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Abstract: Affective/cognitive engineering investigations typically require the quantitative assessment
of object perception. Recent research has suggested that certain perceptions of object categorization
can be derived from human eye fixation and that color images and line drawings induce similar
neural activities. Line drawings contain less information than color images; therefore, line drawings
are expected to simplify the investigations of object perception. The psychological potential field
(PPF), which is a psychological feature, is an image feature of line drawings. On the basis of the PPF,
the possibility that the general human perception of object categorization can be assessed from the
similarity to fixation maps (FMs) generated from human eye fixations has been reported. However,
this may be due to chance because image features other than the PPF have not been compared with
FMs. This study examines the potential and effectiveness of the PPF by comparing its performance
with that of other image features in terms of the similarity to FMs. The results show that the PPF
shows the ideal performance for assessing the perception of object categorization. In particular, the
PPF effectively distinguishes between animal and nonanimal targets; however, real-time assessment
is difficult.

Keywords: fixation map; psychological potential field; line drawing; eye tracking; perceptual assessment

1. Introduction

Affective/cognitive engineering investigations generally require the quantitative as-
sessment of the human perception of objects. Electroencephalogram records, which mea-
sure electrical activity in the brain, are useful for assessing diverse perceptions [1]. Human
eye tracking is also important for measuring human perceptions of vision. Eye trackers
directly record eye movements such as fixations and saccades [2] which have been widely
used in eye movement analysis. However, they only directly represent viewed locations;
therefore, perceptual trends must be extracted according to objectives.

Recent studies have reported that certain perceptions of object categorization may be
derived from eye fixations and that color images and line drawings generate similar neural
activities [3,4]. These findings have simplified object perception investigations because
the examination of visual perceptions in color images and associated eye fixations are
complex. Furthermore, the perceptual quantities of object categorization may be assessed
from eye fixations and a line-drawing image feature, i.e., the psychological potential field
(PPF) [5]. Specifically, the similarity values between the PPF [6] and fixation maps (FMs)
for visualizing eye fixations mimic actual human perceptions. This could be a reasonable
result from the perspective of analyzing viewed images and eye fixations.

The PPF was discovered using a light threshold method to investigate the psychologi-
cal impacts of shape contours on vision [7], and it has been applied in physiological and
psychological investigations [8,9]. The PPF is a potential field of psychological intensities
around shapes, and it is similar to an electrostatic field. It can be computed from shape con-
tours under the conditions that an object (foreground) is black and the ground (background)
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is white, as shown in Figure 1. In physiology, the PPF is a visualization of a phenomenon
that occurs between the retina and brain, and it is suggested as a meta function before or
during perception [10]. However, according to Gestalt psychology, perceptual organization,
which is composed of grouping and segregation processes [11], is applied when an object
is viewed. The PPF mechanism occurs before the grouping and segregation processes;
hence, it can be regarded as a phenomenon that occurs between sensation and perception.
Furthermore, because a continuous low-spatial-frequency field is formed around shapes, as
shown in Figure 1c, the PPF might be relevant to gist perception, indicating that low-spatial-
frequency components are important [12]. However, the effects of the PPF on perception
and recognition are unclear. Nevertheless, a few studies applied the PPF to human Kansei
evaluation, such as lettering design [13], arch bridge design [14], and female hairstyle [15],
and demonstrated its effectiveness. In addition, a previous study [5] indicated that the PPF
can be applied to object categorization. Considering these results, further investigation of
the PPF may contribute to clarifying the multiple mechanisms of perception and cognition.

(a) (b) (c)

Figure 1. Example of the fixation map [16] and the psychological potential field (PPF): (a) stimulus
image; (b) fixation map; and (c) psychological potential field.

As mentioned above, a previous study [5] compared the PPF and FMs and reported
that their similarity may be used to assess the visual perceptions of object categorization.
Currently, the computational PPF theory was only established for two-dimensional binary
images such as line drawings [17,18]. That is, the PPF is a figure-dependent distributed
static image feature. However, there are several other figure-dependent distributed static
features for line-drawing images. For example, lines are the most basic elements of line
drawings and the distance field [19] is a well-known conventional feature. However,
a previous study of the similarities between the PPF and FMs attempted to elucidate
the distinction between the PPF and FMs rather than assessing visual perceptions of
object categorization. Hence, the effectiveness of the PPF must be clarified when the
similarity between the PPF and FMs is used to assess the visual perceptions of object
categorization. This is because PPF usage in object categorization has never been validated
and the similarity between other distributed static image features and FMs may reproduce
similar or better trends compared to the PPF.

This study compares the similarity between FMs and four representative image fea-
tures of binary line drawings, including the PPF, to determine which image feature shows
the best performance in distinguishing between three fundamental object categories (ani-
mate objects, inanimate objects, and meaningless shapes), from the viewpoint of human
perception. This provides evidence for the adequacy of the PPF usage in object categoriza-
tion. Furthermore, this also indicates whether the PPF contains perceptual effects that are
relevant to sensation and recognition processes.

2. Fixation Maps
2.1. Eye Tracking

Numerous studies have adopted eye tracking for various objectives because eyes can
provide important perceptual information on human vision. For example, eye tracking has
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been used in studies on mental workload monitoring [20], health assessment [21,22], user
interfaces [23], and learning methods for metacognitive skill training [24]. Eye tracking
information includes eye saccades and fixations to stimuli as the primary types of eye
movements. An eye saccade is defined as the rapid movement of the fovea from one point
of interest to another, and it represents eye movement transitions. Eye fixations are defined
as the periods during which the eye is aligned with a target, and they represent the viewed
locations of observers [25]. One or both of these types of information are used depending
on objectives.

2.2. Fixation Map Generation

Eye trackers can obtain numerous points as fixation locations, and FMs are images
visualizing fixations based on those points. A three-step approach is used to construct
FMs by considering a specific range of foveal vision and fixation locations [26]. First,
the fixation points are rendered and accumulated on a preprepared blank image using
a scaling function based on the foveal vision and the distance between the eyes and a
target. A Gaussian function is commonly used as the scaling function, and the value of σ
is selected depending on the situation [27]. Second, the fixation intensities of the images
are normalized. Short-duration fixations are typically neglected, whereas long-duration
fixations on the objects of interest are highlighted. Finally, grayscale or rainbow gradient
colorization is used for visualization. Figure 1 shows an example of an FM in which white
indicates high fixation intensities (frequently viewed locations) and black indicates low
fixation intensities (unviewed locations).

Furthermore, predictive maps have been studied because eye-tracking devices are
expensive. Several recent studies have attempted to generate FMs using machine learning
as a saliency map [28,29]. In addition, studies have captured eye movements using a
webcam instead of an eye tracker [30] or substituting mouse clicks for eye fixations [31,32].

3. Image Features and Similarity Metric
3.1. Stimulus Images and Experimental Setups

We used ten images of simple line-drawing objects as stimuli to reduce the burden on
the experimental participants, as shown in Figure 2. They were binary images consisting of
pixels with black foreground and white background values with a resolution of 1080× 1080.
They were classified into three categories: three animate objects (dolphin, dog, and eye),
five inanimate objects (door, mouse, T-shirt, umbrella, and cup), and two meaningless
shapes (MS1 and MS2). The images of the animate and inanimate objects were selected
from the MIT/Tübingen Saliency Benchmark datasets [33]. The images of the meaningless
shapes were selected from a previous study on meaningless shapes not associated with
common objects that multiple observers could not identify [34].

Figure 3 shows the experimental setup. We used a 24.1′′ display, Tobii Eye Tracker
4C, and a static chin rest for fixing the head. Each image was rendered at the center of the
full-screen display with a gray background. The distance between a participant’s eyes and
the center of the display was 70 cm. The visual angle calculated based on the length of the
displayed image on the display was 23.5◦.

The experimental participants were five males and five females with a mean age of
20 years, and they were recruited from university students. All participants were seated in
front of the display and requested to freely view each stimulus for 30 s. We did not inform
the participants about the object category to obtain neutral eye responses, and they freely
viewed the stimuli without judging the object category. The order in which the stimuli
were displayed was randomly determined for each participant.
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Figure 2. Stimulus images: animate objects (dolphin, dog, and eye), inanimate objects (door, mouse,
T-shirt, umbrella, and cup), and meaningless shapes (MS1 and MS2).

Figure 3. Experimental setup. The participants were sat in front of the display. We explained the
experiment and obtained informed consent from each participant. Each participant’s chin was placed
on the static chin rest. The experiment was conducted after calibrating the eye tracker according to
each participant.

The FMs of the stimuli were generated by the method described in Section 2.2 from
the fixation points obtained by the above experiment. FMs of binary line drawings were
gender-independent in a previous study [5]; thus, the FMs in this study were generated
from all ten participants.

3.2. Image Features and Similarity Metric

The values of the image pixels were set as 0.0–1.0 (0.0 for black pixels and 1.0 for
white pixels).

3.2.1. Fundamental Similarity Metric

Location-based and distribution-based metrics have been proposed as methods for
determining the similarity of FMs and other images. Location-based metrics such as the
area under a receiver operating characteristic curve [35], normalized scanpath saliency
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(NSS) [36] and information gain [37] calculate the similarities at discrete fixation locations.
In contrast, distribution-based metrics such as Pearson’s correlation coefficient (CC) and
similarity [38] calculate the image similarities as continuous distributions. Currently, NSS
is the fairest comparison for location-based metrics and the CC for distribution-based
metrics [39]. In this study, we compared FMs and the four image features, which were
distributed static features; thus, the CC was adopted as the similarity. However, as there
were different details in each image feature, CCs with different preconditions based on the
image features were adopted. This is explained in the following sections.

3.2.2. Binary Feature

Foreground lines are the basic image features in binary line drawings. Therefore, as
the binary feature (BIN), we set the pixels on the lines as 1.0 and all background pixels as
0.0 to match the FM.

The similarity of the BIN to the FM was estimated using the CC. The CC evaluated the
degree to which the participants viewed the lines of each stimulus.

3.2.3. Reciprocal Distance Field

The distance field [19] is a well-known binary image feature that stores the distance
between each background pixel and its nearest foreground pixel. Low values are assigned
to the pixels that are close to the line pixels. We constructed a reciprocal distance field
(RDF) from the reciprocals of each value in the distance field.

The similarity of the RDF to the FM was evaluated using the CC. However, the pixel
values of the lines in the distance field were zero; thus, their reciprocals could not be
determined. We excluded the values of the line pixels from the evaluation of the CC. The
CC evaluated the degree to which the surrounding areas of the lines were viewed by
the participants.

3.2.4. BIN + RDF

The BIN-FM similarity evaluated the degree to which the lines were viewed but
excluded surrounding areas. In contrast, the RDF-FM similarity evaluated the degree to
which the surrounding areas were observed but excluded the lines. The BIN and RDF were
combined to evaluate the lines and their surrounding areas. We set the pixel values of the
lines in the RDF to 1.0.

Similarly to the BIN-FM similarity calculation, the CC evaluated the degree to which
the lines and their surrounding areas were viewed.

3.2.5. Psychological Potential Field

In cognitive studies, the PPF represents the effect of shape contours on psychological
intensities [6]. The computational PPF theory was only established for two-dimensional
binary images [17,18]. To construct the PPF, the potential value, pi, of the background pixel
i is calculated as follows:

pi =
1
n

n

∑
k=1

1
dk

, (1)

where n is the number of contour pixels of lines and d is the distance between i and each
contour pixel. Note that the contour pixels are the only pixels that are not occluded from
the other contour pixels. Specifically, if i is a light source, all pixels of the portion exposed
to light are non-occluded [15], as shown in Figure 4.
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(a) (b)

Figure 4. Example of the non-occluded pixels: (a) the black pixels are contour pixels in foreground
lines, the white pixels are background pixels, and the red pixel denotes pixel i in the background
pixels; (b) the non-occluded pixels in the contour pixels are exposed to the light from i, assuming that
there is a light source at i.

Similarly to the RDF-FM similarity calculation, the line pixels were neglected in the
similarity calculation because potential values could not be obtained for foreground pixels.

4. Results

Figure 5 shows the visualization results of the FMs and four image features, where
white and black areas represent high and low values, respectively. The FMs and four
image features are significantly different. In addition, each image feature captures different
properties of the line-drawing objects. It is difficult to understand the visualization results
because the values of the RDF, BIN + RDF, and PPF exponentially increase close to the
shapes. Therefore, we multiplied α with the pixel values of the three features and set an
upper limit of 1.0, where α = 5 for the RDF and BIN + RDF, and α = 20 for the PPF. This
was applied only for visualization, as shown in Figure 5.

The degrees of similarity between the FM and four image features were difficult to
establish through visual inspection but could be quantified by the similarity metric values.
Table 1 and Figure 6 show the similarity results for the FMs obtained using all fixation points
acquired for 30 s. Figure 7 shows the similarity transitions during 30 s. Each similarity
value at 30 s corresponds to those in Table 1 and Figure 6. In Figure 7, the similarity values
are low during the first few seconds because of relatively fewer fixation points. Table 1
and Figure 6 show the results after the stabilization of the fixation points. Furthermore,
Figure 8 shows the similarity transitions from the start to 1 s in the PPF because animals
and nonanimals can be unconsciously distinguished within 1 s [40].

As described in Section 3, the similarity metrics were based on the CC. We used a
significance level of 0.01, and the p-values of the similarity metrics were sufficiently lower
than 0.01. However, note that the general rule of thumb is not important; for example, the
assumption of a strong correlation for values exceeding 0.7 does not hold. This is because
we compared the FMs and distinctly different image features, which should be regarded as
an image similarity rather than the CC. Another reason is that it is important to compare
the relative values of similarity metrics rather than their magnitudes.
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(a) Dolphin

(b) Dog

(c) Eye

(d) Door

(e) Mouse

(f) T-shirt

(g) Umbrella

(h) Cup

(i) MS1

(j) MS2

Figure 5. Results of the visualized features (from left to right): FM, BIN, RDF, BIN + RDF, and PPF.

Table 1. Similarity values between the FM and the BIN, RDF, BIN + RDF and PPF image features. All
p-values were significantly lower than 0.01.

Dolphin Dog Eye Door Mouse T-Shirt Umbrella Cup MS1 MS2

BIN 0.203 0.157 0.164 0.132 0.156 0.137 0.140 0.129 0.127 0.108
RDF 0.407 0.354 0.361 0.278 0.350 0.289 0.315 0.261 0.275 0.258
BIN + RDF 0.411 0.347 0.356 0.278 0.343 0.290 0.310 0.265 0.269 0.249
PPF 0.490 0.453 0.434 0.358 0.319 0.303 0.240 0.225 0.143 0.102
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Figure 6. Graph of the similarity values in Table 1.

(a) BIN (b) RDF

(c) BIN + RDF (d) PPF

Figure 7. Similarity transitions during the viewing duration.
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Figure 8. Similarity transitions within 1 s in PPF.

5. Discussion

The portions with a few changes or complexities are mainly viewed, as shown in the
FMs in Figure 5. However, it was difficult to determine a trend for meaningless shapes.
The center was preferentially viewed in MS1, whereas broad areas were viewed in MS2.
Additional research with more meaningless shape stimuli is required to understand the
trends and factors that affect eye fixations. The visualization results showed that the four
image features differed depending on the shapes, indicating that they captured different
properties of the shapes. Although the RDF and PPF were based on the distances between
pixels, their visualization results significantly differed.

As shown in Table 1 and Figure 6, the similarity values between BIN and FM for the
animate object stimuli were slightly larger than those for the other stimuli. In addition,
the similarity values for the inanimate object and meaningless shape stimuli were almost
identical. Specifically, when we conducted tests for the significance of the difference
between a pair of CCs (similarities) [41], the p-values for Dog and Mouse (0.249), T-shirt
and Umbrella (0.012), and Cup and MS1 (0.144) were larger than the significance level.
Furthermore, the range of the similarity values was narrow, with a standard deviation (SD)
of 0.02. Therefore, it was difficult to distinguish between the object categories using the
BIN feature.

The similarity values between RDF and FM decreased from animate to inanimate
objects to meaningless shapes. However, the values were almost identical for Door and
MS1, and the value for MS1 was higher than that for Cup. In addition, the p-value for
Cup and MS2 (0.019) was more than the significance level. They indicated the difficulty
in distinguishing inanimate and meaningless shapes using the RDF feature, although the
range of the similarity values was wider than that of the BIN, with an SD of 0.05. The
similarity values between BIN + RDF and FM were similar to those of the RDF and FM,
and the p-values were lower than the significance level. This indicates the effectiveness of
considering line pixels in the similarity evaluation; the effectiveness could be increased
if line drawings consisted of more complicated lines. However, as the similarity values
between BIN + RDF and FM were similar to those of the RDF and FM, the trends remained
similar; for example, the values were almost identical for Door and MS1 and the value for
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MS1 was higher than that for Cup. Therefore, it was difficult to distinguish inanimate and
meaningless shapes using the BIN + RDF feature.

The similarity values between PPF and FM were the highest for animate objects,
followed by inanimate objects, and meaningless shapes, and these values exhibited the
widest range (SD = 0.12). In general, even if the value range is narrow, it would not be
an issue if we can relatively differentiate values based on the object category. However,
this was a relatively desirable result that had a more distinct trend than the trend for
values of other image features. Furthermore, it should be noted that all p-values were
lower than the significance level. In addition, the difference in similarity values was the
largest between Cup and MS1, followed by the difference between the Eye and Door.
These can be considered as boundaries for differentiating between inanimate objects and
meaningless shapes and between animate and inanimate objects. Specifically, we can easily
set thresholds to distinguish the object categories, such as animate:inanimate = 0.4 and
inanimate:meaningless = 0.2.

Figure 7 indicates the manner in which the similarity values between each image
feature and FM changed during the duration of viewing. They increased during the first
few seconds and then stabilized. Although we requested that the participants view the
stimuli for 30 s, this result indicated that it was enough to view the stimuli for 5–10 s.
Simultaneously, this suggested that the participants had viewed most parts required for
recognition during the first few seconds. These results are consistent with the result that the
categorical object information was distinguished at an early stage of human perception [42].
In the first few seconds, the similarity values of the BIN, RDF, and BIN + RDF to the FMs
did not always correctly categorize inanimate objects and meaningless shapes, as illustrated
in Figure 7a–c. These values were quite complicated and could not be distinguished by the
object category. In contrast, the similarity values between PPF and FM easily distinguished
the object categories, as illustrated in Figure 7d. Although the similarity value for MS1 was
higher than that for Cup at 1 s, they were subsequently reversed. Therefore, the PPF-FM
similarity could be better categorized between 2 and 30 s.

Figure 8 shows the PPF-FM similarity transitions within 1 s. The similarity values sta-
bilized until approximately 350 ms and increased thereafter. Three important findings have
already been reported in relation to this result. First, perceiving animals and nonanimals
caused a distinct difference within 150 ms of event-related potentials (ERPs) [43]. Second,
ERPs showed a second component that was correlated with object recognition from 150
to 300 ms [44]. Third, the typical fixation duration was 150–300 ms [45]. These findings
indicated that objects were categorized around the first fixation point. The stabilized values
until approximately 350 ms in Figure 8 indicate that the earlier fixation points did not
move around the first viewing point. Moreover, these values could not be categorized
into object categories. Therefore, a real-time assessment of object perception using the
PPF-FM similarity was impossible. This was also clear from the fact that the FMs were
the convolutional images of fixation points and their changes appeared to be statistically
delayed. Nevertheless, as shown in Figure 7d, the PPF-FM similarity could be better cate-
gorized after a few seconds. The similarity values increased from 350 ms in Figure 8 to 3 s
in Figure 7d. This could be interpreted as the similarity values indicate a degree for some
recognition processes as to whether perceived objects are correct. For instance, if you see a
dog, the values confirm whether it is a dog. If this is true, the final similarity values may
indicate a relative degree of cognition.

This study has certain limitations. The results cannot be generalized because we only
used a few stimulus images. Moreover, the results do not consider different generations
or ethnic groups because all participants were Japanese university students. Therefore,
large-scale experiments are required to generalize the findings of this study.

6. Conclusions

This study assessed the effectiveness of assessing the human perception of object
categorization in line drawings using similarity between the PPF and FMs by comparing
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the features of binary line-drawing images. The FMs of ten stimuli were generated from
tracked eye movement data. The four features of binary images (BIN, RDF, BIN + RDF, and
PPF) were computed and compared to the FMs using the similarity based on the CC. Only
PPF more clearly distinguished the three object categories when compared to the other
image features.

In the future, investigations must be conducted with more types of object stimuli
and participants from different generations or ethnic groups for a detailed assessment of
object perception. Furthermore, our results indicate that the final similarity values may
represent a degree of cognition. This must be clarified through additional experiments using
meaningless shapes. Specifically, if meaningless shapes can be interpreted as unknown
shapes, we can verify whether common and meaningless shapes can be distinguished by
the PPF-FM similarity to determine whether known and unknown shapes can be assessed.
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