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Abstract: The treatment of non-small cell lung cancer (NSCLC) has recently evolved with the
introduction of targeted therapy based on the use of tyrosine kinase inhibitors (TKIs) in patients with
certain gene alterations, including EGFR, ALK, ROS1, BRAF, and MET genes. Molecular targeted
therapy based on TKIs has improved clinical outcomes in a large number of NSCLC patients with
advanced disease, enabling significantly longer progression-free survival (PFS). Liquid biopsy is
an increasingly popular diagnostic tool for treating TKI-based NSCLC. The studies presented in
this article show that detection and analysis based on liquid biopsy elements such as circulating
tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, and/or tumor-educated platelets (TEPs) can
contribute to the appropriate selection and monitoring of targeted therapy in NSCLC patients as
complementary to invasive tissue biopsy. The detection of these elements, combined with their
molecular analysis (using, e.g., digital PCR (dPCR), next generation sequencing (NGS), shallow
whole genome sequencing (sWGS)), enables the detection of mutations, which are required for the
TKI treatment. Despite such promising results obtained by many research teams, it is still necessary
to carry out prospective studies on a larger group of patients in order to validate these methods
before their application in clinical practice.

Keywords: circulating tumor cells (CTCs); cell-free DNA (cfDNA); exosomes; tumor-educated
platelets (TEPs); liquid biopsy; non-small cell lung cancer (NSCLC); tyrosine kinase inhibitors (TKIs)

1. Introduction

Lung cancer is the leading cause of cancer-related death in the world [1–3]. In 2020, it
was responsible for 1.8 million deaths (18.0% of the total cancer deaths) preceding colorectal
(9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Moreover, lung cancer
ranks second for incidence in both sexes worldwide with an estimated 2.2 million new
cancer cases in 2020. In men, lung cancer is the most frequently diagnosed cancer and the
main cause of cancer death. In women, however, it comes second for mortality and third
for morbidity. It is reported that incidence and mortality rates are approximately two times
higher in men than in women [3].

There are over 50 histomorphological subtypes of lung cancer, among which, non-small
cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC) are the two main types.
NSCLC occurs in roughly 80–85% of patients with lung cancer, whereas SCLC comprises 15%
of cases [4]. According to WHO classification, NSCLC includes a variety of different subsets
with three most notable ones: adenocarcinoma, squamous cell carcinoma, and large cell
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carcinoma [1,2,4–6]. Adenocarcinoma is the predominant subtype of NSCLC and represents
approximately 40–50% of lung cancers. Squamous cell carcinoma accounts for 25–30% of
cases, whereas large cell cancer is responsible for approximately 5% to 10% of all types [1,4].

The prognosis for lung cancer patients is poor; however, it strongly depends on the
stage of the disease at the moment of diagnosis. In particular, the 60-month overall survival
(OS) rate for NSCLC ranges from 68% in patients with stage IB disease to 0% to 10% in
patients with stage IVA-IVB disease [1]. For this reason, new technologies for the early and
precise detection of lung cancer are urgently needed to enable the prompt introduction of
targeted therapy, with particular emphasis on personalized treatment.

2. Therapeutic Approaches in NSCLC

The treatment of NSCLC depends on the stage of the disease. Patients with stage I or
II should be treated with complete surgical resection, if possible [1]. Unfortunately, surgical
resection is not feasible in over 60% of patients that present locally advanced or metastatic
disease (stage III or IV) at the time of diagnosis. Until recently, conventional chemotherapy
and radiation therapy were the main ways of treatment for these patients [4]. Although
adjuvant platinum-based chemotherapy is a standard treatment for stages II-IIIA disease,
relapse rates are high, with a relatively high rate of toxicity [7,8]. Moreover, platinum-based
chemotherapy has provided only a modest survival benefit for advanced NSCLC patients,
with an OS of less than 2 years [9].

The treatment of lung cancer has recently evolved with the introduction of targeted
therapy based on the use of tyrosine kinase inhibitors (TKIs). TKIs are used in patients
with metastatic NSCLC (stage III or IV) and certain gene alterations, including EGFR, ALK,
ROS1, NTRK1, BRAF, HER2, MET, and KRAS genes, which are independent of PD-L1 levels.
Patients with metastatic NSCLC, targetable driver oncogene molecular variant, and also
PD-L1 expression levels of 1% or more should receive first-line targeted therapy for detected
oncogene instead of first-line immune checkpoint inhibitors (ICIs). Targeted therapies yield
higher response rates (e.g., osimertinib, 80%) than ICIs (poor response rates) in the first-line
setting and are better tolerated [10–13]. Molecular targeted therapy based on TKIs has
improved clinical outcomes in a large number of NSCLC patients with advanced disease,
enabling significantly longer progression-free survival (PFS) [1,8,9,14]. TKI treatment
side effects are fewer and less serious as compared with conventional chemotherapy and
they include: skin lesions, diarrhea, general malaise, and hepatotoxicity, and are usually
reversible. The only potentially lethal side effect of TKI treatment is interstitial lung disease;
however, it occurs very rarely [15]. Among mentioned genes used as targets in the TKI
therapy of NSCLC, EGFR, ALK, ROS1, BRAF, MET, and KRAS should be noted [16]. A
summary of the TKIs used depending on the detected mutation is shown in Figure 1.
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tivity of EGFR may provide a significant anti-tumor effect. The most commonly used and 
approved by Food and Drug Administration (FDA) EGFR TKIs include: erlotinib 
(Tarceva), gefitinib (Iressa), afatinib (Gilotrif), and osimertinib (Tagrisso) [14]. In general, 
mutations occurring in exons 18 to 21 are responsive to EGFR TKIs; however, an EGFR 
T790M mutation in exon 20 is associated with acquired resistance to TKI therapy. This 
mutation involves a substitution of threonine to methionine in exon 20 and may affect up 
to 63% of patients with disease progression after the initial response to front-line TKIs. In 
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2.1. EGFR-Targeted TKI Treatment
2.1.1. Major EGFR Mutations

Activating mutations in the tyrosine kinase domain of the epidermal growth factor
receptor (EGFR) gene occur in approximately 10–30% of NSCLC tumors [17]. They affect
most commonly exons 18–21 of the EGFR gene, causing the ligand-independent activation
of the tyrosine kinase of EGFR [18] and uncontrolled cell proliferation which may result in
malignant transformation.

It is reported that the majority of patients with EGFR-mutated NSCLC (80% to 90%)
have either an exon 19 deletion or an L858R point mutation [19]. The deletions in exon
19 include leucine (L) at codon 747, arginine (R) at codon 748, glutamic acid (E) at codon
749, and alanine (A) at codon 750 (∆LREA). The point mutation in exon 21 results in the
substitution of leucine (L) to arginine (R) at codon 858 (L858R) [9,20].

In patients with activating EGFR mutations, the inhibition of the tyrosine kinase
activity of EGFR may provide a significant anti-tumor effect. The most commonly used
and approved by Food and Drug Administration (FDA) EGFR TKIs include: erlotinib
(Tarceva), gefitinib (Iressa), afatinib (Gilotrif), and osimertinib (Tagrisso) [14]. In general,
mutations occurring in exons 18 to 21 are responsive to EGFR TKIs; however, an EGFR
T790M mutation in exon 20 is associated with acquired resistance to TKI therapy. This
mutation involves a substitution of threonine to methionine in exon 20 and may affect up
to 63% of patients with disease progression after the initial response to front-line TKIs. In
such cases, it is recommended to introduce third-generation EGFR inhibitors (osimertinib
and rociletinib) [14,19]. Interestingly, osimertinib was quite recently approved as a first-line
treatment for patients with metastatic EGFR-mutant NSCLC previously untreated [21] and
also as an adjuvant treatment for NSCLC with EGFR Ex19del or L858R mutations for stages
IB−IIIA [22].

2.1.2. Rare EGFR Mutations

Despite the fact that the most common EGFR mutations in NSCLC are L858R sub-
stitution and exon 19 deletion, 10% of NSCLC patients will have an uncommon EGFR
mutation. Generally, mutations involving exons 18 to 21 are considered sensitive to EGFR
TKIs, with the exception being mutations involving exon 20, including T790M and exon
20 insertions [19].

Mutations in exon 18 are typically considered sensitizing to EGFR TKI therapy. The
most frequently detected exon 18 mutation is the G719X mutation [23,24]. Compared with
wild-type EGFR,53, the G719X mutation is associated with a 10-fold increase in EGFR
activation. However, in vitro studies have suggested that it is not as sensitive to gefitinib as
NSCLC cell lines with L858R mutations [25]. Patients with G719X mutations that respond
to EGFR TKI therapy have not always been as prolonged as those seen with the more
common mutations.

However, complex mutations within exon 18 (e.g., L861Q mutation) may be associated
with a better prognosis than point mutations [24,26]. Yang et al.’s study, in which 12% of
patients had L861Q substitutions, has shown the association of the presence of the L861Q
mutation with sensitivity to EGFR TKIs [18,27]. For those patients, the objective response
rate (ORR) was 56.3% with a median progression-free survival (PFS) of 8.2 months and
overall survival (OS) of 17.1 months [28].

Another mutation, the S768I mutation, in some studies [29,30], is associated with poor
responses to TKIs. However, patients with the S768I mutation from treatment with afatinib
did show good clinical outcomes, with a median PFS of 14.7 months and median OS not
yet reported (95% CI: 3.4 months–not estimable) [28].

2.2. ALK-Targeted TKI Treatment

Anaplastic lymphoma kinase (ALK) gene rearrangements are present in approximately
5% of NSCLC tumors [31]. One of the most frequently described rearrangements is an
inversion of the short arm of chromosome 2, which results in a fusion of ALK with the echin-
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oderm microtubule-associated protein-like 4 (EML4) gene. The fusion protein EML4-ALK
activates several pathways driving cell survival and proliferation [32]. Other fusion part-
ners for ALK include genes such as: KIF5B, KLC1, TFG, TPR, HIP1, STRN, DCTN1, SQSTM1,
NPM1, BCL11A, and BIRC6 [33]. Therapeutic options for ALK-positive NSCLC involve
ALK inhibitors crizotinib (XALKori, Pfizer), brigatinib (ALUNBRIG, Takeda Pharma), and
ceritinib (Zykadia, Novartis Europharm) [8,14]. It was also reported that the use of alectinib
(Alecensa, Roche Pharma) (a second-generation ALK TKI) as compared to crizotinib has
shown a dramatic improvement in PFS and lower toxicities [31].

2.3. ROS1-Targeted TKI Treatment

Proto-oncogene receptor tyrosine kinase (ROS1) is activated by chromosomal rear-
rangement in 1–2% cases of NSCLC [8], consisting of point mutations in the ROS1 gene
(e.g., D2033N, G2032R, or L2026M) [34]. Rearrangement results in the fusion of the tyrosine
kinase domain of ROS1 with 1 of 12 different partner proteins. The products of such
reactions are constitutively activated, which leads to cellular transformation [35]. The most
common ROS1 fusion partners include CD74, SLC34A2, EZR, SDC4, and TPM3 [34,35]. In
ROS1-positive patients treatment with TKI, ceritinib, crizotinib, entrectinib, and lorlatinib
are highly effective [8].

2.4. BRAF-Targeted TKI Treatment

The serine/threonine-protein kinase (BRAF) mutations are found in 3–5% of NSCLC
patients [36]. The most commonly reported BRAF mutation is an aminoacidic substitution
of a valine (V) for a glutamic acid (E) in codon 600 (V600E) [37]. BRAF V600E mutations
are found in 1–3% of NSCLC and are sensitive to treatment with a combination of BRAF
inhibitors and dabrafenib (Tafinlar, Novartis Europharm) in combination with trametinib
(Mekinist, Novartis Europharm) after progression on chemotherapy [8]. If there is an ac-
quired resistance to BRAF inhibitors alone, it is recommended to introduce MEK inhibitors
additionally [38].

2.5. MET-Targeted TKI Treatment

The proto-oncogene N-methyl-N’-nitroso-guanidine human osteosarcoma transform-
ing gene (MET), located in the 7q31 locus of chromosome 7, encodes a receptor tyrosine
kinase and induces downstream signaling through the phosphoinositide 3-kinase (PI3K)
and RAS-RAF pathways. Abnormal MET signaling drives tumor growth through increased
cell proliferation, invasion, survival, and metastasis [14,39–41]. Several types of MET aber-
rations such as MET exon 14 skipping mutation, MET amplification, and MET fusions have
been observed in numerous different types of cancers. The first target in NSCLC, for which
MET-targeted therapy was approved in 2020, became MET exon 14 skipping mutation
(MET∆ex 14) [39]. This mutation can result from point mutations, deletions or insertions,
or large-scale whole-exon deletions. MET∆ex14 occurs in 3 to 4% of patients with NSCLC.
In contrast to NSCLC patients with other driver mutations (e.g., EGFR, ALK, and ROS1),
patients with MET∆ex14 are over 70 years of age and have a smoking history [40,42–47].

Currently, there are many MET-TKIs under clinical development. These drugs include
selective type 1b inhibitors (e.g., tepotinib, capmatinib, and savolitinib) and nonselective
type 1a inhibitors (e.g., crizotinib) [40]. In 2020 and 2021, tepotinib and capmatinib were
approved in the USA and Japan, respectively, for use as monotherapies in NSCLC patients
carrying MET exon 14 skipping [39]. Tepotinib is a highly selective and potent oral MET
inhibitor that inhibits MET phosphorylation and downstream signaling. In preclinical
studies, tepotinib inhibited the growth of MET-dependent human xenograft tumors and
cancer explants [48–52]. Crizotinib, a non-selective type 1a inhibitor, is a multi-tyrosine
kinase inhibitor approved for the treatment of advanced NSCLC with ROS1 or ALK rear-
rangement. In addition to its activity against ROS1 and ALK, crizotinib also exhibits strong
activity against MET and low nanomolar strength in cell lines that contain changes in the
MET exon 14 [53].
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2.6. KRAS-Targeted TKI Treatment

Kirsten rat sarcoma viral oncogene homolog (KRAS) is mutated in 15–25% of NSCLC-
patients, more frequently than ALK rearrangements (~5%) or MET mutations (~3%) [54].
KRAS mutations have also been found more frequent in non-Asian than in Asian popula-
tions (25–50% vs. 5–15%, respectively) [55] and in former or current smokers than in never
smokers (25–35% vs. 5%, respectively) [56–59]. Furthermore, evidence suggested that the
presence of KRAS mutations combined with ALK rearrangements or EGFR mutations could
negatively impact TKI therapy’s effects [60–64]. The most common KRAS mutations occur
in codons 12 and 13, including G12C, which is present in 13% of NSCLC.

The first G12C-specific inhibitor able to demonstrate in vivo efficacy was ARS-1620.
Since then, other related compounds with increased biological activity have been produced.
Sotorasib (AMG-510) and adagrasib (MRTX849) were the earliest of which to enter the
clinic [55,65,66]. AMG 510 is a first-in-class oral KRAS G12C inhibitor with evidence of
clinical activity. Pre-clinical data of AMG510 demonstrated selective targeting of KRAS
G12C tumors as monotherapy and in combination with cytotoxic therapy [65]. MRTX849 is
a potent and selective KRAS G12C inhibitor, achieving 65% tumor regression in vitro and
in patient-derived xenograft models [66,67].

2.7. Testing for Molecular Biomarkers

All mentioned genomic alterations are also known as molecular biomarkers. Molecular
testing is used to test for certain biomarkers for available targeted therapies. For eligible
patients with locally advanced and resected early-stage NSCLC, molecular testing is also
recommended. In 2022 The National Comprehensive Cancer Network® (NCCN®) NSCLC
Panel added to its Guidelines information about molecular testing, such as a definition for
broad molecular profiling for NSCLC. Broad molecular profiling was defined as molecular
testing that identifies, e.g., all of the classic actionable biomarkers such as EGFR, ALK,
ROS1, BRAF, MET, and KRAS. Broad genomic profiling can be used to distinguish separate
primary lung cancers from intrapulmonary metastases and to assess resistance mechanisms
in patients who progressed on targeted therapy. It can also help in determining the eligibility
for some molecular clinical trials [10].

Broad molecular profiling systems, such as next-generation sequencing (NGS), may be
used to test for multiple biomarkers simultaneously [10]. If the NGS platforms have been
designed and validated to detect somatic genomic alterations, they can detect panels of
mutations and gene fusions [68–76].

If it is clinically possible, molecular testing results for the molecular biomarkers should
be known before starting systemic therapy with ICI regimens in eligible patients with
advanced NSCLC. If not, then patients are treated as though they do not have driver
oncogenes [11,12,31,77].

3. Liquid Biopsy

Unfortunately, the quality of the available tumor biopsy and/or cytology material is
not always adequate to perform the necessary molecular testing, which has prompted the
search for alternatives. The solution may be the use of liquid biopsy, which could impact
clinical utility in several ways. Liquid biopsy, as a minimally invasive approach, allows the
detection of the disease in peripheral blood samples and it may be useful during cancer
screening. Despite some significant efforts that have been attempted so far to develop
methods for early cancer detection by using ctDNA presenting promising results, such
as CancerSeek [78] and very recently the Galleri Test (Grail) [79], liquid biopsy is not
established as a tool yet for early diagnosis. Moreover, liquid biopsy has prognostic value
and enables the selection of appropriate therapy and monitoring its efficacy [80–82]. Liquid
biopsy is based on the detection, isolation, and characterization of circulating tumor cells
(CTCs) or/and circulating tumor DNA (ctDNA) or cell-free DNA (cfDNA), exosomes, and
tumor-educated platelets (TEP) [83,84].
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Over the past few years, great technological advancements have been achieved, and
the highly sensitive and specific PCR-based techniques that were used so far for the de-
tection of targeted genomic alterations are gradually replaced by high-throughput NGS
techniques. NGS-based methods in liquid biopsy offer a wider spectrum of molecular
information obtained through a single analysis. Despite the higher cost, longer turn-around
time, and relatively lower sensitivity rates, NGS-based methods in liquid biopsy could
positively affect the clinical management of NSCLC patients [85,86]. A multigene NGS
approach in liquid biopsy is already included in the guidelines recently issued by the
International Society for the Study of Lung Cancer (IASLC) and the European Society for
Medical Oncology focused on the personalized treatment of NSCLC patients, providing
biomarkers of prognostic significance during disease monitoring, and revealing the pres-
ence of alternative druggable alterations at the progression of the disease [87]. Although
NGS-based assays are already performed in tissue samples, cfDNA analysis offers some
advantages regarding the minimally invasive approach during disease progression and
also depicts tumor heterogeneity. Very recently, the FDA approved two NGS liquid biopsy
tests, Guardant360 and FoundationOne Liquid CDx, based on the clinical utility of cfDNA
testing, for the personalized treatment of NSCLC patients. Many studies based on the NGS
approach have been written and are presented in detail below.

3.1. Liquid Biopsy Elements
3.1.1. CTCs

CTCs are cells that circulate in the bloodstream after separation from the primary
tumor, potentially leading to metastasis formation under favorable conditions. The number
of detected CTCs in 10 mL of blood ranges from 0 to over 10,000 [88] but the detection of
even single cells may suggest the presence of a developing neoplastic process [89–91]. Thus,
CTC detection allows for the faster implementation of appropriate treatment, significantly
increasing the chances of survival. In most cases, CTC analysis is based on the assessment
of the number of cells and their phenotypic characteristics, with some of them enabling also
their isolation and subsequent molecular testing [92–95]. However, all of them carry some
challenges. One of the biggest problems may be the high heterogeneity of CTC, observed
even in cells derived from the same tumor. The relatively low frequency of CTCs in relation
to a large number of blood cells (usually a single CTC per 106–107 leukocytes) may be an
additional difficulty [96]. For this reason, the proper analysis should be preceded by the
enrichment stage, e.g., increasing the CTC concentration in the analyzed sample [97].

3.1.2. cfDNA

Another source of information about mutations and genetic changes within the tumor
is cfDNA. cfDNA is present mainly in the bloodstream, as well as in other body fluids,
such as urine, cerebrospinal fluid, and pleural effusions. The analysis of peripheral blood-
derived cfDNA can be performed in both serum and plasma. Studies have shown that the
concentrations of cfDNA are higher in serum; however, it is not its preferred source due to
the potential contamination with genomic DNA [98]. Although cfDNA is rapidly degraded
by nucleases [99], it may reflect ongoing genetic changes in the tumor. It has been shown
that the amount of cfDNA correlated with the tumor size [100], tumor stage [101], and the
presence of metastases [102], suggesting that both primary and secondary genetic changes
in the tumor are mirrored in cfDNA. This information is particularly valuable in the aspect
of monitoring the course and effectiveness of the applied therapy.

3.1.3. Exosomes

Exosomes are extracellular vesicles ranging in size from 30 to 100 nm. They are
detected in the blood of patients with various types of cancer and consist, inter alia, of
proteins and nucleic acids. By analyzing molecular changes in their elements (mutations,
gene fusions, or splicing variants), it is possible to determine, among others, tumor progres-
sion. The double lipid layer of exosomes means it is difficult to purify them, compared to
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CTCs and cfDNA; however, their structure provides better stability of their content, which
allows better identification of the tumor’s origin, genetic changes within it, and potential
resistance to treatment. Another advantage of exosomes is their much higher concentration
in biological fluids, including blood, than in CTCs and cfDNA [103].

The analysis of isolated exosomes can be performed quickly and accurately with
the use of electrochemical and fluorescent technologies, using binding with antibodies,
aptamers, or nanomaterials, with various test platforms [103].

3.1.4. TEP

Tumor-educated blood platelets are perhaps the newest ingredients in the liquid
biopsy family. The concept of ‘platelet education’ by cancer refers to the presence of specific
RNA signatures in platelets from patients with cancer and was first reported in 2010 [104].

Platelets are a fundamental component of the tumor microenvironment and are con-
sidered an important aspect of cancer biology as they contribute to tumor initiation, tumor
progression, and therapy response. They create an environment supportive of neovascu-
larization, reduce local tumor cell apoptosis and anoikis [105], and are able to induce the
epithelial–mesenchymal switch in tumor cells, supporting metastatic spread. The process
is generally based on providing mechanical and anti-NK cells protection (transfer of MHC
I proteins) of CTCs by cell–fibrin–platelet aggregates [106].

3.2. Cancer Screening

An early cancer diagnosis allows for the prompt implementation of an adequate
treatment procedure and improves patients’ prognosis. The use of liquid biopsy to detect
early-stage cancer is possible but difficult due to the low sensitivity and specificity of
the test and the risk of a false-positive result [107,108]. However, the clinical validity
of liquid biopsy has been proved, e.g., in lung cancer patients. In a study by Ilie et al.,
CTCs were detected in 5 out of 168 patients with chronic obstructive pulmonary disease
(COPD). Importantly, the detection of CTCs preceded the visualization of lung cancer on
computed tomography scans by 1 to 4 years in all CTC-positive patients [82,109]. Another
promising study was conducted by Fiorelli et al. using Isolation by Size of Epithelial Tumor
Cells (ISET, RareCells, France) filtration technology for CTC enrichment. In this study,
CTCs were found in 90% of patients with advanced lung cancer and in 5% with benign
lesions, allowing the differentiation of the two types of cancer [81,82,110]. Unfortunately,
another attempt with ISET has shown low sensitivity [82,111]. A meta-analysis by Jia et al.
confirmed the overall relatively low sensitivity of this approach for the early detection of
lung cancer in COPD patients. It also showed that cfDNA shows greater sensitivity and
specificity for early cancer detection than ctDNA and CTC and is also the best biomarker
for the detection of multiple cancers [112].

3.3. Prognostic Value

Numerous studies have shown that the detection of tumor biomarkers through liquid
biopsy is a strong prognostic factor. A correlation has been demonstrated between the
presence of CTCs, ctDNA, cfDNA, circulating mRNA, and poor PFS and OS in several
types of cancer, including patients with melanoma [88,113], lung cancer [114,115], prostate
cancer [80,116–118], breast cancer [119–122], and colorectal cancer [123–125]. In general, a
higher number of CTCs is associated with poor prognosis. In lung cancer, the CTC count
is considered as a negative prognostic value that varies depending on the type of tumor.
In Small Cell Lung Cancer (SCLC), the detection of more than 50 CTCs in 7.5 mL of blood
has a negative prognostic value, while in NSCLC, the detection of 5 CTCs in 7.5 mL of
blood and more indicates a poor prognosis [108,126,127]. Not only the number but also the
morphological properties of CTCs, such as the ability to form clusters and the presence of
apoptotic cells, are important and are associated with a worse prognosis [108,128,129]. The
use of CTCs and ctDNA also allows the detection of a minimal residual disease (MRD),
and thus the selection of patients more at risk of relapse [108,130–132].
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3.4. Therapy Selection and Monitoring of NSCLC through Liquid Biopsy

In NSCLC, the detection of targetable mutations is required for using the TKI treat-
ment. Those mutations can be detected by the molecular analysis of isolated liquid biopsy
elements (Figure 2). In addition, in case of resistance to a given drug, monitoring treatment
efficacy using liquid biopsy allows for a timely change of treatment to a more effective
one [133]. Liquid biopsy is also used when the patient does not qualify for immunotherapy
or targeted therapy due to the lack of specific mutations. Then, if a decision is given
about chemotherapy or radiotherapy, it is possible to monitor the CTC counts before and
after treatment. Studies have shown that a reduction in CTC counts after chemotherapy
is associated with a better prognosis, especially in metastatic breast, colon, and prostate
cancer [81,134,135]. There are also a few studies that propose cfDNA concentration as a
predictive marker of immunotherapy response [136–138].

Cells 2022, 11, 2871 9 of 29 
 

 

 
Figure 2. Liquid biopsy analysis as a diagnostic tool for TKI-based treatment in non-small cell lung 
cancer. In peripheral blood samples, liquid biopsy elements such as circulating tumor cells (CTCs) 
and/or cell-free DNA (cfDNA) and/or tumor-educated platelets (TEPs) and/or exosomes can be de-
tected. Mutations (EGFR, ALK, ROS1, BRAF, MET, KRAS) detected in liquid biopsy elements using 
molecular detection methods (e.g., next generation sequencing (NGS), digital PCR (dPCR), shallow 
whole genome sequencing (sWGS)) correspond to the results obtained during traditional tissue bi-
opsy. 

4. Liquid Biopsy Testing in NSCLC 
4.1. EGFR-Mutant NSCLC 

Most of the studies performed so far have focused on ctDNA analysis for EGFR mu-
tations. Analysis in CTCs is limited to a few studies, and exosomes even less. Moreover, 
there are only very few studies that have compared EGFR mutations in CTCs and ctDNA 
directly in the same clinical samples using the same blood draws and the same method-
ologies. Based on this, we believe that the analysis of EGFR mutations in exosomes pro-
vides clinically important information that needs to be confirmed through larger clinical 
studies. 

4.1.1. cfDNA Testing 
cfDNA analysis in advanced NSCLC has been extensively studied, and its clinical 

utility is already proven for targeted treatment selection, treatment monitoring, and re-
sistance mechanisms detection [139–141]. Thus, current clinical guidelines recommend 
cfDNA testing for the detection of molecular alterations in NSCLC, either in treatment-
naïve patients or in patients who progressed to EGFR TKIs [141]. EGFR-mutant NSCLC 
constitutes one of the major paradigms of integrating liquid biopsy testing in the clinical 
setting that is validated through the liquid biopsy tests already approved by the FDA 
[142]. 

The first promising results on the predictive value of cfDNA in NSCLC patients were 
generated through important clinical trials that compared the efficacy of first-generation 
EGFR TKIs against chemotherapy and included cfDNA analysis, beyond the classic ap-
proach of tissue biopsy [143,144]. More precisely, results from the EURTAC trial corre-
lated EGFR mutations in cfDNA with OS, PFS, and treatment response and proved the 
feasibility of using cfDNA instead of tumor biopsy during treatment with erlotinib [145]. 
High concordance rates between plasma and tissue genotyping for EGFR mutations were 
detected during the ENSURE study, and patients positive for EGFR mutations in their 
plasma had improved PFS when treated with erlotinib compared to chemotherapy [146]. 
These significant findings led to the approval of the first liquid biopsy test, the cobas EGFR 

Figure 2. Liquid biopsy analysis as a diagnostic tool for TKI-based treatment in non-small cell lung
cancer. In peripheral blood samples, liquid biopsy elements such as circulating tumor cells (CTCs)
and/or cell-free DNA (cfDNA) and/or tumor-educated platelets (TEPs) and/or exosomes can be
detected. Mutations (EGFR, ALK, ROS1, BRAF, MET, KRAS) detected in liquid biopsy elements
using molecular detection methods (e.g., next generation sequencing (NGS), digital PCR (dPCR),
shallow whole genome sequencing (sWGS)) correspond to the results obtained during traditional
tissue biopsy.

4. Liquid Biopsy Testing in NSCLC
4.1. EGFR-Mutant NSCLC

Most of the studies performed so far have focused on ctDNA analysis for EGFR mu-
tations. Analysis in CTCs is limited to a few studies, and exosomes even less. Moreover,
there are only very few studies that have compared EGFR mutations in CTCs and ctDNA
directly in the same clinical samples using the same blood draws and the same methodolo-
gies. Based on this, we believe that the analysis of EGFR mutations in exosomes provides
clinically important information that needs to be confirmed through larger clinical studies.

4.1.1. cfDNA Testing

cfDNA analysis in advanced NSCLC has been extensively studied, and its clinical util-
ity is already proven for targeted treatment selection, treatment monitoring, and resistance
mechanisms detection [139–141]. Thus, current clinical guidelines recommend cfDNA test-
ing for the detection of molecular alterations in NSCLC, either in treatment-naïve patients
or in patients who progressed to EGFR TKIs [141]. EGFR-mutant NSCLC constitutes one
of the major paradigms of integrating liquid biopsy testing in the clinical setting that is
validated through the liquid biopsy tests already approved by the FDA [142].
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The first promising results on the predictive value of cfDNA in NSCLC patients were
generated through important clinical trials that compared the efficacy of first-generation
EGFR TKIs against chemotherapy and included cfDNA analysis, beyond the classic ap-
proach of tissue biopsy [143,144]. More precisely, results from the EURTAC trial correlated
EGFR mutations in cfDNA with OS, PFS, and treatment response and proved the feasibility
of using cfDNA instead of tumor biopsy during treatment with erlotinib [145]. High con-
cordance rates between plasma and tissue genotyping for EGFR mutations were detected
during the ENSURE study, and patients positive for EGFR mutations in their plasma had
improved PFS when treated with erlotinib compared to chemotherapy [146]. These signifi-
cant findings led to the approval of the first liquid biopsy test, the cobas EGFR Mutation
Test (Roche Molecular Systems, Inc., Pleasanton, CA, USA), as a companion diagnostic for
erlotinib [147].

NSCLC patients treated with first or second EGFR TKIs experience the progression
of disease after 9–14 months, mostly because of the presence of the T790M mutation [148].
Therefore, the detection of this resistance mutation is crucial for stratifying patients that
could subsequently benefit from treatment with third-generation EGFR TKIs [149]. Liquid
biopsy analysis, through cfDNA testing, demonstrated a potential role during the progres-
sion of the disease. Several studies have shown the concordance between plasma and tissue
testing for the detection of T790M. Moreover, noninvasive monitoring captured tumor
heterogeneity and identified resistance mutations that otherwise would have been missed
while using classical tumor biopsy [150–152]. Oxnard et al. also confirmed these results
through a retrospective analysis which demonstrated that patients positive for T790M in
their plasma were treated with osimertinib and had similar clinical outcomes in terms of
PFS compared to the corresponding tissue results [153]. Similar results were observed in
the context of the FLAURA trial while evaluating the clinical utility of cfDNA testing to
identify patients that could benefit from first-line treatment with osimertinib. Interestingly,
in this study, it was shown that in some patients that were positive for EGFR mutations
in the primary tissue, a lack of EGFR mutations in their plasma was observed and this
was associated with better PFS; this could be possibly explained as a result of lower tumor
burden that was shed in the plasma [154].

The spectrum of resistance mechanisms that occur upon treatment with third-generation
EGFR TKIs is broadly heterogeneous [155]. The EGFR C797S mutation that confers resis-
tance to osimertinib is the most common resistance mechanism detected in plasma [156,157].
Larger cohort studies have revealed various mechanisms of acquired resistance detected
in the plasma of NSCLC patients treated with osimertinib either as a second-line treat-
ment [158] or in the first-line setting [159].

The plasma genotyping of EGFR-mutant NSCLC is also highly valuable during treat-
ment as an indicator of tumor response or disease progression by evaluating variant allelic
fractions of genomic alterations and detecting the emergence of resistance mechanisms
earlier. Recently, it was shown that a higher allele frequency of EGFR mutations in plasma
ctDNA before treatment with osimertinib was a poor prognostic factor [160]. Mok et al.
analyzed plasma samples from the FASTACT-2 study to explore the predictive value of
changes in the cfDNA EGFR mutation status during EGFR TKI treatment. They demon-
strated that the median PFS and OS were shorter for patients with detectable mutations
after three cycles of treatment, underlining the utility of the serial quantitative measure-
ment of EGFR mutations in cfDNA to assess tumor progression [161]. Similar results were
presented in the Phase III AURA3 trial and in the Phase III FLAURA trial, indicating that
the early clearance of ctDNA EGFR mutations after 3 or 6 weeks was associated with better
clinical outcomes [83,162]. Serial ctDNA monitoring during EGFR TKI treatment may be
useful for tracking relapse before radiological progression, as was demonstrated by several
groups [163–166].
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4.1.2. CTCs

Beyond CTC enumeration, the molecular characterization of CTCs in EGFR-mutant
NSCLC could offer an alternative source of information critical for clinical decisions.
Several groups have detected EGFR mutations in CTCs of NSCLC patients with various
concordance rates between plasma and/or tissue genotyping. Discrepancies observed
between plasma or tissue genotyping and CTC profiling may be attributed to tumor
heterogeneity that characterizes NSCLC and also to clonal evolution that occurs under
treatment selective pressure [167–170]. Single CTC analysis for EGFR mutation detection in
six NSCLC patients revealed intra-patient heterogeneous mutation profiles that reflect rare
clones that could lead to therapeutic resistance [171].

Maheswaran et al. successfully identified EGFR sensitizing mutations, the resistance
mutation T790M, and secondary EGFR mutations in CTCs with higher sensitivity than
those detected in corresponding plasma samples. Intriguingly, T790M mutation was
detected in a majority of patients who had a progression of disease while receiving EGFR
TKIs [172]. Conversely, in a single-arm phase II clinical trial of erlotinib and pertuzumab,
Punnoose et al. observed higher sensitivity for mutation detection in ctDNA than in
CTCs [167]. Remarkably, the greatest activity of the pertuzumab-erlotinib combination,
with concomitant CTC changes, was seen in patients harboring EGFR mutations. Despite
that, high CTC counts are usually a poor prognostic factor; in this study, high baseline
CTC counts were associated with radiographic response [167]. In a small group of eight
metastatic NSCLC patients treated within the LUX-Lung 3 study, Exon 19 deletion EGFR
mutation was detected by the real-time PCR and melting curve analysis protocol and the
results were correlated with radiological response. More specifically, at follow-up, patients
without EGFR-mutant CTCs relapsed prior to radiological PD whereas patients who had
“cleared” CTC showed the significantly prolonged time to treatment failure [173].

Different methodologies have been implemented for the detection of EGFR muta-
tions in the CTCs of NSCLC patients, such as the combination of CTC enrichment by the
CellSearch (Menarini Silicon Biosystems, Inc., Bologna, Italy) system with next-generation
sequencing (NGS), with sensitivity and specificity of 84% and 100%, respectively, corre-
sponding to those present in tumor tissue [174]. Moreover, Gorges et al. explored the
feasibility of detecting EGFR mutations in CTCs captured by in vivo nanowire CellCollec-
tor (GILUPI GmbH, Potsdam, Germany), a procedure that could be useful for treatment
monitoring [175].

In addition to the methods already mentioned above, the detection and quantification
of EGFR mutations in plasma-cfDNA and CTCs of NSCLC patients are feasible thanks
to digital PCR (dPCR) technology. Using crystal dPCR and the naica® system (Stilla
Technologies), Ntzifa et al. detected EGFR mutations in ctDNA and paired CTCs in patients
with NSCLC treated with osimertinib at two-time points, before treatment and at the
progression of the disease. The results of these studies indicate that the use of crystal dPCR
enables the precise, accurate, and highly sensitive detection and quantification of many
EGFR mutations in plasma-cfDNA and CTC in NSCLC [169].

4.1.3. Exosomes

During the last few years, the analysis of circulating exosomes has provided new
opportunities for cancer diagnosis and the monitoring of disease progression in the liquid
biopsy field. Many studies on NSCLC have shown higher sensitivity and specificity while
combining exosomes with cfDNA testing, thus implicating their clinical utility” [176].
In a small study including 41 NSCLC patients, it was demonstrated that patients with
mutated plasma exoNA (KRAS, EGFR, BRAF) and low MAF had longer median PFS and
time-to-treatment failure, suggesting that the molecular profiling of plasma exoNA can be
predictive of clinical outcomes [177].

Castellanos-Rizaldos et al. successfully identified T790M-positive NSCLC patients
through exoNA analysis and they proved that the combination of exoRNA/DNA and
cfDNA detection offers higher sensitivity and specificity than using cfDNA alone [176].



Cells 2022, 11, 2871 11 of 28

Later, the same group developed and validated a qPCR-based test that detects a panel of
29 EGFR mutations in exosomal RNA/DNA and cfDNA that predict the response to first-
line EGFR TKIs and osimertinib [84]. The increased sensitivity for EGFR mutation detection
by combining exoRNA/DNA and cfDNA analysis was also confirmed by Krug et al. [178].

Interestingly, the exosome-based detection of EGFR T790M in the plasma and pleural
fluid of prospectively enrolled NSCLC patients after first-line TKI therapy also demon-
strated greater sensitivity [179]. Furthermore, the longitudinal EGFR mutation analysis of
bronchial washing (BW)-derived extracellular vesicles (EVs) revealed an excellent correla-
tion with disease progression, as measured by CT images [180].

Recently, in a small pilot study with 10 metastatic EGFR-mutant NSCLC patients, it
was shown that EVs had a better detection rate that ctDNA, and that variations in the
mutant EV-RNA burden could mirror disease status [181].

Exosomes carry important molecular information since they are secreted from living
cells, and in some cases, their analysis could be more informative than cfDNA [182].
However, there are still challenges to overcome, and further research needs to be undertaken
in order to integrate exosome analysis into the liquid biopsy setting

4.2. ALK-Rearranged NSCLC
4.2.1. ctDNA

Different NGS methodologies, such as amplicon-based ctDNA NGS [183,184] or
hybrid-capture techniques [185–190], have been mostly used in several studies for the
detection of ALK rearrangements in newly diagnosed NSCLC patients or those who re-
lapsed after targeted treatment. However, recently, Dietz et al. combined targeted NGS
with copy number variation profiling using the shallow whole genome sequencing (sWGS)
of ctDNA in order to improve the longitudinal monitoring of ALK-positive NSCLC patients
in particular for cases without detectable mutations in ctDNA or with a wide range of
acquired genomic alterations during therapy [191].

In a recent study, plasma samples were collected and analyzed after progression on
first, second, or third-generation ALK TKIs treatments. These patients were sequentially
treated with different ALK inhibitors and longitudinally monitored through the course of
their treatment; it was shown that ALK mutations emerged as a result of increased lines of
ALK inhibitors, thus indicating the importance of plasma genotyping during treatment in
order to guide clinical decisions [192].

Many other studies are in line with the idea of detecting resistance mechanisms to ALK
inhibitors through plasma genotyping, highlighting the advantages of liquid biopsy: high
concordance rates with tissue biopsy, shorter turnaround times, and, most importantly,
the potential of ctDNA analysis to efficiently guide treatment decisions in case tissue
biopsy is negative or not feasible [185,193–196]. Furthermore, numerous studies have
demonstrated the heterogeneous spectrum of ALK rearrangements observed in ctDNA
as resistance mechanisms and its association with treatment outcomes [195]. The most
common ALK fusion detected is EML4-ALK, leaving aside other partner fusions such as
STRN-ALK [188], and less frequent KCNQ, KLC1, KIF5B, PPM1B, TGF [188], and PON1-
ALK [193]. ALK mutations reported so far are G1202R, L1196M, F1174X, G1269A, and
I1171X [185,186,192,196,197]. Interestingly, Shaw et al. examined the efficacy of lorlatinib
(Lorviqua Pfizer) according to plasma or tissue genotyping and concluded that mutation-
positive patients had significantly higher response rates to lorlatinib compared to mutation-
negative patients. However, PFS did not differ significantly in patients with and without
ALK mutations [198]. In the ongoing randomized phase III CROWN study, it was shown
that a decrease in the mean variant allele fraction (VAF) of ALK alterations (fusions and/or
mutations) 4 weeks after lorlatinib in ALK-positive NSCLC, previously untreated, may be
associated with better responses and longer PFS. These important data support the clinical
utility of early ctDNA dynamics during treatment with ALK inhibitors [199]. In addition
to the initial results of the phase III ALEX study, a retrospective analysis based on plasma
analysis suggested that patients treated with alectinib (Alecensa, Roche Pharma) had
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longer PFS compared to those treated with crizotinib (XALKori, Pfizer), irrespective of the
EML4-ALK variant [31]. Moreover, recent data retrieved from the same study showed the
clinical utility of cfDNA concentrations during treatment and its correlation with treatment
outcomes depending on ALK inhibitors [115]. The BFAST study presented comparable
results to the ALEX study regarding the ORR of alectinib and was the first trial to use a
plasma-based NGS method as a sole approach to identify genomic alterations that could
aid clinical decision-making for patients with ALK-positive NSCLC [187].

The eXalt2 study was the first study to assess the clinical utility of analyzing ctDNA
as a function of the response to ensartinib (X-396). The differences observed in the response
rates were attributed to specific variants of EML4-ALK fusion detected [186]. In a multi-
center phase 2 trial, in patients with ALK-positive NSCLC who progressed on crizotinib
and were subsequently treated with ensartinib, longitudinal ctDNA analysis revealed
ALK-dependent (G1269A, G1202R, and E1210K mutations) and ALK-independent (TP53
mutation) resistance mechanisms, thus underlining the significance of ctDNA analysis for
monitoring tumor evolution [197].

In cases of central nervous system (CNS) metastases in NSCLC (brain or leptomeningeal),
plasma ctDNA genotyping is constrained by a blood-tumor barrier, and thus alternative
sources of ctDNA, such as cerebrospinal fluid, can yield a higher source of ctDNA for the
detection of ALK rearrangements [200,201].

4.2.2. CTCs

One of the first studies that explored the feasibility of detecting ALK rearrangements in
CTCs by FISH and ICC included 87 lung adenocarcinoma patients. Only five of them were
found positive for ALK rearrangements, and the results were in concordance with tissue
genotyping. Unlike tumor cells, all CTCs were found to be positive for ALK rearrangements,
demonstrating an aggressive type of tumor cells [202].

Pailler et al. detected ALK rearrangements in CTCs of 18 ALK-positive NSCLC patients
by FA-FISH with a cutoff of ≥ 4 CTCs/1mL of peripheral blood. Surprisingly, it was
observed that ALK-rearranged CTCs expressed a mesenchymal phenotype, whereas all
tumors had a more heterogeneous profile suggesting the invasiveness of CTCs promoted
through EMT. ALK-rearranged CTC levels during the treatment monitoring of five patients
with crizotinib presented different response patterns [203]. Moreover, in another small
study, it was also shown that CTCs recapitulate the ALK rearrangement status of tumor
tissue, and, therefore, CTCs represent a suitable alternative to tissue biopsy for guiding
treatment [204]. In a study of 39 ALK-rearranged NSCLC patients treated with crizotinib,
Pailler et al. found aberrant ALK copy number gain in CTCs and correlated the dynamic
changes in the levels of these CTCs with PFS. Therefore, the longitudinal monitoring of
these patients through CTC analysis proved to be a promising tool for clinical outcome
prediction [205].

In case study reports of EML4-ALK-positive NSCLC patients who underwent sequen-
tial monitoring during therapy with ALK inhibitors, it was found that EML4-ALK-positive
CTCs reflect the response to these inhibitors and predict treatment resistance [206,207].
Recently, in a larger study including 203 stage IIIB/IV NSCLC patients, it was shown the
complementary value of detecting ALK-rearranged CTCs during treatment with ALK in-
hibitors through serial blood sampling. At baseline, there was a high concordance between
tissue and CTC analysis. However, no significant association was observed between CTC
levels and OS or PFS [208].

CTC analysis at the single-cell level revealed acquired resistance mechanisms during
treatment with ALK inhibitors. Interestingly, in a patient resistant to lorlatinib ALK com-
pound mutations were detected in two single CTCs and only one of them was present in
the corresponding tumor biopsy. According to these results, tumor heterogeneity can be
reflected in CTCs, and single-cell analysis can guide personalized treatment options [209].
In a recent exploratory study conducted by the same group, single CTC analysis from six
ALK-rearranged patients resistant to crizotinib or lorlatinib showed aberrant CNA profiles
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and high levels of chromosomal instability at resistance, suggesting that CTCs portray the
heterogeneous pattern of drug resistance to ALK-TKIs [210].

4.2.3. Exosomes and TEPs

Alternative liquid biopsy components for longitudinal monitoring during treatment
with ALK inhibitors could also be exosomes and platelets that seem to carry useful molec-
ular information related to tumors. In a prospective cohort of ALK-positive patients, it
was feasible to detect EML4-ALK rearrangements in plasma exosomes of 50% of these
patients using qPCR, whereas the detection of ALK mutations at PD was correlated to
poor response to treatment [211]. In a similar study, 9 out of 14 patients with a confirmed
diagnosis of stage IIIB–IV NSCLC, naïve or under treatment with a known ALK status, were
found positive for EML4-ALK in RNA isolated from exosomes using NGS [212]. Moreover,
platelets released by tumor cells (tumor-educated platelets, TEPs) could effectively mirror
the clinical status of NSCLC patients under crizotinib treatment. In a group of 29 NSCLC
patients, EML4-ALK-rearrangements were detected in platelets and correlated with shorter
PFS, whereas the serial monitoring of one patient revealed resistance to crizotinib prior to
radiographic PD based on EML4-ALK-positive platelets [213]. Contrary to these results,
Park et al. found that patients positive for EML4-ALK fusions presented longer median
durations of treatment, PFS, and higher ORR [214]. Nevertheless, platelets are a valuable
alternative source for the detection of ALK rearrangements and further investigation needs
to be undertaken for their clinical utility.

4.3. ROS1-Positive NSCLC
4.3.1. ctDNA

As mentioned above, ROS1 fusions are of low prevalence in NSCLC (1–2%), and as a
result, studies including exclusively this subset of NSCLC patients are missing. Limited
but significant studies on ctDNA analysis have shown some important results regarding
the detection of ROS1 rearrangements in plasma as a tissue surrogate. Most of the studies
included NGS panels for the most important therapeutically targetable mutations for the
appropriate TKI therapy in NSCLC patients or treatment monitoring [215–217] and also
proved the clinical utility of cfDNA testing at diagnosis and the potential it offers for faster,
minimally invasive therapeutic decisions [218]

NGS techniques, such as amplicon-based plasma NGS, were previously used to detect
ROS1 rearrangements in the plasma of NSCLC patients with known targetable genotypes,
either before initiating targeted therapy or during treatment. Guibert et al. had successfully
identified CD74-ROS1 rearrangements in two patients [183], whereas Mezquita et al. tried
to assess the clinical utility of ROS1 fusion and resistance mutations using an amplicon-
based liquid biopsy test in NSCLC patients. They observed that 30% of cases harbored
ROS1 resistance mutations and experienced rapid progression of disease compared to those
who had undetectable mutations. Only in one case has ROS1 mutation emerged during
crizotinib failure [184].

A large study of NGS-based genotyping, with the hybrid-capture-based Guardant360x
assay, in ROS1-positive NSCLC patients revealed high concordance (100% for 7 patients
from 54) between plasma and corresponding tissue samples. Among the spectrum of ROS1
fusions that were found, CD74-ROS1 fusion was the most prevalent [219]. Plasma samples
were analyzed for a smaller group of patients at relapse on crizotinib and it was found
that the sensitivity for detecting ROS1 rearrangements was 50%. In post-crizotinib plasma
samples, 33% of patients harbored the ROS1 G2032R mutation, whereas the remainder
harbored the L2026M gatekeeper mutation. Among them, one patient was not found to have
the same mutation also in tissue biopsy, but only after the resistance with chemotherapy
and crizotinib, there was a concordance. These results may be indicative of spatial tumor
heterogeneity and emphasize the importance of plasma genotyping during the treatment
monitoring of these patients [219].
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In the context of a phase I/II trial for the efficacy of lorlatinib (Lorviqua, Pfizer) in
ROS1-positive NSCLC patients, it was found that before treatment with lorlatinib 15%
of patients previously treated with crizotinib had ROS1 mutations in ctDNA (G2032R,
L2026M, L2026M, and I2025I), whereas TKI treatment-naïve patients had no detectable
ROS1 mutations [220]. However, patients harboring the most common ROS1 mutation,
G2032R, did not achieve a response to lorlatinib in contrast to other types of mutations.
Therefore, ctDNA genotyping before the initiation of lorlatinib is a critical step for assessing
the efficacy of treatment [220].

Very recently, the FoundationOne Liquid CDx test was evaluated for its clinical validity
for the identification of patients with NTRK or ROS1 fusions that may benefit from treatment
with entrectinib (Rozlytrek, Roche Pharma) or those with acquired resistance to TKIs. It
was found that plasma testing can be used as a complement to tissue genotyping for clinical
decisions [221]. Another larger study in a pan-cancer patient population (36,916 ctDNA
samples and 368,931 tumor tissue samples) confirmed that ctDNA analysis could reliably
identify oncogenic fusions with high concordance to tissue genotyping results [222].

4.3.2. CTCs

The first attempt to detect ROS1 rearrangements in the CTCs isolated by ISET tech-
nology of four NSCLC patients under crizotinib was undertaken by Pailler et al., who
used a filter-adapted-fluorescence in situ hybridization (FA-FISH) protocol. They further
associated variations in ROS1-rearranged CTC levels with clinical evolution in three of
them and also found differences in copy numbers compared with tumor biopsy [223].
In another small study, ROS1 rearrangements were detected in enriched CTCs also by
FISH, confirming, therefore, that CTCs can offer a reliable alternative for the detection of
ROS1-rearrangements in NSCLC patients [224]. Finally, the clinical utility of the detection
of ROS1 rearrangements in CTCs was shown in a case report study for a patient with
peritoneal carcinomatosis. The patient benefited from crizotinib and ceritinib treatment in
the long term based on the detection of ROS1 rearrangements in CTCs by FISH analysis,
whereas NGS plasma genotyping was negative [225].

4.4. BRAF Mutated NSCLC
ctDNA and CTCs

According to NCCN guidelines, BRAF mutation testing is one of the nine recom-
mended molecular biomarkers to be tested in newly diagnosed metastatic NSCLC patients.
Based on that, the NILE study approved that comprehensive cfDNA testing for these
biomarkers is non-inferior compared to tissue genotyping [226]. However, there is lim-
ited evidence for testing BRAF mutations in the plasma of NSCLC patients according
to real-world experimental data. As a result, there is still a need to investigate its role
in guiding treatment to these patients [227]. In a retrospective analysis, BRAF mutation
testing was conducted in plasma cfDNA samples in cases of tissue unavailability, and a
small but important percentage of patients harbored BRAF V600E [227]. Therefore, it was
highlighted that cfDNA testing as a potential alternative could aid therapeutic decisions
and successfully indicate those patients that may benefit from a BRAF TKI treatment [227].
Another crucial aspect of cfDNA testing for BRAF mutations is the longitudinal monitoring
of NSCLC patients during BRAF-targeted treatment [228]. Early plasma dynamics of BRAF
mutations proved to be a reliable predictor of response to treatment with BRAF inhibitors,
and also plasma genotyping provided information about resistance mechanisms [228].
Furthermore, there have also been reported some non-negligible case studies for patients
that have benefited from combinational EGFR- and BRAF-targeted treatment based on
cfDNA testing during their disease monitoring [229]. For instance, Solassol et al. reported
a successful treatment management of an NSCLC patient administering dabrafenib plus
trametinib and osimertinib based on sequential liquid biopsy testing [230]. Two other
similar case studies have been reported, where patients positive for EGFR and BRAF mu-
tations in plasma cfDNA responded well to the concurrent combination of dabrafenib,
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trametinib, and osimertinib [231,232]. Besides BRAF V600 mutations, 50–80% of BRAF
mutations are non-V600 and are classified into two categories based on their kinase activity
and sensitivity to RTK inhibitors [233]. The SLLIP trial retrospectively assessed the BRAF
mutational spectrum of 185 newly diagnosed advanced lung adenocarcinoma patients and
indicated that the class of BRAF mutations should be taken into account during therapeutic
decisions, as this was confirmed through cell viability experiments [233]. To date, there is
only one short report about detecting BRAF mutations in cfDNA and CTCs in six patients
during treatment with dabrafenib and trametinib. Plasma cfDNA was found to have better
sensitivity at detecting and monitoring mutations compared with CTCs [234]. Nevertheless,
this must be investigated through larger cohort studies.

4.5. MET exon14-Positive NSCLC
ctDNA

The MET∆14 mutation in NSCLC patients can be detected through cfDNA or RNA
from the patient’s plasma using either DNA sequencing based on NGS. Palik et al. used this
form of liquid biopsy in their studies to determine the effectiveness of treatment in patients
with NSCLC. In their open-label Phase 2 study, tepotinib was administered once daily to
patients with advanced or metastatic NSCLC with a confirmed exon 14 MET skipping
mutation. The response to the treatment was analyzed, inter alia, by detecting the presence
of an exon 14 MET skipping mutation using liquid biopsy or tissue biopsy. The plasma
cfDNA was analyzed with the use of NGS panel Guardant360 (which includes 73 genes).
The plasma was collected at baseline, at weeks 6 and 12, and at the end of treatment. The
authors noted that, although the use of the molecular cfDNA response is not yet part of
standard practice in the treatment of solid tumors, correlations between changes in cfDNA
levels and tumor response have been reported in several types of cancer, including lung
cancer. It was found that the baseline cfDNA analysis performed provided valuable insight
into the mutation profiles of patients with exon 14 MET skipping mutations [40].

The problem of resistance to targeted therapy in NSCLC patients also applies to those
with the exon 14 MET skipping mutation. Sai-Hong Ignatius Ou et al. tried to describe the
full spectrum of resistance mechanisms to crizotinib in METex14-positive NSCLC. In order
to evaluate the potential mechanisms of resistance, the ctDNA of patients with METex14-
positive NSCLC enrolled in treatment with crizotinib was analyzed. The isolated ctDNA
was analyzed using an Illumina HiSeq 2500 sequencer (Illumina, San Diego, CA, USA).
Based on the obtained results, it was concluded that the appearance of the preexisting MET
Y1230C likely causes resistance to crizotinib, in this case, of METex14-positive NSCLC.
Additionally, the study showed that non-invasive ctDNA assays can be a convenient
method of detecting resistance mutations in patients with previously known targeting
mutations [235].

4.6. KRAS G12C Mutated NSCLC
ctDNA

In advanced-stage NSCLC patients, liquid biopsy may be an option for KRAS testing
to select patients for TKI treatment [236]. KRAS G12C can be detected through ctDNA from
the patients’ plasma using DNA sequencing based on NGS and/or specifically a real-time
polymerase chain reaction (PCR). Nicolazzo et al. compared those two assays to track the
KRAS G12C mutation at the onset of progression from previous lines of therapy. Plasma
samples were collected from 38 NSCLC patients with radiologically confirmed disease
progression on any first-line treatment (checkpoint inhibitors/platinum-based doublet
chemotherapy/targeted therapy). All the plasma samples were obtained at the Time of
Disease Progression from the first treatment line. All the plasma samples obtained at PD
were first screened for the KRAS G12C mutation through real-time PCR (IdyllaTM, Biocartis,
Jersey City, NJ, USA). The KRAS G12C mutation was detected in 24% of the ctDNA samples.
The results obtained through Idylla were confirmed in 100% of the cases by analysis of the
plasma samples through NGS. It was also shown that KRAS G12C coexisted with EGFR
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mutations in two cases; p53 in two cases; MAP2K1 in two cases; PIK3A in one case; BRAF
in one case. G12C cooccurred with other KRAS mutations in one case. This pilot study may
suggest that in the assessment of the plasma, with KRAS G12C mutation as a druggable
target, a real-time PCR assay through Idylla might be a suitable approach to better match
patients to interventional biomarker-targeted therapies [237].

Plasma ctDNA can also be analyzed with the use of the NGS panel Guardant360.
The Guardant360 assay can analyze point mutations in 54–74 genes, copy number am-
plifications in up to 18 genes, and fusions in up to 6 genes. Thein et al. performed a
comprehensive analysis of KRAS G12C mutations in solid tumors. KRAS G12C mutations
were identified in 2985 of 80,911 patients (3.7%) across > 40 tumor types, as detected by
circulating tumor DNA. KRAS G12C mutations were detected most frequently in patients
with nonsquamous non-small-cell lung cancer (NSCLC; 7.5%). They were also detected in
patients with NSCLC of all subtypes (6.9%), cancer of unknown primary (4.1%), colorectal
cancer (3.5%), squamous NSCLC (2.0%), pulmonary neuroendocrine tumors (1.9%), and
pancreatic ductal cholangiocarcinoma (1.2%) and adenocarcinoma (1.2%). Thein et al. also
found a very high positive predictive value between tissue and liquid biopsies performed
within 6 months of each, whereas between tests conducted > 6 months apart, the positive
predictive value was lower at 77%. The study had one critical limitation. According to the
authors, the Guardant360 database includes both treatment-naïve and previously treated
patients without the necessary details to analyze them separately. It is limiting the ability
to compare detection rates from this study with the prevalence rates previously published.
Despite this, the study shows that the Guardant360 assay is a good tool to identify KRAS
G12C mutations in ctDNA [238].

As an example, there was a case report of a patient with advanced NSCLC who was
initially started on Alectinib based on positivity for ALK gene rearrangement found in the
FISH study. After 2 months, the progression of the disease and new osseous were shown
by an interim PET scan. At that time, a liquid biopsy was obtained, and cell-free DNA was
tested via Guardant360. Instead of ALK rearrangement, KRAS-pG12C was detected, and
the patient’s treatment was changed to sotorasib, just after its FDA approval [239].

5. Conclusions

Due to the high mortality rate of lung cancer patients, the efforts of cancer researchers
are now focused on increasing the use of molecular targeted therapy and the improvement
of its monitoring methods. Based on the presented research, we believe that liquid biopsy is
an increasingly popular predictive tool in the treatment of NSCLC based on TKI. The studies
presented in this article show that detection and analysis based on CTC, cfDNA, exosomes,
and/or TEP can contribute to the appropriate selection and monitoring of targeted therapy
in NSCLC patients as complementary to invasive tissue biopsy. The detection of these
elements, combined with their molecular analysis, enables the detection of targetable
mutations, which are required for TKI treatment. Mutations (EGFR, ALK, ROS1, BRAF,
MET, KRAS) detected in liquid biopsy elements using molecular detection methods (e.g.,
dPCR, NGS, sWGS) correspond to the results obtained during traditional tissue biopsy. It
is worth mentioning that tissue biopsy may be detrimental to the patient’s health due to
its invasiveness. Additionally, the quality of the available tumor biopsy and/or cytology
material is not always adequate to perform the necessary molecular testing. Therefore,
liquid biopsy can be a competitive predictive tool for tissue biopsy. Despite such promising
results obtained by many research teams, we think that it is still necessary to carry out
prospective studies on a larger group of patients to validate these methods before their
application in clinical practice.
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