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ABSTRACT

Tissue microarrays (TMAs) allow multiplexed
analysis of tissue samples and are frequently used
to estimate biomarker protein expression in tumour
biopsies. TMA Navigator (www.tmanavigator.org) is
an open access web application for analysis of TMA
data and related information, accommodating cat-
egorical, semi-continuous and continuous expres-
sion scores. Non-biological variation, or batch
effects, can hinder data analysis and may be
mitigated using the ComBat algorithm, which is
incorporated with enhancements for automated
application to TMA data. Unsupervised grouping of
samples (patients) is provided according to
Gaussian mixture modelling of marker scores, with
cardinality selected by Bayesian information criter-
ion regularization. Kaplan–Meier survival analysis is
available, including comparison of groups identified
by mixture modelling using the Mantel-Cox log-rank
test. TMA Navigator also supports network infer-
ence approaches useful for TMA datasets, which
often constitute comparatively few markers. Tissue
and cell-type specific networks derived from TMA
expression data offer insights into the molecular
logic underlying pathophenotypes, towards more
effective and personalized medicine. Output is inter-
active, and results may be exported for use with
external programs. Private anonymous access is
available, and user accounts may be generated for
easier data management.

INTRODUCTION

Oncogenic selection manifests through dysregulated
pathways (1). Protein abundance and post-translational

modifications (PTMs) are key determinants of network/
pathway activity; therefore, functional proteomics is par-
ticularly important for understanding signalling networks
underlying cancer progression, including evolution of
drug resistance and metastasis (2). Tissue microarrays
(TMAs) enable study of protein (and RNA) expression
in ex vivo material, typically formalin-fixed paraffin-
embedded tissue obtained at operation (3). Multiplexed
immunohistochemical analysis across arrays of tissue
cores efficiently derives protein expression measurements
for many specimens (4). TMAs also provide greater
consistency than whole section approaches due to simul-
taneous processing of multiple samples in identical condi-
tions, among other features (5). Clinical subtyping
frequently uses TMAs, for example to determine
estrogen receptor-a (ER-a) and HER2/neu status in
breast cancer (5–7). Although alternative techniques
afford greater throughput for estimating protein expres-
sion, notably reverse phase protein arrays (8) and mass
spectrometry (9), TMAs have particular advantages.
These include identification of marker subcellular localiza-
tion and discrimination of tumour compartments (e.g.
stroma) using little material and without requirement for
laser capture microdissection or cell fractionation (10,11).
Furthermore, TMAs provide potential to identify single
cell expression distributions (12). TMA Navigator
provides an integrated platform for TMA data, designed
to handle both categorical, semi-continuous and continu-
ous scoring, e.g. (13–16). User-friendly interactive access is
provided for data processing, investigation of marker
networks and risk stratification. An option is available
for reduction of batch effects, which are common, for
example where data are split across multiple TMA
blocks (17,18). Techniques for data exploration include
kernel density estimation and Gaussian mixture modelling
with Bayesian information criterion regularization for
unbiased cluster identification. Analysis of survival is
included (19), incorporating stratification based on
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mixture model results. Evidence is mounting that most
phenotypes are governed by complex networks (20,21).
TMA Navigator provides network inference approaches
applicable to TMA datasets, which typically have rela-
tively few markers. While several resources for TMA
image data processing and management exist (22–25),
few user-friendly tools provide tailored workflows for
data analysis and integration with clinical variables.
Stanford TMA software (26) and X-tile (27) are notable,
but provide comparatively restricted functionality. Study
of marker relationships in clinical samples contributes
to the development and testing of hypotheses about
control of medically relevant phenotypes, such as treat-
ment response or metastasis (21).

USAGE

A flowchart summarizing the steps involved in using
TMA Navigator (www.tmanavigator.org) is given
in Supplementary Figure S1 and includes embedded
hyperlinks to relevant parts of the user guide. Extensive
help documentation is available by clicking on the Help
button near the top-right of any page on the website,
which opens at the section relevant to the current page.
Many parts of the website have context-sensitive help,
including tooltips and links from headings to appropriate
subsections of the user guide. The first step in working
with TMA Navigator is to create a dataset by importing
marker scores, typically protein expression values; survival
information can also be uploaded. A unique page for
the dataset (the ‘dataset page’) has a Run analysis
button providing access to data exploration, network
inference and survival analysis. Analyses are processed
in a queuing system and results are accessed from the
dataset page.

Importing data

TMA Navigator has a button labelled Add dataset near
the top-right of every page to start the process of import-
ing marker data. A grid format is required, with markers
as columns and samples as rows. Marker replicates are
specified by multiple columns with identical names. File
formats accepted are Microsoft Excel (.xls, .xlsx),
tab-separated (.tsv, .txt) or comma-separated values
(.csv). For anonymous guest users, an imported dataset
receives a unique URL, which is easily bookmarked and
protected by a random key. Alternatively, users may
register an account, which provides a single point of ref-
erence for multiple uploaded datasets.

Tissue microarray datasets are often split across
multiple TMA blocks, which can lead to unwanted non-
biological variation (batch effects). TMA Navigator
provides an option for batch effect reduction using
ComBat (17). We have adapted ComBat for use with
TMAs, including improved error handling and automatic
removal of replicates/markers that prove problematic due
to missing data. Batch correction is offered during data
import when batch information is included with marker
scores—batches are indicated by a column named *Batch
and covariates specified with a column name including

the prefix *cov. Additional information on batch correc-
tion is provided at www.tmanavigator.org/help/score-
requirements#batches.
Survival data are uploaded using the Attach survival

button located on the dataset page. Patient identifiers in
the TMA marker and survival data must match; anonym-
ous patient identifiers such as a sequential numeric value
must be used. The user guide (www.tmanavigator.org/
help) gives further details on data import and formatting
requirements.

Data exploration

Marker distributions may be visualized using density plots
(continuous data) or histograms (categorical data).
Samples may be clustered by modelling marker expression
as a mixture of Gaussian distributions. The number of
clusters is determined automatically, and the procedure
is fully unsupervised (methods). The mixture model is
plotted with the centre of each cluster indicated, overlaid
with a density plot and histogram; model parameters are
displayed in a sidebar. Risk stratification according to
marker values is commonly done manually or with quan-
tiles (4,28,29). Mixture modelling with appropriate regu-
larization (methods) has significant advantages, providing
fully automated and statistically well-founded identifica-
tion of groups according to expression values. Marker
relationships may be explored with a heatmap
(Supplementary Figure S2).
Figure 1 shows a mixture model for the protein

E-cadherin in the dataset ‘Breast Cancer 1’
(Demonstration data). The suffix ‘Cy-Mem’ indicates cyto-
plasmic andmembrane expression values (i.e. non-nuclear).
E-cadherin is a clinically important adhesion protein that
is putatively down-regulated in epithelial to mesenchymal
transition (EMT) and metastasis (30–32). Mixture
modelling identified two groups, ‘E-cadherin low’
(n=10, mean score=705) and ‘E-cadherin high’
(n=118, mean score=3769). Survival of these groups
was investigated in TMA Navigator (Figure 2); the
‘E-cadherin low’ group showed a trend for worse
survival, consistent with expectations (28,31,33).

Survival analysis

Survival analysis involves statistical testing to examine
relationships of marker scores with survival, accounting
for censoring, for a review see (34). Groups are defined
according to marker scores with survival displayed as a
Kaplan–Meier plot (19). The difference in survival
between groups is tested for significance using the
Mantel-Cox log-rank test (35) with false discovery rate
(FDR) correction applied (36). Figure 2 and
Supplementary Figure S3 show Kaplan–Meier plots for
E-cadherin and PTEN expression respectively on ‘Breast
Cancer 1’ (invasive ductal) and ‘Breast Cancer 3’
(trastuzumab-treated) cohorts (Demonstration data).
Grouping according to E-cadherin expression (Figure 2)
was determined by mixture modelling, a fully unsuper-
vised approach (Data exploration). Loss of E-cadherin
confers poor prognosis (30,31,33), and the low-expressing
group showed the expected trend for worse survival. TMA
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Navigator provides for survival analyses on mixture
modelling results as the option ‘Kaplan–Meier (mixture
model) plots’ in the Run analysis dialogue box.
Supplementary Figure S3 shows survival for tertiles of
PTEN expression (FDR P=0.0207), a tumour suppres-
sor important for trastuzumab response (37) scored using
the semi-continuous ‘quickscore’ method (Demonstration
data). Splitting by tertiles provides roughly equal group
sizes and so may improve prospects of obtaining statistical
significance (38). However, these groups are unlikely to
reflect modes of the underlying marker score distribution.
Mixture modelling provides for biologically motivated
grouping and so may enable better risk stratification,
although associated smaller group sizes can lead to
lower statistical power (38). When mixture modelling
returns a single Gaussian (unimodal) model, survival
analysis is still possible using tertiles. For categorical
data, groups are defined by score values.

Network inference

Correlation networks provide a useful abstraction of the
relationships (edges) between multiple markers, for
example to inform biomarker discovery (39). TMA

Navigator is typically used for analysis of protein expres-
sion, although markers might also include clinical vari-
ables such as lymph node metastasis count. TMA
studies usually involve relatively few proteins that may
have close relationships in signalling and/or metabolic
pathways; therefore, common assumptions about
network structure such as sparsity (40,41) do not neces-
sarily hold. Furthermore, TMA data are subject to
multiple sources of confounding variation that may be
extremely challenging to remove, including differences in
surgical procedure, sample age, reagent batch/age, sample
fixation and variation in the material analysed. This vari-
ation acts as ‘noise’ and may reduce correlation values
even when markers have biological relationships (17).
Accordingly, edge thresholding for TMA networks is
usefully tailored to the individual dataset studied, and to
enable this, TMA Navigator affords access to correlation
values for all marker pairs. Statistical significance is
normally applied to identify minimum threshold values
(e.g. FDR P-value� 0.05). Correlations can identify bio-
logically meaningful edges (42,43); however, statistically
significant correlations do not necessarily underlie
genuine functional interactions (44). Ideally, the edge

Figure 1. Gaussian mixture model of non-nuclear E-cadherin expression in primary invasive ductal breast tumours (demonstration dataset
‘Breast Cancer 1’). The histogram (black outlined bars) and kernel density estimation plot (solid blue line) both indicate protein expression. The
mixture model is shown as a dotted turquoise line. Two patient groups were identified; the mean expression value for each group is shown by a
vertical dotted line, and mixture model parameters are given on the right of the figure. The tabbed interface (top) allows easy navigation between
markers.
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threshold may be calibrated against negative control
markers unrelated to the pathway(s) studied, as well as
positive controls where relationships are well charac-
terized in the system of interest.

Correlation networks may be inferred in TMA
Navigator using several measures: mutual information,
Spearman correlation or Pearson correlation. Mutual in-
formation measures statistical dependency between
markers and therefore detects many types of interaction,
although does not distinguish between positive and
negative relationships. Also, significance is estimated by
permutation and therefore statistical power is influenced
by sample size and dependencies within the data (45).
Spearman and Pearson correlation are limited to detecting
monotonic and linear marker relationships respectively,
but have the advantage of analytical significance estima-
tion (methods) and can identify signed edges. Interactive
thresholding is available on P-values adjusted for multiple
hypothesis testing [Benjamini–Yekutieli (46) or
Bonferroni correction], displayed as an interactive
network using the Cytoscape Web plugin (47).

Figure 3 shows a Spearman correlation network for
the dataset ‘Breast Cancer 2’ (Demonstration data),
thresholded at FDR P� 0.05 (46). Three components
are identified, one (top-left) with the expected positive

relationship between C35 and HER2 (48) and negative
relationship between HER2 and ER-a (49). Interestingly,
a positive relationship between C35 and MAL2 is found,
in contrast to PCR results in cell culture with C35 induc-
tion (48). The second component (bottom) includes
expected edges between the EMT transcription factors
Snail, Slug, ZEB1 (30). The third component (top-right)
includes edges between E-cadherin, Claudin-7 and
b-catenin, as expected (30,48), suggesting a primary role
for b-catenin in adhesion in this cohort, although an edge
between nuclear b-catenin and Snail occurs close to the
significance threshold (FDR P=0.0783).

Demonstration data

Several example datasets are available to demonstrate
the capabilities of TMA Navigator (www.tmanavigator.
org/demo). The dataset ‘Breast Cancer 1’ includes expres-
sion data for nine markers obtained using AQUA (16) and
survival over 9 years for a cohort of 128 lymph node
positive patients (10). The dataset ‘Breast Cancer 2’ has
AQUA expression for 16 markers and survival over
5 years for a cohort of 92 trastuzumab-treated patients
(37). The dataset ‘Breast Cancer 3’ includes expression for
four markers measured using a semi-continuous approach

Figure 2. Survival analysis with E-cadherin expression informed by mixture modelling. Kaplan–Meier plot: x-axis denotes overall survival in months,
y-axis the proportion of the group alive. Stratification of invasive ductal breast cancers by mixture modelling of E-cadherin expression (AQUA data);
the low-expressing group shows a trend for worse prognosis consistent with expectations. Marker tabs shown in red indicate single group (unimodal)
mixture models, for which Kaplan–Meier plots are not available.
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and survival over 5 years on 122 trastuzumab-treated
patients (37). The latter dataset has also been discretized
into five quantiles for demonstration of categorical data
handling. Antibodies for the above datasets are
summarized in Supplementary Table S1; all data are from
primary tumours. The example datasets described above
are available pre-imported in TMA Navigator, and may
also be downloaded.

METHODS

Density plots approximate the empirical score distribution
non-parametrically with adaptive bandwidth kernel
density estimation (50,51). Mixture modelling identifies
clusters of samples using expectation-maximization (52)
to fit a mixture of Gaussian distributions to marker
values. Each cluster has independent mean and standard
deviation parameters, better aligning with biological ex-
pectations than fixed standard deviation. The number of
clusters (modality) is selected using the Bayesian informa-
tion criterion (BIC) (53). Survival is examined by Kaplan–
Meier analysis (19), using the Mantel-Cox log-rank test
(35), and stratification determined per marker with
Benjamini–Hochberg corrected P-values (36). Network
edge significance is determined using algorithm AS89

(54) (Spearman if n< 1290), Student t approximation
(Spearman, Pearson) or permutation (mutual informa-
tion), and P-values corrected with Benjamini–Yekutieli
(recommended), or the overly conservative Bonferroni
method (46,55). The service architecture is illustrated
in Supplementary Figure S4 and described in
Supplementary Data.

CONCLUDING REMARKS

TMAs offer high-throughput immunohistochemical
analysis of clinical samples and provide for study of
tissue and cell-type specific networks underlying
pathophenotypes (4,21). TMA Navigator is a unique
interactive platform for TMA data processing and
analysis that has been successfully tested on multiple
web browsers (Internet Explorer, Firefox, Chrome,
Opera, Safari). Key features include batch correction
(17), unsupervised stratification by marker scores,
survival analysis and network inference. An extensive
user guide and demonstration datasets are available. We
very much appreciate feedback on any issues relating to
TMA Navigator, ideally sent via the form at www.
tmanavigator.org/contact, and welcome requests for new
functionality.

Figure 3. Spearman correlation network for trastuzumab-treated breast cancers. All marker pairs were scored using Spearman correlation and
significant edges (FDR P� 0.05) are shown. Colour of network nodes (markers) ranges from blue to orange, indicating low to high degree
(number of significant connections). Positive and negative edges are respectively shown in grey and red. The network can be explored interactively,
for example to alter layout and set significance threshold. Clicking on a marker summarizes neighbours, clicking on an edge displays the Spearman
correlation and P-value. The above network recapitulates several expected interactions including a cluster of proteins that promote EMT (Snail, Slug,
Vimentin, ZEB1) and an adhesion cluster (E-cadherin, b-catenin, Claudin-7) (30). Networks may also be exported as GraphML for use with external
software or as a PNG or SVG image.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figures 1–4.
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