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Abstract: MicroRNA-34a (miR-34a), a tumor suppressor, has been reported to be dysregulated
in various human cancers. MiR-34a is involves in certain epithelial-mesenchymal transition
(EMT)-associated signal pathways to repress tumorigenesis, cancer progression, and metastasis.
Due to the particularity of miR-34 family in tumor-associated EMT, the significance of miR-34a is
being increasingly recognized. Competing endogenous RNA (ceRNA) is a novel concept involving
mRNA, circular RNA, pseudogene transcript, and long noncoding RNA regulating each other’s
expressions using microRNA response elements to compete for the binding of microRNAs. Studies
showed that miR-34a is efficient for cancer therapy. Here, we provide an overview of the function of
miR-34a in tumor-associated EMT. ceRNA hypothesis plays an important role in miR-34a regulation
in EMT, cancer progression, and metastasis. Its potential roles and challenges as a microRNA
therapeutic candidate are discussed. As the negative effect on cancer progression, miR-34a should
play crucial roles in clinical diagnosis and cancer therapy.

Keywords: microRNA-34a; epithelial-mesenchymal transition; competing endogenous RNA; circular
RNA; p53

1. Introduction

MicroRNAs (miRNAs or miRs) are a class of high-conserved, single-stranded noncoding RNAs
that are small, only 20-24 nucleotides in length. They can bind to 3’-untranslated regions (UTRs)
of messenger RNAs (mRNAs) to either inhibit mRNA translation or induce mRNA degradation
or deadenylation, thus silencing gene expression at the posttranscriptional level [1,2]. Since Lee
et al. [3] discovered the first miRNA lin-4 in 1993, many miRNAs have been revealed, and the
functions of miRNAs have gradually been clarified. MiRNAs have been reported to control about
30% of fundamental gene expressions in humans, most of which are essential for normal survival and
development [4-6]. Therefore, by regulating the target gene expression, miRNAs can be involved
in various kinds of signaling pathways to modulate many important biological processes, including
cellular proliferation, metastasis, apoptosis, senescence, differentiation, autophagy, and immune
responses [7]. miRNAs have been found to be dysregulated under pathological conditions, such
as neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and cancers [8-10].
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The functions of miRNAs may serve as tumor suppressors to inhibit tumor cell proliferation or as
oncogenes (oncomiRs) to induce tumorigenic processes [8,11,12].

MicroRNA 34a (miR-34a), as a member miR-34 family (miR-34a/b/c, miR-34s) [13,14], has been
reported to be dysregulated in various cancers, and is the first miRNA that was demonstrated to be
directly regulated by p53 [15]. Although the expression of miR-34a includes endogenous expression or
mimics transfection, the mature miR-34 has been shown to be inactive in several cancer cells given the
lack of a 5'-phosphate. When DNA-damaging stimulus is applied to these cells, inactive miR-34a can
be rapidly activated through 5'-end phosphorylation [16]. The dysregulation of miR-34a in cancers
has been the focus of researchers. This dysregulation of miR-34a has been reported in many different
cancers, including colorectal cancer, prostate cancer, breast cancer, lung cancer, liver cancer, and
osteosarcoma, as well as other diseases. Numerous studies showed that miR-34a could be a potential
biomarker for diagnosis and prognosis in different types of cancers [17-22]. A recent systematic review
and meta-analysis verified the diagnostic value of miR-34a in detecting breast cancer [23]. Primary
tumor cells can acquire migratory and invasive abilities through epithelial to mesenchymal transition
(EMT) and form metastases [24-27]. A large quantity of experimental data showed that miR-34a can
influence EMT in metastatic cancers. Competing endogenous RNA (ceRNA) is a new hypothesis
that states that mRNA, circular RNA (circRNA), pseudogene transcript, and long noncoding RNA
(IncRNA) regulate each other’s expressions using microRNA response elements (MREs) to compete
for the binding of miRNAs [28,29].

In this review, we focus on the functions of miR-34a in cancer and its underlying EMT mechanisms.
ceRNA is introduced to discuss the novel miR-34a regulation in EMT and cancer progression. MiR-34a’s
promising therapeutic potential and the challenges faced are also discussed.

2. Underlying EMT Mechanism of MiR-34a in Cancer Metastasis

Most tumor cells achieve metastatic and invasive ability through EMT, resulting in a poor prognosis
and even death [30]. As a cellular biological process, epithelial cells lose their morphologies and adhesive
abilities and gain a mesenchymal phenotype, such as increased motilities (Figure 1) [31,32]. Thus,
EMT is characterized by a loss of cell polarity and a decrease in expression of some epithelial
markers, such as E-cadherin, cytokeratins, and «-catenin, as well as an increase in expression of
some mesenchymal markers, such as N-cadherin, vimentin, fibronectin, and matrix metalloproteinases
(MMPs) [24,30,31,33]. An increasing number of findings has documented the negative effect of miR-34a
in tumor cell proliferation, metastasis, and invasiveness, indicating the important relationship between
miR-34a and tumor-associated EMT [34,35].

3. MiR-34a Regulates EMT in Cancer Cells

EMT can be categorized using physiological tissue contexts. The most well-defined type is EMT
in tumor growth and cancer progression (type 3 EMT) [36], when cancer cells at the invasive front of
the tumors convert into a mesenchymal phenotype [33]. EMT generates cells with invasive properties
that enable them to move into the blood stream and spread systemically to other organs. EMT is
an important process in tumor evolution, providing the possibility for tumor cells to adapt to the
tumor’s microenvironment. Appropriately cellular environments, cytokines, and extracellular signals
may induce EMT [37-39]. One study showed that inducing the expression of pri-miR-34a using
doxycycline could result in the down-regulation of vimentin and the upregulation of E-cadherin in
human colon cancer cell SW480 [40], suggesting that miR-34a can negatively regulate EMT to inhibit
proliferation and invasion. In addition to the expression change in EMT markers, the deregulating
expression of EMT-associated transcription factors (EMT-TFs), such as SLUG, SNAIL, and ZEB1, were
also observed [41,42]. EMT-TFs are also essential to the activation of tumor-associated EMT [43]
(Figure 1). A systematic review and meta-analysis suggested that the overexpression of TWIST1,
SNAIL1, and especially SLUG plays a key role in the aggregation of metastatic breast cancer (MBC)
treatment as well as in the improvement of follow-up plans in MBC patients [44]. A wealth of data
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indicated that microRNAs can bind with EMT-TFs, thus forming double-negative feedback loops to
interfere with tumor-associated EMT [42,45]. Besides EMT-TFs, miR-34a can also control EMT via
other approaches. In short, miR-34a plays its tumor-suppressive role as a vital negative regulator for
EMT in tumors. Figure 2 summarizes miR-34a-controlled signaling in tumor-associated EMT in cancer
cell progression.

3.1. MiR-34a Binds to 3'-UTR of EMT-TFs to Requlate EMT

Three positive EMT-TFs are most promising: (1) zinc-finger transcription factors SNAIL family,
including SNAIL1, SNAIL2, and SNAIL3 (also known as SNAIL, SLUG, and SMUC, respectively);
(2) ZEB transcription factors, including ZEB1 and ZEB2; and (3) basic helix-loop-helix (bHLH)
transcription factors family, including TWIST1, TWIST2, and E12/E47 [41,46,47]. EMT-TFs are
necessary for the activation of EMT (Figure 1). MiR-34a binds to 3’-UTR of EMT-TFs directly to
regulate tumor-associated EMT.

Wnt TGF-p
EMT-TFs Notch

TP53

Figure 1. Mechanisms of epithelial to mesenchymal transition (EMT) regulation. EMT is characterized
by loss of cell polarity and a decreased expression of some epithelial markers, such as E-cadherin,
cytokeratin, and o-catenin, as well as an increased expression of some mesenchymal markers, such
as N-cadherin, vimentin, fibronectin, and matrix metalloproteinases (MMPs). As a cellular biological
process, epithelial cells lose their morphologies and adhesion abilities and gain a mesenchymal
phenotype and increased motilities. Signaling pathways for EMT-TFs, Notch, Wnt, and TGF-3, were
regulated by miR-34a for tumor-associated EMT. Note: EMT-TFs, Epithelial to mesenchymal transition
inducing transcription factors; TGF, transforming growth factor.

SNAIL 3’-UTR was reported to contain a conserved sequence that matches miR-34 [36,40,48,49].
The SNAIL family is the only EMT-TF that has a matched sequence with all three miR-34 family
members (miR-34a/b/c). The dual-reporter assay further demonstrated that SNAIL is the direct target
of the miR-34 family [48,49]. In addition to the SNAIL family, UTRs of other EMT-TFs, such as ZEBI,
ZEB2, and TWIST], also exist in conserved sequence(s) that match miR-34a, as well as the stemness
factors BMI1, CD44, CD133, and c-MYC [13,36,42,50], which are down-regulated by direct miR-34a
binding. Thus, miR-34a can also down-regulate the stemness factors BMI1, CD44, CD133, OLFM4,
and c-MYC [40,51]. These above studies clearly showed the inhibition of miR-34a on EMT-TFs, which
results in the attenuation of EMT.

Among these EMT-TFs, SNAIL and TWIST1 are especially unique because they can combine
with the E-box sequences of E-cadherin promoter to suppress the expression of E-cadherin, leading to
the strengthening of EMT [32,52,53]. SNAIL can enhance the expression of mesenchymal genes, like
vimentin in ovarian cancer [54] and matrix degradation enzyme MMP9 in hepatocellular carcinoma
(HCC) [55]. Apart from regulating the expression of related epithelial and mesenchymal genes, SNAIL
also has a positive effect on other EMT-TFs, TWIST1, and ZEB1 [55].

Loss-of-function or mutation in p53 promotes cancer cell EMT by de-repressing SNAIL1 protein
expression and activity [48]. Activation of p53 has been shown to down-regulate SNAIL via induction
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of the miR-34a/b/c. Suppression of miR-34a/b/c causes up-regulation of SNAIL; cells displayed
EMT marker changes and related features, therefore enhancing migration and invasion. Ectopic
miR-34a expression induces mesenchymal-epithelial-transition (MET) and down-regulates SNAIL
expression [40]. SNAIL and ZEB1 bind to E-boxes in the miR-34a/b/c promoters, thereby repressing
miR-34a/b/c expression. Thus, by shifting the equilibrium of these reciprocal regulations toward a
metastatic state, p53, SNAIL1, and miR-34 form a feedback loop to control the initiation of cancer cell
EMT program [40,48]. Imani et al. reported that the co-delivery of miR-34a and thymoquinone (TQ),
a small molecular component from Nigella sativa, inactivates the downstream of the EMT signaling by
targeting EMT-TFs, TWIST1, and ZEB1 [13,42].

3.2. MiR-34a Induces p53 Activation via Targeting TP53 and MDM4

In addition to p53 regulating the expression of miR-34a, miR-34a has been shown to induce
P53 activation by directly targeting TP53 and MDM4, a strong p53 transactivation inhibitor [14,56].
MiR-34a contributes to p53 function by targeting multiple p53 inhibitors, including the histone
deacetylases SIRT1 and HDAC1, and MTA2 that deacetylates p53, thereby epigenetically increasing
the transcriptional activity of p53 [57-60]. The complexity in both the positive and negative effects of
miR-34a on the p53 network suggests that rather than simply promoting the p53 response, miR-34a
might stabilize the robustness of the p53 response to genotoxic stress [56].

Compared with p53 wild type cells, miR-34s were down-regulated in p53-mutated ovarian cancer
cells [61]. When cells were treated with Nutlin-3a, a chemical activator of p53, the expression of
miR-34a significantly increased [62]. This research indicated that miR-34a expression follows the
change in p53, and demonstrated that miR-34a is a downstream target of p53. More importantly, p53
has been reported to diminish the EMT progress by moderating SNAIL expression and activity by
strengthening the expression of miR-34s [48]. Collectively, miR-34a, p53, and EMT shape an intricate
network to influence each other’s functioning (Figure 2) [35].

3.3. MiR-34a Regulates EMT via Wnt, TGF-$1/Smad3/4, Notch Signaling and Others

MiR-34a regulation of tumor-associated EMT can modulate not only by EMT-TFs and tumor
suppressor p53, but also some fundamental signal pathways, such as Wnt [63,64], TGF-31/Smad3
(transforming growth factor-beta 1/Smad3), and Notch1 [65,66] (Figure 2).
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Figure 2. MiR-34a-controlled signaling for EMT. MiR-34a inhibits EMT-TFs, Notch signaling, Wnt
signaling, and TGF-{3 signaling, whereas TP53, miR-34a, and NOTCHI1 form feedback loops with
each other for EMT. The competing endogenous RNAs (ceRNAs) is a novel concept about mRNAs,
circRNAs, pseudogene transcripts and IncRNAs that regulate each other’s expression to compete for
the binding of miRNA. Note: arrow indicates promotion, whereas t-bar indicates inhibition.
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3.4. Wnt Signaling Pathway

A study indicated that miR-34a could negatively control Wnt transcriptional activity by regulating
multiple pathway-associated genes in both mammary glands and breast cancer [67]. Expression of
miR-34a significantly decreased in patients with hepatitis B virus (HBV)-activated liver fibrosis and
hepatocellular carcinoma (HCC), as well as in CC14 induced liver fibrosis model mice.

Lymphoid enhancer-binding factor-1 (LEF1) is an important TF in the Wnt signaling pathway,
involved in regulation of cell proliferation and invasion. MiR-34a modulates the levels of LEF1 to
regulate EMT in prostate cancer cells. Functionally, miR-34a is negatively correlated with the migration
and invasion of prostate cancer cells through LEF1. Likewise, miR-34a could be involved in the Wnt
pathway by specifically repressing LEF1 to regulate the EMT process in prostate cancer [68]. miR-34a
contributes to the chemosensitivity of BIU87/ADR, an epirubicin (EPI) chemoresistant cell line, by
inhibiting the TCF1/LEF1 axis in bladder cancer [69].

The HOX transcript antisense RNA (HOTAIR), a IncRNA, is highly abundant and conserved,
and it has been implicated in many essential biological processes and diseases, including cisplatin
(DDP) resistance in gastric cancers. HOTAIR knockdown inhibited DDP resistance by upregulating
miR-34a, indicating that the effect of HOTAIR /miR-34a axis on gastric cancer (GC) cells is involved in
the PI3K/ Akt and Wnt/ 3-catenin signaling pathways [70].

3.5. Notch Signaling Pathway

In addition to EMT-TFs, miR-34a can modulate EMT by binding to pivotal target genes, such
as NOTCHT1 in Notch signaling [71]. For example, miR-34a can bind to the 3’-UTR of Notchl and
Jagged1 in colon cancer cells and cervical cancer cells, thus inhibiting the cell migratory ability and the
expression of vimentin and fibronectin, and promoting the expression of E-cadherin [65,66,71]. Treatment
options for metastatic castrate-resistant prostate cancer (mCRPC) are limited and typically centered
on paclitaxel-based chemotherapy. Liu et al. [72] found that miR-34a attenuates chemoresistance to
paclitaxel by regulating target genes, JAGI and Notchl, which are associated with drug resistance.
NFIX circular RNA (circNFIX), which regulates NOTCH1 to promote glioma progression by sponging
miR-34a-5p via the Notch signaling pathway, will be discussed in the latter portion of this review [73].

3.6. TGF-B1 Signaling Pathway

Transforming growth factor-betal (TGF-f31) is a type of secretive protein affecting the same cells
that secrete the protein (autocrine) or its neighboring cells (paracrine). TGF-31, a key member in
the TGF-3 superfamily, can be pro-tumorigenic or tumor suppressive. TGF-3 induction of EMT
is considered a pro-tumorigenic state. Huang et al. [74] revealed that miR-34a is able to reverse
TGF-p-induced EMT, invasion, and migration by suppressing Smad4 in nasopharyngeal carcinoma
cells (NPC).

3.7. Other Pathways

As a target of miR-34 family members, interleukin-6 receptor (IL-6R) can mediate the activation of
signal transducer and activator of transcription 3 (STAT3), whereas the oncogenic transcription factor
STAT3 can bind to miR-34a via a conserved binding site to repress the expression of miR-34a. The
inhibition of miR-34a is essential for IL-6-induced EMT and invasion [75]. Thus, IL-6R/STAT3/miR-34a
constitutes a feedback loop to regulate EMT for suppressing tumor progression that may be relevant
for future therapeutic approaches [76].

4. CeRNA in Cancer Progression: A New Pattern of Gene Expression Regulation Sponging
MiR-34a

The competing endogenous RNA (ceRNA) is a novel concept about mRNA, circRNA, pseudogene
transcripts, and IncRNAs regulating each other’s expression using microRNA response elements
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(MREs) to compete for the binding of miRNAs [28,29,77,78] (Figure 2). Although purely new, the
conception of ceRNA can be traced to the 2007 study by Ebert et al. [79]. Numerous lines of evidence
in bioinformatics, cell biology, and animal models have supported the ceRNA hypothesis for EMT in
cancer progression [78,80-82] (Figure 3).

Lnc015192
SNHG7 '

Lnc-OC1
) l EMT/cancer
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circGFRA1
circNFIX

PDL1 and LDHA

Figure 3. CeRNA in cancer progression: a new pattern of gene expression regulation sponging
miR-34a. The IncRNAs, including Inc015192, SNHG?, and Inc-OC1; circ RNAs including circGFRA1
and circNFIX; and coding RNA including PDL1 and LDHA, can function as ceRNAs through
MRE:s to regulate target gene expression by sponging miR-34a, for EMT in cancer progression and
metastasis. Note: solid arrow indicates the major pathways, whereas dashed arrow indicates another
regulatory pathway.

LncRNAs, defined as RNAs of more than 200 nucleotides in length, have been implicated in a
variety of disease states. Mounting evidence shows that IncRNAs can function as ceRNAs for miRNAs
in distinct pathological states. Huang et al. [83] reported that Adam12 and Inc015192 promote breast
cancer metastasis partly by sponging miR-34a through the ceRNA mechanism. First, they found that
after knocking out miR-34a in breast tissues, Adam12 and Inc015192 were significantly upregulated.
Then, knockdown Adam12 and Inc015192 inhibited breast cancer cell migration, invasion, and EMT.
Further experiments revealed that Inc015192 regulates Adam12 expression by functioning as a ceRNA
for miR-34a. SNHGY is another IncRNA that can promote tumor growth and EMT via regulating
miR-34a [84]. Li et al. [85] revealed that SNHGY facilitates proliferation and metastasis as a ceRNA to
regulate GALNT7 expression through sponging miR-34a in colorectal cancer (CRC) progression by
playing an oncogenic role in regulating the PI3K/Akt/mTOR pathway by competing with endogenous
miR-34a and increasing GALNT?. Tao et al. [86] indicated that Lnc-OC1 promotes cell proliferation
and migration by sponging both miR-34a and another miR-34 family member, miR-34c, in ovarian
cancer. In addition to cancer progression, IncRNA also plays a role in other diseases. For example,
UFC1 was reported to promote proliferation of chondrocyte in osteoarthritis by acting as a sponge for
miR-34a [87].

Circular RNA (circRNA) is an another novel type of RNA recently discovered which, unlike
the better known linear RNA, forms a covalently closed continuous loop. In circular RNA, the
3’ and 5’ ends normally presenting in an RNA molecule are joined together [88-90]. In addition to
protein-coding potential, endogenous circular RNAs are resistant to exonuclease-mediated degradation
and are presumably more stable than most linear RNAs in cells given the lack of its 5" or 3" ends [91,92].
circRNA enrichment in the cytoplasm, coupled with extensive complementarity of circRNAs to their
linear mRNA counterparts, shows the possibility of these RNAs exerting their functional roles through
microRNA binding. Thus, circRNAs have potentially important roles in gene regulation [89,93], such
as ciRS-7, which could serve as miRNA sponges [94]. circRNAs have been shown to regulate EMT,
indicating that some circRNAs may affect EMT-related cellular functions including carcinogenesis and
metastasis [95]. Very recent studies showed that circRNAs act as miR-34a sponges in cancers. He et
al. [96] indicated that circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer (TNBC)
by regulating miR-34a. MiR-34a has also been shown to directly suppress lactate dehydrogenase A
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(LDHA) in colorectal cancer and breast cancer [97] as well as PDL1, an important immune checkpoint
inhibitor, in lung cancer and acute myeloid leukemia [98]. Further study revealed that both PDL1 and
LDHA acted as ceRNAs that promote proliferation and metastasis of TNBC by regulating miR-34a [99].
Thus, simultaneous targeting PDL1 and LDHA, combined with immunotherapy and metabolically
targeted treatments, might represent a new breast cancer treatment, especially in TNBC. By sponging
miR-34a-5p via the Notch signaling pathway, another circRNA, circNFIX, was reported to regulate
NOTCHLI1 to promote glioma progression [73]. CircNFIX is overexpressed in glioma, and the Notch
signaling pathway is considerably upregulated in tumor tissues compared with paired normal brain
tissues by acting as a sponge in miR-34a that targets NOTCH1. Si-circNFIX and miR-34a mimic
promote cell apoptosis, whereas a miR-34a inhibitor can neutralize the suppressive effect of si-circNFIX
on glioma cells. In vivo experiments demonstrated that si-circNFIX suppresses glioma cell growth by
regulating miR-34a and Notch signaling.

Taken together, these studies clearly indicate that ceRNA plays a vital role in cancer progression
and/or EMT through gene expression regulation by sponging miR-34a.

5. MiR-34a as a Promising Agent for MicroRNA Therapeutics

Insights into the roles of miRNAs in development and disease, particularly in cancer, have
highlighted miRNAs as potential tools and targets for novel therapeutic approaches [11,100]. Due to
their dysregulation in cancers, miRNAs are classified into two types: tumor suppressors or oncogenes
(oncomiRs) [12]. According to these two distinct functions of miRNAs in cancer, an innovative
therapeutic approach that relies on miRNAs was introduced [5,101]. This novel therapeutic approach
uses miRNA mimics or antimiRs to modulate miRNA expression and activity in vivo [11,102,103].

Metformin, a drug approved by the U.S. Food and Drug Administration as a prescription
medication to treat diabetes, was revealed to have an anticancer function. Wang et al. [104] investigated
metformin’s regulatory role of the (SNAIL/miR-34):(ZEB/miR-200) system for CRC therapy in the EMT
process. They assessed its anti-EMT abilities and explored its inherent pharmacological mechanisms for
CRC therapy. Metformin inhibited proliferation, migration, and invasion in CRC cells by up-regulation
of E-cadherin and down-regulation of vimentin, thereby exhibiting anti-EMT characteristics. In this
system, miR-200a, miR-200c, and miR-429 levels increased and miR-34a, SNAIL1, and ZEB1 levels
decreased in the TGF-3-induced EMT after metformin treatment. Divergent with the main topic
of this review, metformin decreased miR-34a but exhibited anti-EMT effects; thus, metformin may
bidirectionally regulate the (SNAIL/miR-34):(ZEB/miR-200) system for CRC therapy. A combination
treatment of miR-34a mimic and TQ might enhance their therapeutic effects in targeting EMT-TFs
signaling [13,42].

To some extent, miRNA therapeutics is a form of precision medicine; it is specific to certain sites
to control gene expression. However, the problem with this form of medicine is the lack of efficiency in
the miRNAs delivery system. RNA is easily degraded by RNase, and RNase is abundant in serum and
endocytic compartment in tissues or cells. Therefore, when delivering miRNAs mimics or antimiRs to
target cells, ensuring their therapeutic efficiency is challenging. Until now, there were two solutions to
overcome this problem: chemically modifying nucleotides to increase stability or applying nanocarrier
delivery vehicles to avoid degradation [105,106].

Lin et al. [107] selected the VP16-GAL4-WPRE integrated systemic amplifier (VISA) to construct
a non-viral delivery vector. The VISA nanoparticle vector contains a human telomerase reverse
transcriptase promoter and was used to encapsulate miR-34a (TV-miR-34a). Breast cancer stem cells
(BCSC) that were transfected with TV-miR-34a showed extremely high expression of miR-34a. The
oncogenic properties and tumor proliferation characteristics of BCSC were inhibited by TV-miR-34a. In
a model of HCC, delivery of miR-34a in a polymer-based nanosystem vector resulted in decreased cell
proliferation and tumor growth [108]. These two experiments demonstrated the efficiency of miR-34a
in oncotherapy. miR-34a therapeutics also produced incredible success in a classical Non-Small Cell
Lung Cancer (NSCLC) mouse model that is resistant to conventional anticancer therapy. Using
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this mouse model, one study, which combined miR-34a with let-7b in a neutral lipid emulsion or
a NOV340 nanoparticle, successfully induced miR-34a expression and increased survival [109]. A
combination treatment with miR-34a and let-7b could strengthen the anti-proliferative effects of
erlotinib in NSCLC cells [110]. Amphiphilic nanocarrier-induced modulation of PLK1 and miR-34a can
improve therapeutic responses in pancreatic cancer [111]. In this study, a combination of microRNA
and siRNA was delivered by an efficient nanocarrier to pancreatic ductal adenocarcinoma (PDAC)
tumors. Using proteomic-microRNA profiles and survival data of PDAC patients from TCGA, a
novel signature for prolonged survival had been discovered. Accordingly, a microRNA-mimic to
increase miR-34a, together with siRNA to silence PLK1, was combined in in vivo dual-targeting
experiments, resulting in the development of a biodegradable amphiphilic polyglutamate amine
polymeric nanocarrier (APA). Polyplexes of APA-miRNA-siRNA were systematically administered
to orthotopically inoculate PDAC-bearing mice, and they showed no toxicity to normal cells but
accumulated inside the tumors, thus showing enhanced antitumor effects. 7C1, a nanoparticle agent,
has been used to efficiently deliver miR-34a systematically in mouse models, indicating that the
tumor progression was attenuated. The anticancer effect became more prominent with a combination
treatment of miR-34a and siRNA-Kras [112]. Depending on nanovector-encapsulated miR-34a mimics,
anticancer therapeutics have also been applied in prostate cancer [51,113], neuroblastoma [114], and
pancreatic cancer [115].

Numerous preclinical studies have shown the broad application of miR-34a in cancer therapeutics,
but more articles have been than those already mentioned here. In April 2013, MRX34, a special lipid
nanoparticle filled with miR-34 mimics, was tested in clinical trial as the first microRNA-associated
therapeutic drug (NCT01829971) in the USA (https:/ /clinicaltrials.gov/ct2 /show /NCT01829971) [116].
This trial recruited 155 participants with 7 cancer types including primary liver cancer, SCLC,
lymphoma, melanoma, multiple myeloma, renal cell carcinoma, and NSCLC. In August 2016,
MRX34 was tested in a clinical trial (NCT02862145) again with advanced melanoma patients
(https:/ /clinicaltrials.gov/ct2 /show /NCT02862145). Although the trial was quickly stopped because
of serious adverse effects, miR-34a therapeutics is worthy of consideration. With increasingly clear
understanding concerning miRNAs and miR-34a function, a miR-34a mimic is the most promising
microRNA therapeutics.

6. Future Outlooks and Challenges

The poor prognosis of cancer is largely ascribed to the metastasis in cancer cells. MiR-34a
acts as a negative regulatory factor of tumor-associated EMT and plays a considerable role in
repressing tumorigenesis and slowing tumor progression. As a promising tumor suppressor, miR-34a
is being considered for cancer therapy. Many studies about miR-34a’s therapeutic potential have
been completed and they verified its tumor suppressive role in cancer. However, some challenges
emerged with the application of miR-34a therapeutics. One is miRNA degradation, preventing
miR-34a from penetrating the capillary endothelium into target cells. The immunoreaction of miR-34a
therapeutics also deserves our attention. MRX34 was tested in a clinical trial (NCT02862145), but
it was withdrawn because five immune-related adverse events occurred. If miR-34 therapeutics
is dependent on nano-vectors, the toxicity of nanoparticles is also worth to discuss. Mechanisms
inhibiting therapeutic re-expression of miR-34a in the context of EMT, inflammation, or oncogene
signaling could be responsible for insufficient therapeutic effects, whereas aberrant expression of
miR-34a in normal cells, or massive necrotic cell death observed in miR-34a-treated tumors, may
underlay systemic negative effects of therapy. Even so, other unexpected side effects may occur.
Successful management of side effects on non-tumor cells is indispensable for successful therapeutic
application. ceRNA’s mechanism is now a novel concept involving the mRNA, circRNA, pseudogene
transcripts, and IncRNAs regulation of each other’s expression using MREs to compete for the
microRNA binding in EMT and cancer progress. Networks between miR-34a and EMT may be vital
diagnostic markers and these networks may be provided therapeutic methods for malignant tumors.
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