
Relevant Therapy (PSORT) consortium in a large multicenter prospective study [122]. Other
studies have shown how early measurement of the adalimumab Ctrough levels could help
to predict the possibilities of responses [122,126,127].

A pilot study estimated a negative correlation between PASI and the trough secuk-
inumab concentrations during maintenance therapy, suggesting no clinically relevant
relationship between Ctrough and PASI. On the other hand, a minimal effective Ctrough
of 33.2 µm/mL for achieving PASI ≤ 2 was proposed based on receiver operating char-
acteristic curve analysis [128]. Menting et al. [129] reported low and variable trough
concentration levels of ustekinumab, which were not correlated with clinical response.
However, the studies by Toro-Montecinos et al. [130] and Van Den Berghe et al. [131] found
an inverse correlation between the absolute PASI score and ustekinumab serum concentra-
tions measured at week six and week four, respectively. These contradictory results have
not made it possible to reach a consensus for the ustekinumab concentration–response
relationship. Nevertheless, it has been demonstrated how early serum ustekinumab levels
post-injection monitoring contribute to timely identifying under-exposed patients who
might benefit from treatment optimization [77,131,132]. E–R association data in psoriasis
is limited for certolizumab pegol, brodalumab, ixekizumab [87,88,133], guselkumab [96],
tildrakizumab [102], and risankizumab [134].

Table 5. Therapeutic Drug Monitoring endpoints for biological drugs in psoriasis.

Drug Incidence of ADA, % Ctrough, µm/mL
(Response) Therapeutic Range

Etanercept 0.0–18.3
[49,50,126,135–137] NA NA

Adalimumab 6.5–45.0
[51,123,126,138,139]

3.51 [113], 7.84 [123],
9.7 [138] (PASI75) 3.51–7.0 [113]

Infliximab
5.4–54.2

[52,53,123,140–146]
0.92 [123] (PASI75)

NA3.16 [146] (PASI50)

Ustekinumab 3.5–6.0
[57,132,147–151] NA NA

Secukinumab 0.3–0.4 [58] 33.2 [128] (PASI ≤ 2) NA

Ixekizumab 9.0–13.4 [152] NA NA
Abbreviations: ADA, antidrug antibodies; Ctrough, minimum trough concentration; NA, not available.

6. Discussion

The current evidence of mAb treatments for psoriasis poses a challenge for clinical
teams in the selection of dosage schedules that guarantee maximum efficacy and the lowest
risk of toxicity. Therefore, the development and evaluation of quantitative frameworks that
allow characterizing the time course of these molecules in the body and their response,
together with the factors that explain the variability in the observations, has led to a
revolution in the management of these patients.

Most of the scientific evidence of PK/PD modeling for mAbs in psoriasis was found
in ustekinumab and risankizumab, while for others, such as golimumab and secukinumab,
the number of publications regarding population PK modeling was very low. From a
PK perspective, the structural models of the majority of mAbs have been described with
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a two-compartment model, which allows considering (i) the initial rapid decline and
(ii) the peripheral distribution of mAbs into low-perfused tissues. The selection of a one-
compartment model seems to be a result of limited PK sampling that does not allow the
rapid disposition phase to be identified. In order to adequately characterize the disposition
of this type of molecule, intensive sampling is necessary for the first few hours/days after
mAb administration to identify the bi-exponential decline.

The majority of population PK models of mAbs assume linear disposition (linear
distribution and elimination), and only brodalumab has partially described the non-linear
PK properties using parallel linear and non-linear pathways. In our opinion, the lack of a
wide range of dose levels able to visualize the saturation and synthesis of the receptor over
time may limit the implementation of more complex (TMDD) structural PK models, since
most of the clinical trials were conducted at an efficacious and safe dosage level. However,
the use of linear PK models impedes extrapolation analysis for evaluating and proposing
alternative dose levels or special sub-groups of populations (pediatrics, elderly, etc.).

Among the main covariates in the PK parameters, it is worth highlighting the influence
of weight on the CL and V parameters in most mAbs. This may be due to the influence of
the FcRn expression levels and greater interstitial tissue, which facilitates the existence of
differences between individuals due to weight. Other covariates, such as albumin (ustek-
inumab, tildrakizumab, and risankizumab) and age (tildrakizumab and risankizumab), are
relevant for the design of clinical trials that allow explaining the differences in the disposi-
tion of mAbs. The role of ADA in the mAb PK levels could be controversial, since there is
great variability concerning the measurement kits used in each laboratory, so the data from
each center are not comparable. This issue can be solved by the adoption of unified criteria,
such as the designation of a central laboratory where all samples can be processed or the
establishment of a universal kit that should be used by most centers to be able to compare
results and draw definitive conclusions. To overcome the unpredictable PK variability
of therapeutic mAb, model-informed TDM in patients with inflammatory bowel disease
receiving infliximab has been recently suggested [120,153]. The use of population-based
analysis to characterize the main PK and covariate effects in a target population, together
with the relevance of TDM, could improve the dose-selection process of clinicians and
reduce the use of non-optimal dosing schedules in psoriatic patients. In this sense, it is
highly recommended to establish a successful PK/PD relationship that helps to understand
the level of exposure needed to achieve a concrete efficacy/safety threshold.

Most of the studies reported in this review have evaluated the PK properties of
mAbs, but little evidence has been provided to establish a mathematical relationship
between PK and continuous or categorial PD endpoints. For this reason, academia, the
pharmaceutical industry, and regulatory agencies are encouraged to jointly work to achieve
the implementation of model-informed dosing of biological therapies to improve clinical
practice in psoriasis. To this end, dose and schedule selection in clinical trials should be
conducted not only accounting for the overall distribution of PK, but also PD variability,
in order to select dosing regimens with optimal benefit–risk balance for the majority of
the population. However, solid exposure–response relationships are rare due to the small
number of dose levels tested, very sparse sampling, and high and flat efficacy rates that
make it difficult to identify a quantitative and longitudinal relationship.

Some mAbs exert their pharmacological action through direct target binding and
neutralization, followed by a downstream signal blockade, as is the case of adalimumab
and golimumab. However, other mAbs (cetuximab and trastuzumab) recruit additional
immune molecules to conduct the pharmacological effect [154,155]. So far, indirect response
models [75,77,87,92,95,96,104] have been proposed to account for the pharmacodynamic
response of mAbs on IL biomarkers. These structures make it possible to fulfill the assump-
tion of biomarker synthesis in the absence of drugs and satisfactorily link the mechanism
of interaction between the mAb and IL. However, PD baseline levels and PD observations
during the recovery phase are required to properly characterize the system and drug
related parameters.
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Treatments for an immune-mediated inflammatory disease, such as psoriasis, have
been enhanced by the development of mAb-based therapy. However, some patients are
not able to achieve an adequate clinical response. Some patients present an insufficient
response in the induction phase of the treatment, which is called primary non-response,
or after initial clinical benefit, they lose the ability to respond, which is called secondary
non-response [115,116]. The IIV of the clinical response to standard biologic doses in
patients with psoriasis may be explained by differences in the amount of drug available
at the target tissue, which, in turn, is induced by adherence, physiological and genetic
mechanisms, and other covariates, such as BW and drug immunogenicity [117,118]. In-
creasing evidence indicates that a way to solve all of these concerns is the use of TDM,
which aims to individualize dosage regimens to achieve maximal clinical efficacy and
minimize adverse effects. Currently, the psoriasis management guidelines do not include
the recommendation to use TDM, as is the case for other pathologies, such as inflammatory
bowel disease [156]. In this sense, the identification of predictable PD biomarkers in plasma
may help to anticipate the identification of responder and non-responder patients in the
clinical setting. There is very little evidence of using the interleukin levels to predict the
PASI index, but more efforts are needed in this way to clarify the contribution of early
biomarkers to clinical responses. At the same time, they become an easy measurement of a
direct endpoint linked with the mechanism of action of the mAb. Therefore, the use of a
mathematical framework able to characterize the relationship between the PK, biomarker,
and PD outcome over time is highly encouraged, together with the implementation of
TDM, since both become an essential tool to define the optimal dose ranges for each patient
for a given mAb in psoriasis.

7. Conclusions

This review represents the first attempt to compile all of the available information on
population PK/PD models of therapeutic mAbs approved for psoriasis disease, including
the clinical and regulatory information of the clinical trials conducted, population PK
and PD parameter estimates, and the impact of significant covariates, which are of high
relevance in the management of patients with moderate to severe psoriasis by clinicians.
The PK properties of mAbs were described using a two-compartment model with linear
absorption and disposition when sufficient PK evidence was collected. The characterization
of the PD outcome was performed using an indirect response model to account for the
change in PASI over time. Body weight was identified as a significant covariate for most of
the mAbs, and ADA and age were included also for golimumab, ustekinumab, brodalumab,
and tildrakizumab. The role of TDM for dose schedule selection in special sub-groups
of patients has been revealed, showing the importance of having an adequate structural
description of the PK and PD properties of mAbs, but also identifying relevant covariates
that might influence the mAbs’ exposure or response. Despite the limited experimental
evidence regarding the exposure–response relationship, the Ctrough levels were summarized
for adalimumab, infliximab, and secukinumab, which contributed to improving the model-
informed dose selection process. Prospective analyses are encouraged to mathematically
characterize the clinical exposure–efficacy relationships that contribute to establishing
clinically relevant exposure endpoints for TDM and early detection of non-responder
patients with psoriasis. Therefore, merging population PK/PD modeling and TDM, as a
clinical decision support tool that allows knowing and predicting the clinical response in
patients with moderate to severe plaque psoriasis, could be a key element to guarantee the
efficacy of treatments with mAbs in psoriasis.
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Abbreviations

ADA Antidrug antibodies
Alb Albumin
ALK Alkaline phosphatase
AUC Area under the plasma concentration–time curve
BID Twice a day
BIW Twice a week
BSA Body Surface Area
BW Body weight
Cavg Average concentration
Cmax Maximum concentration
CMT Compartment
CL Clearance
CL/F Apparent clearance
Cr Creatinine
CrCL Creatinine clearance
CRP Baseline C-reactive protein level
Ctrough Minimum trough concentration
D Day
DB Diabetes
DLQI Dermatologic Life Quality Index
DNA Deoxyribonucleic acid
EC50 Serum drug concentration causing 50% of the maximum effect
Emax Maximum drug effect
E–R Exposure–response
Fc Fragment crystallizable
FcγR Fcγ receptor
FcRn Neonatal Fc receptor
γ Hill’s coefficient
hs-CRP High-sensitivity C-reactive protein
HTA Hypertension
IC50 Median serum drug concentration causing 50% of the maximum inhibitory effect
IFN Interferon
IIV Inter-individual variability
IL Interleukin
IM Intramuscular
IV Intravenous
ka Absorption rate constant
Km Michaelis–Menten constant
kin Formation rate of psoriatic skin lesions
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kout Remission rate of psoriatic skin lesion
LE Linear elimination
mAb Monoclonal antibody
mDC Myeloid dendritic cell
MM Mixture model
MTX Past methotrexate use
NF- κB Nuclear factor kappa B
NLE Nonlinear elimination
NR Non-responder patients
OR Oral
PASI Psoriasis Area Severity Index
PASI75-W12 PASI75 responder status at the week 12 primary
PGA Physician Global Assessment
PDE4 Phosphodiesterase-4
PD Pharmacodynamic
PK Pharmacokinetics
PK/PD Pharmacokinetics/pharmacodymamics
PLBM Maximum placebo effect
PP Palmoplantar psoriasis.
PsA Psoriatic arthritis
Pso Psoriasis
Q Intercompartmental transfer clearance
QD Every day
QW Every week
Q2W Once every 2 weeks
Q4W Once every 4 weeks
Q8W Once every 8 weeks
Q12W Once every 12 weeks
R Responder patients
RSE Relative standard error
SC Subcutaneous
SM Single model
SMDs Small-molecule drugs
sPGA Static Physician Global Assessment
TMDD Target mediated drug disposition
TDM Therapeutic drug monitoring
TID Three times a day
Th T helper lymphocytes
TNF-α Tumor necrosis factor alpha
URI Upper respiratory infection
VC Central volume of distribution
V/F Apparent volume of distribution
Vmax maximal velocity for nonlinear elimination
VPz Peripheral volume of distribution
W Week
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