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Introduction
Physical fitness is important for survival. Lack of physical activity 
results in detraining, lower performance, and ultimately, incapac-
ity. At least 2500 years ago it was first documented that exercise 
is good for health (1, 2). Since the first epidemiological studies 
(3), research has continued to bestow on us a wealth of evidence 
that exercise protects against a host of ailments and life-threaten-
ing conditions that affect large numbers of people in 21st-centu-
ry societies through heart attacks, strokes, diabetes, depression, 
dementia, cancer, osteoporosis, chronic kidney disease, and sex-
ual dysfunction (4–10). Exercise is commonly encouraged, even 
prescribed, as therapy. We know that if every human could main-
tain a suitable level of exercise and fitness, many disease problems 
would be less severe and quality of life would be better. However, 
there are major challenges due to illness, injuries, and the intel-
lectual and computational demands of modern societies that 
increase the prevalence of sedentary lifestyles. The World Health 
Organization suggests that physical inactivity is the fourth leading 
cause of death worldwide.

Although many responses to exercise are known, how the ben-
efits of exercise are initially triggered at a molecular level is mys-
terious. It is reasonable to suppose that there must be a biological 
system containing a sensor or sensors to indicate to the body how 
much physical activity is occurring, but the sensor is obscure. Exer-
cise research has suggested that the site of the sensor might be the 

endothelium and that blood flow or other hemodynamic param-
eters are sensed (11–13). The endothelium consists of a monolay-
er of cells lining the inner surface of all blood vessels throughout 
the body: the cellular interface between blood and tissue and the 
only structure known to detect the rate of blood flow, something 
at which it is highly adept (14–16). Physical activity increases the 
rate of blood flow (11), so the benefits of exercise might originate 
at least partly in the detection of this increased flow. Therefore, if 
the sensor of increased flow could be identified there would be an 
advance in understanding how humans respond to exercise and 
achieve health benefits.

In order to test the endothelial flow sensor hypothesis, it is 
advantageous to know the molecular processes of the endotheli-
um that detect blood flow during physical activity. There are many 
competing ideas about how, in general, vascular flow sensing is 
mediated (14, 15). We have suggested that the relatively recently 
discovered Piezo protein, Piezo1, is pivotal (17–19). Piezo1 forms 
mechanically activated Ca2+-permeable nonselective cation chan-
nels in endothelial cells (17, 20, 21). These channels are activated by 
fluid flow (17–19, 22). Previous evidence suggested that Piezo1 was 
responsible for increased blood pressure in mice undertaking vol-
untary exercise, suggesting a link to physical activity (19). Howev-
er, only modest transient reduction in performance was observed 
(19). In these studies, the protocol involved conditional deletion of 
endothelial cell Piezo1 in adult mice 2 weeks prior to analysis (19). 
We reasoned that this might not be sufficient to impact all rele-
vant processes and so we lengthened the period to 10 weeks. This 
allowed us to observe profound loss of physical performance and 
an important role for endothelial Piezo1 in muscle capillarity.

Results
Unaffected anatomical parameters. Endothelial cell–specific dis-
ruption of Piezo1 was induced in adult mice (Piezo1ΔEC mice) and 

Piezo1 forms mechanically activated nonselective cation channels that contribute to endothelial response to fluid flow. Here 
we reveal an important role in the control of capillary density. Conditional endothelial cell–specific deletion of Piezo1 in adult 
mice depressed physical performance. Muscle microvascular endothelial cell apoptosis and capillary rarefaction were evident 
and sufficient to account for the effect on performance. There was selective upregulation of thrombospondin-2 (TSP2), an 
inducer of endothelial cell apoptosis, with no effect on TSP1, a related important player in muscle physiology. TSP2 was poorly 
expressed in muscle endothelial cells but robustly expressed in muscle pericytes, in which nitric oxide (NO) repressed the Tsp2 
gene without an effect on Tsp1. In endothelial cells, Piezo1 was required for normal expression of endothelial NO synthase. 
The data suggest an endothelial cell–pericyte partnership of muscle in which endothelial Piezo1 senses blood flow to sustain 
capillary density and thereby maintain physical capability.
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A and B). In addition, myofiber density and size distribution were 
investigated by staining with wheat germ agglutinin (WGA) to label 
cell membranes. Fiber density, size, and distribution were similar 
between controls and Piezo1ΔEC mice (Supplemental Figure 5, A–D). 
Consistent with these observations, gene expression analysis sug-
gested no changes in markers of fibrosis, endoplasmic reticulum 
stress, fiber growth, fiber switch, hypoxia, inflammation, glucose 
and lipid metabolism, mitochondrial biogenesis, or immune cell 
markers (Supplemental Table 1). The data suggest no changes in 
skeletal muscle mass, fiber type, or gene expression and thus that 
these parameters do not mediate the reduced performance.

Lower microvascular density. Efficient perfusion of skeletal 
muscle fibers is critical in physical performance to provide appro-
priate oxygen and nutrients and remove waste products. As such, 
we analyzed the capillary density by staining muscle sections for 
the endothelial cell markers CD31/PECAM-1 and isolectin B4 
(IB4). Importantly, there were approximately 20% reductions 
in capillary density and capillary-to-fiber ratio in Piezo1ΔEC mice 
(Figure 2, C–H). Prior work has suggested only a small capillary 
reserve, such that reductions of more than 10% significantly affect 
physical performance (23). We also analyzed the capillary density 
on cardiac sections by staining for IB4. Consistent with the lack 
of effect on cardiac function, fiber density, capillary density, and 
capillary-to-fiber ratio were not affected in Piezo1ΔEC mice (Sup-
plemental Figure 5, E–H), suggesting a vascular bed specificity 
of endothelial Piezo1 contribution to vascular density. The data 
suggest that impaired physical performance could be explained by 
reduced skeletal muscle microvascular density.

Microvascular and endothelial cell regression. Piezo1 was con-
ditionally disrupted once mice reached the adult stage and thus 
when the microvasculature was established, and so we considered 
that the lower microvascular density might be due to regression of 
preexisting vessels (i.e., that rarefaction occurred). Rarefaction is 
characterized by empty sleeves of vascular basement membrane, 
left behind when endothelial cells disappear. We investigated skel-
etal muscle by immunostaining for CD31 and type IV collagen (Coll 
IV), a major component of the basement membrane. Piezo1ΔEC mice 
showed more empty Coll IV sleeves (CD31–Coll IV+; Figure 3, A and 
B). A significant negative correlation existed between capillary den-
sity and number of empty type Coll IV sleeves (Figure 3C). Muscle 
cross sections (Supplemental Figure 6A) and longitudinal sections 
(Supplemental Figure 6E) were also stained for NG2 proteoglycan 
(NG2), a pericyte marker, because these perivascular cells are also 
implicated in vessel stability (24). Piezo1ΔEC mice showed a tenden-
cy to decreased pericyte density in skeletal muscle (Supplemental 
Figure 6B) and significantly decreased pericyte-to-fiber ratio (Sup-
plemental Figure 6C). There was a positive correlation between 
capillary (endothelial cell marker) and pericyte densities (Sup-
plemental Figure 6D) and pericyte coverage of endothelial cells 
was unchanged (Supplemental Figure 6F). The data suggest that 
reduced physical performance is due to microvascular regression 
caused by loss of endothelial cells and pericytes.

Endothelial cell apoptosis. We surmised that the microvascular 
regression reflects an organized physiological process mediated by 
cell apoptosis, possibly originating in endothelial cells. To test this 
hypothesis, TUNEL assays were performed on muscle sections 
costained for endothelial cells (IB4 labeling) and cell nuclei (DAPI). 

major organs were harvested 10 weeks later. As expected, Piezo1ΔEC 
mice showed a significant decrease in Piezo1 mRNA abundance 
in whole gastrocnemius muscle and heart and most obviously in 
endothelial cells isolated from skeletal muscle (SkECs) (Supple-
mental Figure 1, A–C; supplemental material available online with 
this article; https://doi.org/10.1172/JCI141775DS1), thus validat-
ing an efficient depletion of endothelial cell Piezo1 and good puri-
ty of SkECs. We previously showed no differences in major organs 
2 weeks after the conditional deletion of endothelial cell Piezo1 
(19). Similarly, at 10 weeks after deletion we found no differenc-
es in skeletal muscle, heart, or liver weights relative to total body 
weight in Piezo1ΔEC mice (Supplemental Figure 1D).

Sustained attenuation of physical activity. Ten weeks after 
the disruption of endothelial Piezo1, the physical performance 
of control and Piezo1ΔEC mice was analyzed. Compared with 
matched control mice, Piezo1ΔEC mice showed striking sustained 
reductions in ambulatory (Figure 1, A and B), vertical exploratory 
(Figure 1, C and D), and running wheel activities (Figure 1, E–G). 
The data suggest an important role for endothelial Piezo1 in sus-
taining normal physical activity.

Desire for physical activity is not affected. A potential explana-
tion for lower activity is decreased psychological interest in exer-
cise. However, there were no differences in the numbers of bouts 
of activity (Figure 1H) or interbout pauses (Figure 1I) or in the total 
periods of activity (Figure 1J) or inactivity (Figure 1K). Instead, 
there were fewer running wheel revolutions per bout of exercise 
(Figure 1L) and running speed was lower (Figure 1M). The data 
suggest specific reduction in the ability to perform physically, 
without less desire to exercise.

Respiration, energy metabolism, and cardiac function are 
unchanged. Potential mechanistic explanations for lower perfor-
mance are reduced respiration or metabolism. As Piezo1ΔEC mice 
had a lower body weight than control mice (Supplemental Figure 
2A), they displayed reduced oxygen consumption and tendency 
to less carbon dioxide production, but these differences were due 
to a mass effect (Supplemental Figure 2B). No differences were 
found after analysis of covariance (ANCOVA) (Supplemental Fig-
ure 2, B–D). Furthermore, no differences were found in respirato-
ry exchange ratio (Supplemental Figure 2E), energy expenditure 
(Supplemental Figure 2F), food consumption (Supplemental Fig-
ure 2G), or circadian patterns of these parameters (Supplemental 
Figure 2H and Supplemental Figure 3, A–E). An alternative expla-
nation could be reduced cardiac function and so echocardiogra-
phy was performed. Piezo1ΔEC mice showed no signs of cardiac 
alteration as determined by morphometric and echocardiographic 
measurements (Supplemental Figure 1D and Supplemental Figure 
4, A–M). The data suggest no changes in respiration, metabolism, 
or cardiac function and thus that these parameters do not mediate 
the reduced performance.

Skeletal muscle mass and fiber types are unchanged. An alterna-
tive explanation could be a changed muscle mass or fiber-type 
composition. No differences in mass were found in hind limb mus-
cles that contribute to running performance — rectus femoris, vas-
tus lateralis, gastrocnemius, and soleus — in Piezo1ΔEC mice com-
pared with controls (Supplemental Figure 1D). Fiber type within 
muscle is important for performance, but there were no differences 
in the percentages of fiber types 1, 2a, 2b, 2x, or 2a/2x (Figure 2, 
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proapoptotic gene expression markers were significantly upregulat-
ed in SkECs isolated from Piezo1ΔEC mice (Figure 4E). There were 
no changes in apoptosis markers in whole muscle analysis, consis-
tent with the myocytes being dominant and normal (Figure 4F). IB4 
may also bind some immune cells but inflammatory markers were 

There was a striking increase in the percentage of apoptotic IB4- 
positive cells in Piezo1ΔEC mice compared with control mice (Figure 
4, A and B). There was a significant negative correlation of apop-
totic endothelial cells with capillary density and positive correla-
tion with empty Coll IV sleeves (Figure 4, C and D). Furthermore, 

Figure 1. Endothelial Piezo1 determines physical performance but not desire for activity. Throughout the figure, data in gray represent control mice (Ctrl) 
and data in orange are for Piezo1ΔEC mice. The lighter color is for data sampled during the light cycle (inactive period) and darker color for data during the 
dark cycle (active period). (A) Pooled and averaged ambulatory activity (XAMB) across 3 light and dark cycles for Ctrl mice and Piezo1ΔEC mice. (B) Day-by-
day averaged ambulatory activity. (C) Similar to A but showing exploratory activity (ZTOT). (D) Day-by-day averaged exploratory activity. (E) Similar to A 
but showing running wheel rotation counts (voluntary activity). (F) Day-by-day averaged voluntary activity. (G) Cumulative running wheel rotations during 
72-hour recording. Gray shaded areas indicate the dark cycles. (H) Number of active bouts of exercise (periods of activity defined as activity seen in 1 or 
more consecutive 10-minute intervals). (I) Number of interbout pauses (periods of inactivity between 2 bouts of exercise). (J) Percentage of time for which 
mice were active on the wheel. (K) Percentage of time for which mice were off the wheel (inactive time). (L) Normalization of running wheel rotations per 
active bouts of exercise. (M) Running-wheel speed. All data are for n = 10 mice per group (mean ± SD). Superimposed dots are the individual underlying 
data values for each individual mouse. **P < 0.01, ***P < 0.001 vs. light cycle; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. Ctrl mice. Statistical significance was 
evaluated using 2-way ANOVA followed by Tukey’s HSD post hoc test for multiple comparisons.
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ilarly proapoptotic (26), but Tsp1 expression was not modified by 
Piezo1 deletion (Figure 5A). We considered, therefore, that Piezo1 
might be a selective negative regulator of Tsp2 in endothelial cells. 
However, in SkECs the expression of Tsp2 mRNA was unaffected 
by Piezo1 deletion (Figure 5D). Moreover, TSP2 protein could not 
be reliably detected in SkECs (Supplemental Figure 7A), indicat-
ing weak or no expression in this cell type. The data suggest that 
upregulated TSP2 is a mediator of the endothelial cell apoptosis in 
Piezo1ΔEC mice but not an important factor of endothelial cells or 
mediator of Piezo1’s effects in endothelial cells.

Downregulation of endothelial nitric oxide synthase. We hypothe-
sized that endothelial nitric oxide (NO) synthase (eNOS) is the fac-

not changed in Piezo1ΔEC mice (Supplemental Table 1) and the emp-
ty Coll IV sleeve data support the suggestion that endothelial cells 
were the primary apoptotic cell. The data suggest that the microvas-
cular rarefaction is mediated by endothelial cell apoptosis.

Selective upregulation of thrombospondin-2. To identify sig-
naling pathways mediating the apoptosis, we took whole muscle 
and quantified expression of 18 candidate genes that have been 
previously associated with exercise and vascular structure (Fig-
ure 5A). There was only one difference: an increase in thrombo-
spondin-2 (Tsp2) mRNA (Figure 5A). There was a similar increase 
in TSP2 protein (Figure 5, B and C). TSP2 is a known inducer of 
apoptosis in microvascular endothelial cells (25, 26). TSP1 is sim-

Figure 2. Endothelial Piezo1 specifically affects microvascular density. (A) Immunohistochemistry of gastrocnemius muscle cross sections for myosin 
heavy chain (MHC) type 2a (green) plus type 2b (red, left) or type 2x (magenta, right). Scale bars: 100 μm. (B) Quantification of the relative frequency of the 
different fiber types in gastrocnemius muscle. (C) Immunohistochemistry for CD31 (red) to visualize endothelial cells in capillaries of gastrocnemius mus-
cle sections. Scale bars: 50 μm. (D) Mean data for capillary density measured from images of the type shown in C. (E) Similar to D but showing mean data 
for the ratio of capillaries to muscle fibers. (F) Immunohistochemistry for isolectin B4 (IB4, green) to visualize endothelial cells in capillaries of gastrocne-
mius muscle sections. Scale bars: 50 μm. (G) Mean data for capillary density measured from images of the type shown in F. (H) Similar to G but showing 
mean data for the ratio of capillaries to muscle fibers. All data are for n = 7 to 8 mice per group (mean ± SD). Superimposed dots are the underlying data 
values for each individual mouse. Gray indicates muscles from Ctrl mice and green indicates muscles from Piezo1ΔEC mice. ##P < 0.01, ###P < 0.001 vs. ctrl 
mice. Statistical significance was evaluated using Student’s t test.
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and decreased Tsp2 mRNA when excess NO was introduced by a 
NO donor, S-nitrosoglutathione (GSNO) (Figure 6B). There were 
no effects on Tsp1 mRNA expression (Figure 6B). Muscle longitu-
dinal sections were stained for TSP2, revealing that in situ peri-
cyte–associated TSP2 was increased in Piezo1ΔEC mice (Figure 6, C 
and D). The data suggest pericytes as the source of TSP2-specific 
regulation by Piezo1, mediated by NO.

Discussion
The results suggest that the longer (10-week) disruption of endo-
thelial Piezo1 causes sustained depression of physical capabil-
ity without altering desire for exercise or changing respiration, 
energy metabolism, cardiac function, or skeletal muscle mass or 
fiber type. This phenotype can be explained by capillary rarefac-
tion in muscle. In our model (Figure 6E), shear stress from blood 
flow stimulates endothelial Piezo1, promoting eNOS stability 
in endothelial cells to keep the local NO concentration high. We 
suggest that NO then diffuses to adjacent pericytes where it sup-
presses Tsp2 gene expression and thereby TSP2 and its proapop-
totic effects (25, 26). TSP2 also has anti-eNOS effects (26), so loss 
of TSP2 would be expected to further elevate the local NO con-
centration. In the model, physical exercise increases blood flow, 
shear stress on the endothelium, activation of Piezo1 and there-
fore activation of eNOS/TSP2 paracrine signaling to increase the 
stability of microvascular endothelium and preserve, and poten-
tially expand, microvascular architecture and muscle perfusion — 
increasing muscle performance. Loss of endothelial Piezo1 down-
regulates the axis, leading to loss of its stabilizing effects. Future 
studies could identify additional components of this axis and 
reveal other mechanisms that work in parallel or synergize with it. 

tor regulated by Piezo1 in SkECs because eNOS phosphorylation at 
a key serine residue is positively impacted by Piezo1 in arteries to 
mediate relaxation (18, 27, 28). NO is readily diffusible (29) and so 
could potentially act as a paracrine mediator to modulate TSP2 in 
adjacent cell types (30). It was previously shown that NO negative-
ly regulates Tsp2 gene expression in NIH3T3 fibroblasts (30). We 
found that the expression of the gene encoding eNOS, Nos3, was 
unaffected by Piezo1ΔEC in whole muscle or SkECs (Figure 5E). To 
our surprise, analysis of SkECs revealed no effect of Piezo1ΔEC on 
the amount of serine-phosphorylated eNOS relative to total eNOS 
(Figure 5, F and G). However, total eNOS protein was reduced (Fig-
ure 5, F and H). Furthermore, muscle longitudinal sections were 
stained for eNOS in addition to CD31 (Figure 5I), revealing that 
eNOS intensity was also decreased in situ (Figure 5J). The data sug-
gest that Piezo1 in muscle endothelial cells is required to maintain 
the abundance of eNOS protein, which could account for the endo-
thelial cell apoptosis in Piezo1ΔEC mice because eNOS produces NO 
and NO suppresses apoptosis (31), i.e., loss of eNOS could lead to 
loss of NO and therefore more apoptosis.

Selective Tsp2 gene regulation by NO in muscle pericytes. Peri-
cytes envelop muscle microvascular endothelial cells, and so we 
hypothesized that NO produced in endothelial cells might diffuse 
to regulate pericyte Tsp2. We therefore isolated and cultured peri-
cytes from muscle (Supplemental Figure 7D). Tsp2 mRNA abun-
dance was 5 times greater in muscle pericytes compared with 
SkECs (Figure 6A) and TSP2 protein was readily detected (Supple-
mental Figure 7, B and C), making pericytes a candidate for the 
source of TSP2. Moreover, the pericytes showed increased Tsp2 
mRNA expression when basal NO production was suppressed by 
an L-arginine analog (NG-monomethyl-L-arginine, L-NMMA) 

Figure 3. Protection against endothelial microvascular rarefaction. (A) Immunohistochemistry for CD31 (red) and type IV collagen (Coll IV, green) to 
visualize capillaries and basement membrane, respectively, in gastrocnemius muscle sections. Merged images are shown on the right. Scale bars: 50 
μm. Superimposed circles highlight an example of a regressing vessel (CD31–Coll IV+). (B) Quantification of empty Coll IV sleeves in gastrocnemius muscle 
sections, based on images of the type shown in A. (C) Pearson’s correlation of capillary density and empty Coll IV sleeves (r = –0.71, P = 0.003). The black 
line is the correlation fit. All data are for n = 7 to 8 mice per group (mean ± SD). Superimposed dots are the underlying data values for each mouse. Gray 
indicates muscles from Ctrl mice and green indicates muscles from Piezo1ΔEC mice. ###P < 0.001 vs. Ctrl mice. Statistical significance was evaluated using 
Student’s t test (B) or Pearson’s correlation (r) test (C).
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We do not exclude NO regulation of TSP2 expression in fibroblasts 
(30) but consider that the close proximity of pericytes to endothe-
lial cells is likely to create a more efficient and potentially import-
ant local system for capillary regulation. We show that eNOS is the 
type of NOS regulated by Piezo1 in SkECs but we do not eliminate 
the possibility that other NOS types (32) could regulate and impact 
the TSP2 expression, for example in pericytes.

Consistent with our proposed mechanism, eNOS-knockout 
(eNOS-KO) mice show impaired physical performance (33, 34) as 
well as vessel rarefaction (35, 36) and reduced angiogenesis and 
arteriogenesis (37–39). eNOS is considered to have a key role in 
maintaining vascular integrity with aging (40). Apoptotic nuclei 
are rare in normal adult mouse skeletal tissue, but apoptosis rate 
increases with aging, such that endothelial cells account for more 

Figure 4. Protection against endothelial cell apoptosis. (A) Immunohistochemistry for endothelial cells in capillaries (IB4, green), apoptotic cells 
(TUNEL, red), and nuclei (DAPI, blue) in gastrocnemius muscle sections. Merged images are shown on the right. Scale bars: 30 μm. Superimposed circles 
highlight an example of an apoptotic endothelial cell (IB4+TUNEL+DAPI+). (B) Quantification of apoptotic endothelial cell percentages in Ctrl and Piezo1ΔEC 
gastrocnemius muscle using images of the type shown in A. (C) Pearson’s correlation analysis of capillary density and percentage of apoptotic endothe-
lial cells (r = –0.62, P = 0.014). (D) Pearson’s correlation analysis of apoptotic endothelial cell percentage and capillary regression (r = 0.75, P = 0.001). The 
black lines are the correlation fits. All data are for n = 7 to 8 mice per group (mean ± SD). (E) Quantitative PCR mRNA expression data for proapoptotic 
markers (Bax, Bak) and antiapoptotic markers (Bcl2, BclXL) in endothelial cells isolated from skeletal muscle of Ctrl (gray) and Piezo1ΔEC (blue) mice.  
(F) Quantitative PCR mRNA expression data for proapoptotic markers (Bax, Bak) and antiapoptotic markers (Bcl2, BclXL) in whole gastrocnemius 
muscle of Ctrl (gray) and Piezo1ΔEC (green) mice. RNA abundance was normalized to housekeeping gene expression and is presented as the fold-change 
relative to that in Ctrl mice. All data are for n = 5 to 6 mice per group for endothelial cells and n = 14 to 16 mice per group for whole muscle (mean ± SD). 
Superimposed dots are the individual underlying data values for each mouse. #P < 0.05, ##P < 0.01, ###P < 0.001 vs. Ctrl mice. Statistical significance was 
evaluated using Student’s t test, except in C and D where Pearson’s correlation was used.
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than 75% of the apoptotic cells in 25-month-old mice (41). eNOS-
KO endothelial cells display an enhanced apoptosis induction, 
suggesting that eNOS downregulation may be involved in age- 
dependent increases in apoptosis sensitivity (42).

eNOS is dynamically regulated at multiple levels, although 
relatively little is known about mechanisms regulating the pro-
tein stability (43, 44). Our suggestion of an effect via regulation 
of eNOS protein stability is perhaps surprising but, in general, 
regulated degradation is crucial for controlling the abundance of 

many proteins and is mediated by an array of protein modifica-
tion, sorting, and degradation enzymes (45). A key aspect is the 
ubiquitin-proteasome system, which has been linked to eNOS 
degradation in bovine endothelial cells (46). Another pathway 
involving protein kinase C, zeta type/extracellular signal–regulat-
ed kinase 5 (PKCζ/ERK5) was suggested to contribute to eNOS 
protein stability in human endothelial cells (47). How eNOS sta-
bility is regulated in muscle microvascular endothelial cells will 
be a future question of interest.

Figure 5. Downstream signaling mediated by eNOS and TSP2. (A) Relative mRNA levels for candidate downstream genes in whole gastrocnemius muscle 
from control (gray) and Piezo1ΔEC (green) mice. (B) Representative Western blot for TSP2 protein in gastrocnemius muscle. (C) For data of the type shown 
in B, quantification of TSP2 protein normalized to GAPDH and expressed as fold-change in Piezo1ΔEC compared to Ctrl. (D and E) Relative mRNA levels 
for (D) the Tsp2 gene in isolated endothelial cells from skeletal muscle (SkECs) of Ctrl (gray) and Piezo1ΔEC (blue) mice and (E) eNOS (Nos3 gene) mRNA in 
whole gastrocnemius muscle from Ctrl (gray) and Piezo1ΔEC (green) mice and isolated SkECs of Ctrl (gray) and Piezo1ΔEC (blue) mice. mRNA abundance was 
determined by qRT-PCR, normalized to housekeeping gene expression, and is presented as the fold-change relative to Ctrl mice. (F) Representative West-
ern blot for eNOS phosphorylation at serine 1177 (p-eNOS) and total eNOS (t-eNOS) in isolated SkECs. (G) For data of the type shown in F, quantification 
of p-eNOS relative to t-eNOS in Piezo1ΔEC compared to Ctrl mice. (H) For data of the type shown in F, quantification of t-eNOS relative to the housekeeper 
protein GAPDH in Piezo1ΔEC compared to Ctrl. (I) Immunohistochemistry for CD31 (green) and eNOS (yellow) in gastrocnemius muscle longitudinal sections. 
Merged images are shown on the right. eNOS fluorescence intensity was measured in CD31+ regions (red). Scale bars: 15 μm. (J) Quantification of eNOS 
fluorescence intensity in CD31+ regions corresponding to endothelial cells. Data are for n = 8 to 9 mice per group (A and F–H), n = 10 to 13 (B and C), n = 5 
to 6 (D and E), and n = 7 to 8 (I and J) (mean ± SD). Superimposed dots are the underlying data values for each mouse. #P < 0.05, ##P < 0.01 vs. Ctrl mice. 
Statistical significance was evaluated using Student’s t test.
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suppression of Tsp2 gene expression (30), which is in keeping with 
the delayed wound healing after eNOS KO (37) and the opposite 
of TSP2 KO (52). This is consistent with the suggested reciprocal 
relationship between Piezo1 and TSP2, i.e., more Piezo1 expres-
sion or Piezo1 activity leading to more eNOS/NO, less TSP2, less 
endothelial cell apoptosis, and more capillarity; and conversely, 
less Piezo1 expression or activity leading to less eNOS/NO, more 
TSP2, more apoptosis and attrition of capillaries (i.e., rarefaction). 
Contributions from other, TSP2-independent mechanisms can-
not be excluded. Our pericyte data suggest that the Tsp2 gene in 
these cells is selectively regulated by NO, without effect on Tsp1 

Our data show selectivity of endothelial Piezo1 for regulation 
of Tsp2 with no effect on expression of Tsp1 or other relevant genes 
tested. This might seem surprising when TSP1 is implicated in the 
control of skeletal muscle capillarity (48) and NO has wide-rang-
ing effects (29). However, the Tsp1 and Tsp2 genes are regulated 
differently (49) and their disruption has opposite effects on wound 
healing, which is delayed in TSP1 KOs and accelerated in TSP2 
KOs, suggesting that TSP1 can promote rather than inhibit angio-
genesis under some conditions (50–52). TSP2 is established as a 
proapoptotic factor that inhibits vessel growth and stability (25, 
26, 30, 51–55) and there is a compelling case for NO-dependent 

Figure 6. In situ upregulation of TSP2 in pericytes. (A and B) Relative mRNA abundance for (A) Tsp2 in isolated SkECs (gray) and pericytes (yellow) from 
WT mice, and (B) Tsp2 and Tsp1 in isolated pericytes from WT mice: untreated (yellow), treated with NO inhibitor (1 mM L-NMMA, light yellow), or with 
NO donor (300 μM GSNO, dark yellow/green) for 4 hours. mRNA abundance was determined by qRT-PCR, normalized to housekeeping gene expression, 
and is presented as fold-change relative to isolated SkECs (A) or untreated pericytes (B). (C) Immunohistochemistry for CD31 (green), NG2 (magenta), and 
TSP2 (yellow) in gastrocnemius muscle longitudinal sections. Merged images are shown on the right. TSP2 fluorescence intensity was measured in NG2+ 
regions (red). Scale bars: 15 μm. (D) Quantification of TSP2 fluorescence intensity in NG2+ regions corresponding to pericytes. (E) Schematic model of the 
mechanism. Data are for n = 4 mice per group (A and B) and n = 7 to 8 (C and D) (mean ± SD). Superimposed dots are the underlying data values for each 
mouse. #P < 0.05 vs. Ctrl mice; ***P < 0.001 vs. WT isolated SkECs; §P < 0.05 vs. untreated WT isolated pericytes. Statistical significance was evaluated 
using Student’s t test.
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suggested to precede other muscle changes in heart failure patients 
and be critical in their exercise intolerance (62).

Piezo1 is widely expressed and known to have other, nonvas-
cular functions (17) such as determining bone strength (63), car-
tilage force sensing (64), and myotube formation (65). Detection 
of whole-body exercise capability may therefore have a role in the 
link between weight-bearing exercise and the known benefits for 
protection against osteoporotic bone loss and cardiovascular dis-
ease. Moreover, Piezo1 is important in immunity and resistance 
to lung infection where its cyclical activation by pressure chang-
es is suggested to be important (66). It may therefore facilitate 
exercise-related enhancement of protection against microbes. 
Overall, we speculate that Piezo1 senses physical vibrancy and 
couples it to health.

In conclusion, we suggest that endothelial Piezo1 is a critical 
molecule in maintaining muscle capillarity and therefore physical 
capability. In the future it will be useful to expand knowledge of 
how the sensitivity of Piezo1 is set and regulated in various con-
texts, including in aging, features of which are microvascular 
apoptosis (67) and exercise intolerance in common diseases of 
old age such as heart failure (68). It may become apparent how to 
achieve suitable intervention because pharmacological agonists of 
Piezo1 have already been identified, demonstrating the potential 
for enhancing sensitivity of the channels to mechanical force (27, 
69, 70). The chemical properties of these tools currently restrict 
their general utility but refinement efforts and discovery of new 
modulators might lead to agents that protect against the adverse 
consequences of physical inactivity.

Methods

Piezo1-transgenic mice
Piezo1ΔEC mice and control littermates were housed in GM500 indi-
vidually ventilated cages (Animal Care Systems) at 21°C, 50% to 70% 
humidity, and a 12-hour light/12-hour dark cycle on standard chow 
diet and water ad libitum. Genotypes were determined using real-
time PCR with specific probes designed for each gene (Transnetyx 
Inc.). Piezo1 conditional KO mice were generated at the University 
of Leeds by breeding C57BL/6J Piezo1-floxed mice (Piezo1fl/fl) with a 
Cre transgenic line driven by the cadherin-5 promoter (Tg[Cdh5-Cre/
ERT2]1Rha) as previously described (18, 19). Piezo1fl/fl mice were 
crossed with Cdh5-Cre mice and inbred to generate Cre-positive, 
loxP-homozygous (Piezo1fl/fl Cdh5-Cre) conditional KO mice. Intra-
peritoneal injection of tamoxifen at 75 mg/kg for 5 consecutive days 
in Piezo1fl/fl Cdh5-Cre mice resulted in the disruption of the Piezo1 
gene specifically in the endothelium. These mice are referred to as 
Piezo1ΔEC. Control mice were the Cre-negative (Piezo1fl/fl) littermates 
that received tamoxifen injections. For experiments, male mice aged 
10 weeks were injected with tamoxifen to induce the deletion of the 
Piezo1 gene and studies were performed 10 weeks later, at which time 
mice were 20 weeks old.

Echocardiography
Transthoracic echocardiography was performed using an echocar-
diograph (Vevo 2100 high-resolution system, VisualSonics) equipped 
with a 40-MHz linear MS-550D transducer, under steady-state isoflu-
rane gas anaesthesia in 0.8 L/min 100% O2. The thickness of the left 

gene expression, leading to the conclusion that endothelial Piezo1 
achieves selective regulation of TSP2 in muscle microvasculature 
through selective NO regulation of the Tsp2 gene in pericytes.

In this triad hypothesis of ours (Figure 6E), we suggest that 
Piezo1 is a key mechanical sensor of a blood flow, such that endo-
thelial Piezo1 disruption prevents or compromises blood flow sens-
ing. We suggest that a comparable situation arises when Piezo1 is 
normally expressed but muscle inactivity reduces its activation due 
to reduced blood flow. When an individual attempts to return to pre-
sedentary activity, microvascular perfusion and performance will 
be less than previously. Through retraining, and therefore renewed 
Piezo1 activation, the individual can gradually regain the original 
performance. Such a mechanism may exist to match muscle perfu-
sion to usage, but it would come at a cost of reduced performance 
during prolonged inactivity, which might be unexpectedly needed 
later. It may be for this reason that the adaptation is relatively slow 
to occur, showing little impact after 2 weeks (19) but major impact 
after 10 weeks (this study). We think this long-term adaptive mech-
anism could be linked to decreased eNOS in endothelial cells. In an 
ischemia-induced angiogenesis model, the complete lack of eNOS 
in eNOS-KO mice started to affect the capillary density of thigh 
muscles after 2 weeks (56), so only a partial reduction in eNOS 
expression in quiescent cells as seen in our model could explain the 
slow establishment of capillary rarefaction.

Recently, random microvascular occlusion studies revealed 
that skeletal muscle is sensitive to reductions of greater than 
10% in capillary flow, suggesting only a small functional reserve 
(23). Reductions greater than this led to steep decline in muscle 
performance (23). In our studies, endothelial Piezo1 deletion led 
to an approximately 20% reduction in capillary density, which is 
therefore consistent with rarefaction being the explanation for the 
observed poorer physical performance. We suggest that this con-
cept is vascular bed specific because the cardiac capillary density 
was not affected by the endothelial Piezo1 deletion. This vascular 
bed specificity is consistent with prior eNOS studies showing that 
eNOS-KO mice showed no changes in basal coronary flow (57) 
and have normal cardiac hemodynamics (58).

Lower physical activity and performance are generally equated 
with increased disease risk and this is why, for example, contempo-
rary societies emphasize the number of steps individuals perform 
per day (2). We speculate that endothelial Piezo1 is central to this 
biology because of the well-established importance of the endo-
thelium and microvasculature in cardiovascular health (59, 60). 
An interpretation of our data is that we have effectively induced 
a type of genetic detraining despite the desire for continued exer-
cise. Similarly, in humans there could be natural variability in the 
expression or functionality of Piezo1 — also what is effectively a 
type of genetic detraining. Such effects, if they exist, may contrib-
ute to why some people struggle to achieve or maintain physical 
performance. This is consistent with the idea that microvascular 
density, and thus quality of perfusion in muscle and other organs, 
is critical in cardiovascular health, metabolism and, importantly, 
quality of life generally (60, 61). There is now substantial evidence 
that capillary regression is a feature of aging humans and that it can 
be protected against by regular physical exercise training, resulting 
in slower decline in physical incapacity and onset of age-related 
diseases (61). Reduction in muscle microvascular density has been 
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Isolation of pericytes from skeletal muscle
Skeletal muscle tissue (~500 mg) from the hind limb of 20-week-
old C57BL/6J WT mice was used. Tissue was manually cleaned of 
fat and cut into small pieces in DMEM. Muscle pieces were digest-
ed with 1 mg/mL collagenase/Dispase in DMEM (Sigma-Aldrich, 
10269638001) for 60 minutes under agitation at 37°C. Samples were 
then filtered through a 70-μm strainer and washed twice with growth 
medium MV2 (PromoCell, C-22022), supplemented with 10% fetal 
bovine serum and 1% penicillin-streptomycin solution. The cells were 
resuspended in MV2 medium and plated in gelatin-precoated flasks. 
Isolated cells were initially cultured in MV2 medium under conditions 
optimized for endothelial cells, but after 2 passages were switched to 
a medium optimized for pericyte growth (ScienCell, 1201). Pericytes 
were used after 1–2 additional passages. Pericytes were treated for  
4 hours with 1 mM L-NMMA acetate (Tocris Bioscience, 0771) or 300 
μM GSNO (Tocris Bioscience, 0603).

Isolation of liver sinusoidal endothelial cells
Livers of 20-week-old C57BL/6J WT mice were used for preparation 
of liver sinusoidal endothelial cells (LSECs). Tissue was cut into small 
pieces and incubated under agitation at 37°C for 36 minutes with 0.1% 
collagenase II (Gibco, 17101-015) and Dispase solution (Gibco, 17105-
041) using the gentleMACS Octo Dissociator with heaters (program 
37C_mr_LIDK_1). Samples were then filtered successively through  
100-μm and 40-μm strainers and washed twice with PEB buffer. The 
cell suspension was incubated with mouse CD146 microbeads (Miltenyi 
Biotec, 130-092-007) for 15 minutes at 4°C under agitation and passed 
through an LS column. CD146+ cells retained in the LS column were 
eluted with PEB buffer and centrifuged at 300g for 5 minutes. Cells 
were used after being cultured for 2 to 3 days in MV2 medium.

RNA isolation and quantitative PCR
Total RNA from gastrocnemius muscle, isolated endothelial cells, or 
pericytes was extracted using TRIzol (Sigma-Aldrich, T9424) accord-
ing to the manufacturer’s instructions. For whole muscle, cDNA was 
synthesized from 1 μg of total RNA and random hexamer primers 
(Promega, C1181), incubated at 75°C for 7 minutes to denature RNA, 
and cooled at room temperature for 10 minutes. A second mixture con-
taining M-MLV Reverse Transcriptase Buffer (ThermoFisher Scientific, 
18057018), deoxynucleotide triphosphates (ThermoFisher Scientific, 
R0192), RNase inhibitor (ThermoFisher Scientific, 10777019), and 
M-MLV Reverse Transcriptase (ThermoFisher Scientific, 28025013) 
was added to the first mixture and incubated for 1 hour at 37°C, followed 
by 5 minutes at 95°C to inactivate the enzyme reaction. For isolated 
endothelial cells and pericytes from skeletal muscle, 300 ng and 100 
ng of total RNA was reverse transcribed, respectively, using the High- 
Capacity RNA-to-cDNA Kit (ThermoFisher Scientific, 4387406) accord-
ing to the manufacturer’s instructions. cDNA was used as a template 
for real-time PCR with SYBR Green Supermix (Bio-Rad, 1725121). PCR 
cycling conditions were 95°C for 10 minutes, 40 cycles of 95°C for 10 
seconds, and 60°C for 1 minute. Quantitative determination of mRNA 
expression levels was performed with a LightCycler 480 Real Time PCR 
System (Roche) using either gene-specific primers or Rps20 gene prim-
ers for whole muscle and Gapdh gene primers for isolated cells as endog-
enous controls from Sigma-Aldrich (Supplemental Table 2). Samples 
were analyzed using the comparative CT method, where fold-change 
was calculated from the ΔΔCT values with the formula 2–ΔΔCT.

ventricular (LV) anterior and posterior walls was measured in the short 
axis using 2-dimensional-guided (2D) M-mode echocardiography over 
the entire cardiac cycle. The LV volumes, fractional shortening (FS %), 
ejection fraction (EF %), and the corrected LV mass were calculated 
with the Vevo LAB cardiac package software using the following equa-
tions: LV vol diastole (d) = (7.0/[2.4 + LVIDd]) × LVIDd3, LV vol systole 
(s) = (7.0/[2.4 + LVIDs]) × LVIDs3, FS % = 100 × ([LVIDd – LVIDs]/
LVIDd), EF % = 100 × ([LV vol d – LV vol s]/LV vol d), and corrected LV 
mass = 0.8 × 1.053 × ([LVIDd + LVPWd + IVSd]3 – LVIDd3), where ID 
is the internal diameter, PW is posterior wall thickness, and IVS is the 
interventricular septum thickness.

Metabolism, locomotor behavior, and physical activity
The Comprehensive Laboratory Animal Monitoring System (CLAMS, 
Columbus Instruments) was used to measure energy expenditure, 
locomotor behavior, and voluntary physical activity. Mice were housed 
individually in CLAMS metabolic cages equipped with running wheels 
(94 mm diameter), with free access to food and water, and maintained 
on a 12-hour light (inactive)/12-hour dark (active) cycle. They were 
acclimated for the first 24 hours and then data on O2 consumption, 
CO2 production, respiratory exchange ratio, energy expenditure, food 
intake, locomotor activity, and wheel revolutions were recorded for 
a further 72 hours in 10-minute bins. A mouse was considered active 
when wheel revolutions were recorded for a 10-minute bin.

Animals and tissue harvest
Animals were euthanized in accordance with the Schedule 1 Code of 
Practice, UK Animals Scientific Procedures Act 1986. Hind limb mus-
cles and hearts were removed, cleaned, dissected free of fat, and cut 
in half transversally. For immunohistochemistry, the distal part was 
mounted in optimal cutting temperature compound (Tissue-Tek) 
and snap-frozen in liquid nitrogen–cooled isopentane. For molecular 
biology, the proximal part was directly snap-frozen in liquid nitrogen. 
Samples were stored at –80°C until use.

Isolation of SkECs
Skeletal muscle tissue (~500 mg) from the hind limb of 20-week-
old mice was used. Tissue was manually cleaned of fat and cut 
into small pieces in DMEM. To combine enzymatic digestion and 
mechanical dissociation, a commercial murine skeletal muscle dis-
sociation kit (Miltenyi Biotec, 130-098-305) was used in combina-
tion with the gentleMACS Octo Dissociator with heaters (Miltenyi 
Biotec, 130-096-427). Muscle pieces were transferred to C-tubes 
and digested with Miltenyi’s enzyme cocktail under agitation at 
37°C for 61 minutes (program 37C_mr_SMDK_1). Samples were 
then filtered through a 70-μm strainer and washed with DMEM. To 
deplete CD45+ cells, the suspension was incubated for 15 minutes 
at 4°C under agitation with mouse CD45 microbeads (Miltenyi Bio-
tec, 130-052-301) and then passed through an LS column (Miltenyi 
Biotec, 130-042-401). The cell suspension was then enriched 
for endothelial cells by incubating with mouse CD31 microbeads 
(Miltenyi Biotec, 130-097-418) for 15 minutes at 4°C under agita-
tion and passed through an LS column. CD31+ cells retained in the 
LS column were eluted with PEB buffer (PBS, 2 mM EDTA, 0.5% 
BSA, pH 7.2) and centrifuged at 300g for 5 minutes. CD45–CD31+ 
cells corresponding to endothelial cells were directly pelleted for 
RNA or protein isolation (71–73).
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with PBS, sections were permeabilized with 0.1% Triton X-100 for 10 
minutes and then blocked with goat serum (5% in PBS) for 45 minutes. 
Sections were stained for 2 hours at room temperature with rat anti-
CD31 (BD Biosciences, 550274; 1:100) or FITC-conjugated Bandei-
raea simplicifolia isolectin B4 (IB4) (FITC-IB4, Sigma-Aldrich, L2895; 
1:100) to detect blood vessels, in combination with rhodamine-con-
jugated WGA (Vector Laboratories, RL-1022; 1:100) to visualize the 
plasma membrane. Sections were washed 3 times in PBS and then 
incubated for 1 hour at room temperature with Alexa Fluor 647 chick-
en anti-rat (ThermoFisher Scientific, A-21472; 1:500). Sections were 
washed 3 times in PBS and slides were coverslipped using ProLong 
Gold Antifade Mountant.

In situ determination of vascular regression. Muscle sections were 
air dried for 30 minutes at room temperature and rehydrated with PBS 
prior to fixation with 4% PFA for 10 minutes. After washes with PBS, 
sections were permeabilized with 0.1% Triton X-100 for 10 minutes 
and then blocked with BSA (5% in PBS) for 1 hour. First, sections were 
incubated for 1 hour at room temperature with rat anti-CD31 (1:100) 
and goat anti–Coll IV (Millipore, AB769; 1:50) for endothelial cells and 
basal lamina, respectively. Slides were washed 3 times in PBS and then 
incubated for 1 hour at room temperature with Alexa Fluor 647 chicken 
anti-rat (1:500) and FITC-conjugated donkey anti-goat (Jackson Immu-
noresearch, 705-095-147; 1:500). Sections were washed 3 times in PBS 
and slides were coverslipped using ProLong Gold Antifade Mountant.

In situ determination of pericyte density and coverage. Muscle cross 
sections and longitudinal sections were air dried for 30 minutes at 
room temperature and rehydrated with PBS prior to fixation with 4% 
PFA for 10 minutes, and then permeabilized and blocked with PBS, 
1% BSA, and 0.25% Triton X-100 for 1 hour at 4°C. Sections were 
incubated overnight at 4°C with rat anti-CD31 (1:100) and rabbit anti-
NG2 proteoglycan (Millipore, AB5320; 1:250) for endothelial cells and 
pericytes, respectively. Slides were washed 3 times in PBS and then 
incubated for 1 hour at room temperature with Alexa Fluor 488 goat 
anti-rat (ThermoFisher Scientific, A-11006; 1:500) and Alexa Fluor 
568 goat anti-rabbit (ThermoFisher Scientific, A-11011; 1:500). Sec-
tions were washed 3 times in PBS and slides were coverslipped using 
ProLong Gold Antifade Mountant.

In situ apoptosis determination. Cellular apoptosis was detected 
on muscle sections using the in situ Cell Death Detection Kit, TMR 
Red (Sigma-Aldrich, 12156792910) as described by the manufac-
turer’s instructions. Then, muscle sections were counterstained for 
FITC-conjugated IB4 to identify endothelial cells. Muscle section 
slides were coverslipped using ProLong Gold Antifade Mountant with 
DAPI (ThermoFisher Scientific, P36935) to counterstain nuclei.

In situ determination of eNOS fluorescence intensity. Longitudinal 
muscle sections were air dried for 30 minutes at room temperature and 
rehydrated with PBS prior to fixation with 4% PFA for 10 minutes, and 
then permeabilized and blocked with PBS, 1% BSA, and 0.25% Triton 
X-100 for 1 hour at 4°C. Sections were incubated overnight at 4°C with 
rat anti-CD31 (1:100) and mouse anti-eNOS (BD Biosciences, 610297; 
1:100). Slides were washed 3 times in PBS and then incubated for 1 hour 
at room temperature with Alexa Fluor 488 goat anti-rat (1:500) and 
Alexa Fluor 647 goat anti-mouse (ThermoFisher Scientific, A-21235; 
1:500). Sections were washed 3 times in PBS and slides were covers-
lipped using ProLong Gold Antifade Mountant with DAPI.

In situ determination of TSP2 fluorescence intensity. Longitudinal 
muscle sections were air dried for 30 minutes at room temperature 

Immunoblotting
Proteins from gastrocnemius muscle were isolated in RIPA buffer (50 
mM Tris HCl pH 7.4, 150 mM NaCl, 1% Triton X-100, 0.05% NP-40, 
1% deoxycholate, 0.1% SDS), and proteins from isolated endothelial 
cells and pericytes were isolated in NP40 Cell Lysis Buffer (Ther-
moFisher Scientific, FNN0021), both supplemented with protease 
inhibitor cocktail (Sigma-Aldrich, P8340) and phosphatase inhibitor 
cocktail Set V (Millipore, 524629). Samples were heated at 37°C for 
30 minutes in SDS-PAGE sample buffer, loaded in a precast 4%–20% 
polyacrylamide gradient gel (Bio-Rad), and subjected to electrophore-
sis. Proteins were transferred onto a PVDF membrane for 90 minutes 
at 50 mA using the Trans-Blot SD Semi-Dry Electrophoretic Transfer 
Cell System (Bio-Rad). Membranes were blocked in 5% milk for 1 hour 
and then incubated overnight with the primary antibodies (Supple-
mental Table 3). Membranes were washed and incubated with sec-
ondary antibodies for 1 hour (Supplemental Table 3). Detection was 
performed using SuperSignal West Femto (ThermoFisher Scientific, 
34096) and visualized with a G-Box Chemi-XT4 (SynGene). GAPDH 
was used as reference protein.

Muscle processing and immunohistochemistry sectioning of skeletal 
muscle and heart muscle
Serial cross sections (10 μm thick) of gastrocnemius muscle and heart 
were cut in a cryostat (Leica) maintained at –20°C and mounted on 
SuperFrost Plus Adhesion slides (ThermoFisher Scientific, 10149870) 
to determine fiber type, fiber area, capillarization, pericyte density, 
vascular regression, and endothelial cell apoptosis. Longitudinal sec-
tions (30 μm thick) of gastrocnemius muscle were cut for eNOS and 
TSP2 immunohistochemistry experiments.

In situ determination of fiber type. Muscle sections were immuno-
labeled for the different myosin heavy chains (MHCs) using a previ-
ously described method (74). Briefly, cross sections were either used 
to immunolabel for MHC type 1, 2a, and 2b or MHC type 2a and 2x. 
Sections were air dried at room temperature for 30 minutes, and then 
rehydrated with PBS. Sections were blocked using goat serum (10% 
in PBS) and incubated 2 hours at room temperature with one of the 
following primary antibody cocktails: (a) mouse IgG2b monoclonal 
anti–MHC type 1 (BA-F8), mouse IgG1 monoclonal anti–MHC type 2a 
(SC-71), and mouse IgM monoclonal anti–MHC type 2b (BF-F3); or (b) 
mouse IgG1 monoclonal anti–MHC type 2a (SC-71) and mouse IgM 
monoclonal anti–MHC type 2x (6H1). All primary antibodies targeting 
MHCs were purchased from the Developmental Studies Hybridoma 
Bank (DSHB, University of Iowa) and used at a concentration of 0.5 
μg/mL. Muscle sections were washed 3 times in PBS and then incu-
bated for 1 hour at room temperature with one of the following sec-
ondary antibody cocktails: (a) DyLight 405 IgG2b goat anti-mouse 
(Jackson Immunoresearch, 115-475-207; 1:500), Alexa Fluor 488 IgG1 
goat anti-mouse (ThermoFisher Scientific, A-21121; 1:500), and Alexa 
Fluor 555 IgM goat anti-mouse (ThermoFisher Scientific, A-21426; 
1:500); or (b) Alexa Fluor 488 IgG1 goat anti-mouse (1:500) and Alexa 
Fluor 555 IgM goat anti-mouse (1:500). Sections were washed 3 times 
in PBS and slides were coverslipped using ProLong Gold Antifade 
Mountant (ThermoFisher Scientific, P36934).

In situ determination of gastrocnemius muscle and heart capillar-
ization and cross-sectional area. Muscle sections were air dried for 30 
minutes at room temperature and rehydrated with PBS prior to fixa-
tion with 4% paraformaldehyde (PFA) for 10 minutes. After washes 
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subtract function. For eNOS images, the intensity in unstained areas 
was measured and subtracted from the intensity values. TSP2 and 
eNOS fluorescence intensities were averaged from 2 to 10 Z-slice imag-
es per microvascular unit selected at random. Measurements from 2 to 9 
microvascular units were then averaged to produce 1 fluorescence value 
per mouse. For assessment of pericyte and LSEC purity, imaging was 
carried out on a confocal laser scanning microscope (Zeiss LSM 710) 
using a 40×/1.3 NA oil objective. Images were exported and analyzed 
using ImageJ software. Pericytes were validated as NG2+VE-cadherin– 
cells, while LSECs were used as VE-cadherin positive control.

Data availability
All source data are provided.

Statistics
The number (n) of mice studied per experiment is indicated in figure 
legends. All data are presented as mean ± SD. Outliers were removed 
in the validation analysis using the robust regression and outlier 
removal test (ROUT) method with Q = 1% in GraphPad Prism 9.0 soft-
ware. Statistical significance was evaluated with unpaired Student’s t 
test when comparing 2 groups, and with 2-way ANOVA followed by 
post hoc Tukey’s test for multiple comparisons, as stated in figure leg-
ends. For metabolic studies, the statistical analysis was performed in 
the R programming language with CalR, a custom package for analy-
sis of indirect calorimetry using ANCOVA (76). For all experiments, a  
P value of less than 0.05 was considered significant. For PCR analysis, 
each sample was tested in duplicate. Echocardiographic examinations 
were performed in a blinded fashion. In the CLAMS studies, 2 control 
mice were excluded from the analysis due to non-running behavior 
combined with weight loss of 10% or greater.
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Slide imaging and image quantification
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acquired using a confocal laser scanning microscope (Zeiss LSM 880) 
and ZEN (black edition) acquisition software, and then analyzed using 
ImageJ software version 1.52p (NIH). The percentage of fibers express-
ing the various MHC isoforms was manually calculated from 5 random 
fields containing an average of 200 fibers per field per animal (×20 
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areas were calculated from the corresponding masks. Background sub-
traction on TSP2 images was carried out using the ImageJ background 
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