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This paper presents a fuzzy-multiple objective optimization methodology to plan stand-alone electricity 
generation systems. The optimization process considers three main objectives, namely technology cost, 
environmental and societal impacts. For each feasible solution of the Pareto set, a system reliability index 
is evaluated along the lifetime of the project. As a key contribution, the decision making process is carried 
out by applying a fuzzy satisfaction method (FSM). The FSM accounts simultaneously four key performance 
indexes (KPI): technical, economic, environmental and social. The novelty of the proposal lies on the inclusion 
of societal impact (local wealth creation) in the FSM used here to select the more appropriate solution. Previous 
contributions on FSM only accounts two of four indexes considered in this paper. The methodology was applied 
in a Colombian case study. The results show the importance of the simultaneous consideration of technical, 
economic, environmental and social objectives in the evaluation of off-grid energization solutions.
1. Introduction

Planning stand-alone electricity systems in rural areas is a topic of 
great interest for policy makers in developing regions. Energy planners 
should consider different technic-economic, environmental and social 
aspects to assess off-grid solutions. The planning problem can be ad-

dressed by means of an optimization model with several objectives. 
In practice these objectives are conflicting and multiple-objective op-

timization models must be solved to find out the more appropriate 
combination of resulting objectives.

The challenge is how to specify an affordable, cost effective and 
sustainable solution for stand-alone electricity generation systems since 
isolated communities lack economic conditions to cover the real cost of 
service. Furthermore, it is necessary to consider alternative strategies 
to improve the coverage, mainly if the expansion of the distribution 
network is unacceptable from a technic and/or economic point of view 
[1, 2]. As a result, the problem of selecting and sizing the technologies 
for a stand-alone electricity generation systems must be analyzed from 
the broader context.
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A series of contributions can be found in literature about how to op-

timize stand-alone electricity generation systems [3]. In general, many 
of these valuable optimization approaches are based on multiple ob-

jective deterministic models. Some of them include specific strategies 
to perform decision making tasks once the set of feasible solutions are 
identified and ranked. In order to introduce uncertainty in the decision 
making-process, vast majority of methodologies use statistics to select 
the appropriate solution [4].

However, when statistics are not available, some few contributions 
resort to fuzzy modelling to represent the vagueness associated to the 
reliability of each possible solution is some extent. For instance, a fuzzy 
satisfaction method (FSM) has been previously applied in Malaysia [5]. 
This proposal characterizes solutions for stand-alone systems but only 
accounting only two objectives: economic (system cost) and environ-

mental (carbon dioxide emissions) in the FSM. Including other aspects 
such as societal and system reliability indexes in the FSM could be 
worth. Indexes such as local economic impacts or expected energy not 
supplied can be useful to get a sustainable electricity off-grid solution 
[6].
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Table 1

Review of key performance indexes (KPI) according objectives of the planning problem.

Objective Index Description Reference

EC NPV Net Present Value [7, 8, 9, 10, 11]

EC TIC Total Investment Cost [12, 13]

EC LCC Life Cycle Cost [14, 15, 16, 17]

EC LCOE Levelized Cost of Energy [18, 19, 20, 21, 22]

EC TAC Total Annual Cost [23, 24, 25]

TC LPSP Probability of Loss of Power Supply [21, 24]

C LOLP Probability of Loss of Power [26]

TC EIR Energy Index Reliability [5]

TC LOLR Risk of Load Loss [27]

TC LOLE Expected Load Loss [28]

TC DPSP Probability of Supply Deficiency [29]

TC ENS Energy Not Supplied [30]

TC ELF Load Loss Factor [15, 31]

TC WRE Unused Renewable Energy [19]

TC REP Penetration of Renewable Energy [16]

TC P (R) Probability of Risk Status [20]

EV E TotalCO2 Emissions [10, 15, 23]

EV EE Embodied Energy [32]

EV LCA Life Cycle Emissions [14, 23]

SC EA Energy acceptance [7]

SC HDI Human developing [8]

SC HDI Job creation [8]

SC LWC Local Wealth Creation [6]
After careful review of literature, we did not find decision-making 
strategies for stand-alone electricity generation systems planning based 
on fuzzy satisfaction methods accounting simultaneously economic, en-

vironmental and societal and technical (reliability) impacts. In order to 
demonstrate the novelty of the proposal, a exhaustive list of existing 
contributions in this topic is provided in Section 2 where generation 
technologies, performance indexes, optimization techniques and deci-

sion making strategies are classified and analyzed.

To fill the research gap, this document presents a multi-objective 
optimization model whose decision-making strategy is based on a fuzzy 
satisfaction method.

The optimization process considers three main objectives, namely 
technology cost, environmental and societal impacts through the con-

cept of local wealth creation [6]. For each feasible solution of the Pareto 
set, a fourth index (system reliability) is evaluated along the lifetime of 
the project. The feasible set of efficient solutions are weighted with the 
fuzzy satisfaction method in order to select the best alternative from the 
Pareto set. The authors deem the application of a fuzzy approach can 
provide increased insight into energy planning decision making pro-

cesses. The proposal has been applied in a off-grid zone of Colombia.

This document is organized as follows. Section 2 is devoted to review 
the state of art. The methodology is presented in Section 3. In Section 4

the results obtained from a Colombian case-study are presented and 
analyzed. Conclusions are drawn in Section 5.

2. Background

The planning problem of stand-alone electricity generation systems 
have been widely treated in literature. Existing references on the topic 
can be classified according to three different scopes: 1) key performance 
indexes (KPI) used to valuate feasible solutions (Table 1), 2) optimiza-

tion methodologies used to screen out feasible solutions (Table 2) and 
3) decision-making procedures to select and recommend the best option 
(Table 3).

2.1. Key performance indexes

Table 1 lists a classification of key performance indexes (KPI) de-

pending on economic (EC), technical (TC), social (SC) and environmen-

tal (EV) dimensions of the planning problem.

The majority of existing planning methodologies are related with 
the economic performance (EC) dimension: net present value, total in-
2

vestment cost, life cycle cost, levelized cost of energy and total annual 
cost. Some specific contributions deal with technic aspects (TC) such 
as reliability (probability of loss of supply, energy not supplied, etc) 
and penetration levels of renewable-based generation (unused renew-

able energy, penetration of renewable energy, etc.). Recent trends on 
low carbon energization are introducing performance indexes according 
to environmental considerations (EV) such as total emissions, embodied 
energy and life cycle assessment.

It is worth to highlight that the social aspect (SC) has been pre-

viously included in the decision making analysis from a qualitative 
perspective [20, 33, 34] but not incorporated as a performance index 
relating societal impacts in the optimization stage. Recently, [7, 8] con-

sidered societal indexes at the optimization stage. In this paper, the 
local wealth creation (LWC) index proposed by [6] is incorporated both 
in the optimization stage and the decision-making stage.

2.2. Multiple-objective optimization stage

Since foregoing indexes are relevant to assess the suitability of an 
effective solution, the evaluation of the problem as a whole requires 
to pose a mathematical optimization problem with multiple objectives 
(MO) [35]. This kind of optimization allows to identify the set of strate-

gies for an appropriate design solution.

The methodology of selection and sizing of stand-alone generation 
systems can be written as a MO optimization problem.

The solution of the MO problem is then described by the Pareto 
front, a set of non-dominated solutions [44] obtained by conventional, 
heuristic or hybrid methods and use of specific software [45]. Table 2 in 
a general way the main MO optimization methods reported in literature 
applied to plan stand-alone electricity generation systems. The methods 
are classified by the corresponding optimization technique [46].

There are a number of commercial/open source software tools suit-

able to be used in the planning process. The Standard optimization 
microgrid design software HOMER [9] and Clean Energy Management 
software RetScreen [45] use conventional linear-programming opti-

mization methods to get feasible solutions. The Hybrid Optimization 
by Genetic Algorithms (iHOGA) is based on heuristic methods [8].

In this paper, we use a genetic algorithm [39] to screen out feasible 
solutions of the MO problem considering economic (EC), environmental 
(EV) and societal (SC) objectives. Technical performance (TC) is cal-

culated a posteriori. A reliability index, Energy not supplied (ENS), is 
evaluated for each solution of the Pareto set.
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Table 2

Multiple objective optimization models for stand-alone generation systems planning.

Type Method Description Reference

Conventional LP Linear Programming [36]

Conventional MILP Mixed Integer Linear Programming [13, 37]

Conventional NLP Non Linear Programming [33, 34, 38]

Heuristics GA Genetic Algorithms [39]

Heuristics MPSO Modified Particle Swarm Optimization [12]

Heuristics SPEA Strength Pareto Evolutionary Algorithms [22]

Heuristics MOEA Multi-Objective Evolutionary Algorithm [7]

Heuristics ABC Artificial Bee Colony [18]

Heuristics NSGA II Non-Sorting Genetic Algorithm [29, 32, 40]

Heuristics MLUCA MOA of Alignment Competition [23]

Hybrid IPF Iterative Fuzzy Pareto [5]

Hybrid SA-TS Hybrid Tabu-Search Simulation-annealing [41]

Hybrid PSOMCS PSO and Monte Carlo Simulation [42]

Hybrid HTGA-ES Hybrid GA and Exhaustive Search [43]

Table 3

Review of decision making strategies to define stand-alone electricity generation systems.

Objectives Technologies Decision making method References

EC-EV PV-DG-FC-B AHP [14]

EC-EV PV-WT-T-B Ranking [10, 22, 23]

EC-EV PV-WT-B Topsis [19]

EC-EV PV-WT-B Single Objective Optimization [15, 47]

EC-TC PV-WT-B Single Objective Optimization [17, 26]

EC-TC PV-WT-B Single Objective Optimization [24, 25]

EC-TC PV-WT-B Ranking [29, 48]

EC-TC PV-WT-T-B Single Objective Optimization [16, 28, 49]

EC-TC PV-WT-FC Single Objective Optimization [21, 27, 50]

EC-EV-TC PV-WT-B Ranking [32]

EC-EV-TC PV-WT-FC-HT Ranking [31]

EC-SC PV-WT-T-B Ranking [7]

EC-TC PV-WT-T-B Ranking [20]

EC-TC PV-WT-T-BM-B Ranking [33]

EC-TC PV-WT-T-B AHP [34]

EC-TC PV-WT-T-HG-BM-B Single Objective Optimization [51]

EC-TC PV-WT-B Fuzzy Satisfaction [5]

EC-TC-EV-SC PV-WT-T-B Fuzzy Satisfaction This paper
2.3. Decision-making stage

Once the multiple objective optimization problem is stated with 
the performance indexes listed in Table 1 and later solved using any 
technique listed in Table 2, it is necessary to select the more appro-

priate solution accounting all aspects under consideration. Therefore, 
the decision-making process is carried out using a number of strate-

gies. Table 3 presents different decision making procedures applied 
to select efficient solutions. The list of contributions on this topic is 
classified according to economic, technical, environmental and societal 
objectives (EC, TC, EV and SC) and also by technologies considered 
wind (WT), solar photovoltaic (PV), combined with battery banks (B), 
thermal solutions (including diesel reciprocating engines and natural 
gas micro-turbine) (T), fuel cells (FC), small-scale hydraulic generation 
(HG), biomass (BM) and hydro tank (HT).

Some contributions in Table 3 pose planning problem as a single 
objective optimization problem. In this case, only one solution is get 
and no decision making process is carried out.

Contributions based on multiple objective optimization can rank the 
set of efficient solutions (Pareto front) according decision maker pref-

erences. In this case qualitative aspects are included to guide the best 
choice.

Other contributions select the best option according to a given 
methodology such as Topsis, Analytical Hierarchal Processing (AHP) 
or Fuzzy Satisfaction methods (FSM).

Notice that the economic objective is clearly predominant in deci-

sion making process. In some contributions such as [14, 19, 23], the 
environmental or technical objectives are also included. Contributions 
3

[20, 33, 34] deal with economic and technical objectives at the same 
time.

In this review we found only one contribution that applies the fuzzy 
satisfaction method (FSM) in the decision making process [5]. However 
only two objectives are considered economic (EC) and technical (TC).

In this paper we improve the approach proposed in [5] by includ-

ing the environmental (EV) and societal (SC) objectives [6]. Last row 
of Table 3 shows how this contribution makes the difference with re-

spect to existing decision making procedures used in literature to select 
the more appropriate solution for the stand-alone generation systems 
planning problem.

3. Methodology

In this section the statement of the multiple objective optimization 
problem and the proposed decision-making process is described in de-

tail. The multiple objective problem can be solved using any suitable 
technique based on traditional mathematical programming or heuris-

tic algorithms. In this paper, the multiple objective problem is solved 
using a Genetic Algorithm. Each solution of the Pareto set includes spe-

cific figures for economic (EC), environmental (EV) and societal (SC) 
objectives.

System reliability - Expected Energy Non Supplied - regarded here 
as a technical objective (TC) is determined a posteriori for each element 
of the Pareto set. The decision-making process – selecting the best op-

tion from the Pareto set – is carried out through the fuzzy satisfaction 
method (FSM) considering all four objectives stated above: EC, EV, SC 
and TC.
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3.1. The multiple-objective optimization model

The optimization problem is defined as a three-objective constrained 
model in Eq. (1).

min𝐹 (𝑥) = [𝑓1(𝑥), 𝑓2(𝑥),−𝑓3(𝑥)] (1)

subject to 𝑔𝑖(𝑥) = 0 𝑖 = 1, ...,𝑚
ℎ𝑗 (𝑥) ≤ 0 𝑗 = 1, ..., 𝑝

The first objective 𝑓1(𝑥) corresponds to the minimization of life cycle 
costs (LCC) of the project. Life Cycle Cost (LCC) is an important eco-

nomic (EC) performance index that account the impact both pending 
and future costs of the project. It compares initial investment options 
and identifies the least operational cost over a given period.

The second objective 𝑓2(𝑥) – the environmental (EV) one – corre-

sponds to the minimization of the life cycle of carbon dioxide CO2

emissions (LCE).

Finally, the third objective 𝑓3(𝑥) accounts a societal benefit (SC). 
The inclusion of this societal objective in the planning process of stand-

alone generation systems constitutes the main contribution of the paper. 
This objective comprises the maximization the social benefit associated 
to economic growth and job creation in the life cycle of local wealth 
creation (LWC) [6].

The vector of decision variables is given by four elements:

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]𝑇 = [𝐴𝑃𝑉 ,𝐴𝑊 𝑇 ,𝑃𝑇 ,𝑃𝐵]𝑇 (2)

where,

𝐴𝑃𝑉 is the total surface area of the photovoltaic system (PV) in m2,

𝐴𝑊 𝑇 is the total sweep area of the wind turbine(WT) system turbines 
in m2,

𝑃𝑇 is the average power output of the thermal (T) reciprocating 
engine in kW.

𝑃𝐵 is the charge level of the battery bank (B) in Ah.

The aforementioned objective functions are constrained to one (𝑚 =
1) equilibrium equation (energy balance) and four (𝑝 = 4) capacity 
constraints associated to admissible upper and lower bounds for the 
dispatch of each technology: photovoltaic (PV), wind (WT), diesel (T) 
and battery storage (B).

In the following, each objective of the multiple objective optimiza-

tion problem written in Eq. (1) is defined.

3.1.1. Economic objective: Life Cycle Cost (LCC)

The Life Cycle Cost (LCC) of the stand-alone generation system eval-

uates for each technology the net present value of capital and mainte-

nance expenditure (CAPEX) and operational costs (OPEX).

𝑓1(𝑥) = 𝐶𝑓 (𝑙𝑡, 𝛾, 𝜈) +𝐶𝑚(𝑙𝑡, 𝛾, 𝜈) +𝐶𝑂(𝑙𝑡, 𝛾, 𝜈) − 𝐼𝐶𝑂2
(𝑙𝑡, 𝛾, 𝜈) (3)

where,

𝑙𝑡 is the project lifetime in years,

𝛾 is the annual discount rate in percent,

𝜈 is the annual inflation rate in percent,

𝐶𝑓 is the present value of capital costs in $ (Colombian currency),

𝐶𝑚 is the present value of maintenance costs of system elements in 
$,

𝐶𝑂 is the present value of operating costs of the system (fuel) in $,

𝐼𝐶𝑂2
is the present value of the income from avoided CO2 emissions 

in $.

The capital expenditure or fixed cost (𝐶𝑓 ) corresponds to the 
overnight cost of the generation system as well as the present value 
of battery replacements in the future. The cost of replacement of the 
associated electronic equipment such as regulator and inverter are not 
considered, taking into account that the life span of these equipments 
commercially is higher than 25 years. The fixed cost also includes the 
engineering, procurement and construction (EPC) expenditures. The 
maintenance cost (𝐶𝑚), operating cost (𝐶𝑂) and avoided emission cash 
4

flows (𝐼𝐶𝑂2
) are given by their net present value cost along 𝑙𝑡 years 

project and an annual discount rate 𝛾 expressed in percent.

The fixed cost 𝐶𝑓 can be decomposed in four components: the fixed 
cost of photovoltaic (𝐶𝑃𝑉 ), wind (𝐶𝑊 𝑇 ), diesel plant (𝐶𝑇 ) and battery 
solutions (𝐶𝐵). The fixed cost of batteries is calculated at present value 
considering a number of replacements along the project lifetime.

𝐶𝑓 = 𝐶𝑃𝑉 +𝐶𝑊 𝑇 +𝐶𝑇 +𝐶𝐵 (4)

𝐶𝑓 = 𝑐𝑃𝑉 ⋅ 𝑃𝑃𝑉 + 𝑐𝑊 𝑇 ⋅ 𝑃𝑊 𝑇 + 𝑐𝑇 ⋅𝐵𝑇 + (5)

∑𝑌𝐵
𝑖=1 𝑐𝐵 ⋅ 𝑃𝐵 ⋅ ( 1+𝜈

1+𝛾
)(𝑖−1)𝑏𝑙 (6)

where,

𝑐𝑃𝑉 is the fixed cost of the photovoltaic panels per unit of installed 
area in $/m2,

𝑐𝑊 𝑇 is the fixed cost of the wind turbine system per unit of swept 
area in $/m2,

𝑐𝐵 is the fixed cost of the battery banks in $/Ah,

𝑐𝑇 is the fixed cost of the thermal reciprocating engine in $/kW,

𝑏𝑙 is the battery lifetime in years,

𝑌𝐵 is the number of battery replacement along the project lifetime: 
𝑙𝑓∕𝑏𝑙

Where, 𝑏𝑙 is the battery bank lifespan and 𝑙𝑓 is the project lifetime.

Depending on the technology used (photovoltaic, wind, storage and 
diesel) the net present value of the maintenance cost is determined as:

𝐶𝑚 =
∑𝑙𝑡

𝑖=1 𝑐𝑚𝑃𝑉 ⋅𝐴𝑃𝑉 ⋅ ( 1+𝜈

1+𝛾
)𝑖 +

∑𝑙𝑡
𝑖=1 𝑐𝑚𝑊 𝑇 ⋅𝐴𝑊 𝑇 ⋅ ( 1+𝜈

1+𝛾
)𝑖 (7)

+
∑𝑙𝑡

𝑖=1 𝑐𝑚𝐵 ⋅ 𝑃𝐵 ⋅ ( 1+𝜈

1+𝛾
)𝑖 +

∑𝑙𝑡
𝑖=1 𝑐𝑚𝑇 ⋅ 𝑃𝑇 ⋅ ( 1+𝜈

1+𝛾
)𝑖

where,

𝑐𝑚𝑃𝑉 is the maintenance cost of photovoltaic system in $/m2,

𝑐𝑚𝑊 𝑇 is the maintenance cost of the wind solution in $/m2,

𝑐𝑚𝐵 is the maintenance cost of the batteries in $/Ah,

𝑐𝑚𝑇 is the maintenance cost of the thermal reciprocating engine in 
$/kW.

The net present value of the operational cost is given by

𝐶𝑂 =
𝑙𝑡∑
𝑖=1

𝑇 ⋅ 𝑃𝑇 ⋅ 𝑐𝑓𝑢𝑒𝑙 ⋅𝐻𝑅

𝐻𝑓𝑢𝑒𝑙

⋅ ( 1 + 𝜈

1 + 𝛾
)𝑖 (8)

where,

𝑐𝑓𝑢𝑒𝑙 is the fuel cost, given in $/m3 for GLP and $/l for diesel,

𝐻𝑅 is the heat rate of thermal component in Btu/kWh,

𝑇 is the average operation time in hr/year, this is established by the 
planner,

𝐻𝑓𝑢𝑒𝑙 is the specific heat value by fuel, given in Btu/m3 for GLP and 
Btu/l for diesel.

The net present value of the income due to avoided CO2 emissions 
is estimated by comparing the emissions of the system with the virtual 
emissions obtained if the energy was obtained from the network. This 
is given by:

𝐼𝐶𝑂2
= 𝜆 ⋅ [𝜖𝑛 ⋅ (𝑃𝑉 +𝑊 𝑇 +𝐵 +𝑇 ) ⋅ 𝑙𝑡 − (𝜖𝑇 ⋅

𝑇 ⋅𝐵𝑇

1 ⋅ 103
⋅ 𝑙𝑡)] (9)

where,

𝜆 is price of avoided emissions in $/tCO2,

𝜖𝑛 is the emissions factor with reference to the network in tCO2/

MWh,

𝜖𝑇 is the emissions factor of CO2 produced by the thermal recipro-

cating engine in tCO2/MWh,

𝑃𝑉 is the annual real energy produced by the photovoltaic system 
in MWh/year,

𝑊 𝑇 is the annual real energy produced by the wind system in 
MWh/year,

𝐵 is the annual real energy stored in the battery bank in 
MWh/year,
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𝑇 is the annual energy produced by the reciprocating engine in 
MWh/year.

The energy produced by the photovoltaic generation system in kWh 
is a function of the average solar irradiation in the area, assuming an 
operating time in the year of 8760 hours.

𝑃𝑉 = 8760𝑃𝑃𝑉 = 8760 ⋅ 𝜂𝑃𝑉 ⋅ 𝜂𝑖𝑛𝑣 ⋅𝐴𝑃𝑉 ⋅𝑆𝐼 (10)

where,

𝑃𝑃𝑉 is the annual average output of the photovoltaic system in kW,

𝜂𝑃𝑉 is the total efficiency of the photovoltaic system in per unit,

𝜂𝑖𝑛𝑣 is the total efficiency of the inverter system in per unit,

𝑆𝐼 is the average solar irradiance in kW/m2.

The efficiency of the wind conversion process is determined accord-

ing to [32] as:

𝜂𝑊 𝑇 = 𝐶𝑃 ⋅ 𝜂𝐺𝐵 ⋅ 𝜂𝐺 (11)

where,

𝐶𝑃 is the wind turbine conversion efficiency,

𝜂𝐺𝐵 is the efficiency of the gear box,

𝜂𝐺 is the efficiency of the electric generator.

The density of the air relies on the height in (kg∕m3) of the wind 
turbines and its value is estimated according to [32] as:

𝜌 = 354.049
𝑇𝑎

⋅ 𝑒
−0.034⋅ 𝑧

𝑇𝑎 (12)

where,

𝑧 is the average height of the wind turbine hub in meters,

𝑇𝑎 is the average temperature of the environment in C◦.

For the simplification of the model, the energy produced by the wind 
unit is obtained from average wind speed in the area, assuming an op-

erating time in the year of 8760 hours:

𝑊 𝑇 = 8760𝑃𝑊 𝑇 = 8760 ⋅ 𝜂𝑊 𝑇 ⋅
𝜌

2
⋅𝐴𝑊 𝑇 ⋅ 𝑣3 (13)

where,

𝑃𝑊 𝑇 is the annual average output of the wind system in kW,

𝜂𝑊 𝑇 is the total efficiency of the wind conversion,

𝜌 is the density of the air kg/m3,

𝑣 is the average wind speed m/s.

The energy stored in battery bank is a function of the operational 
voltage. Using a reduced battery model for optimization model simplic-

ity, assuming an average state of charge (SOC).

𝐵 = %𝑆𝑂𝐶

1 ⋅ 106
⋅ 𝜂𝑖𝑛𝑣 ⋅ 𝑃𝐵 ⋅ 𝑉𝐵 (14)

where,

%𝑆𝑂𝐶 is the percentage of average battery state of charge,

𝑃𝐵 is the battery bank capacity in Ah,

𝑉𝐵 is the operating voltage of the battery bank in V.

The energy produced by the thermal reciprocating engine is a func-

tion of the average time of operation 𝑇 in hours and given by

𝑇 = 1
1000

⋅ 𝑃𝑇 ⋅ 𝑇 (15)

3.1.2. Environmental objective - Life Cycle Emissions (LCE)

The second objective function of the multiple objective optimization 
problem accounts the CO2 emissions produced during the operation of 
the system. The emissions comprise the carbon footprint produced dur-

ing the construction process, installation and commissioning of each 
technology including the emissions generated in the manufacturing of 
the components, transporting of the components from the factory to the 
place of the system.

Photovoltaic and wind turbine technologies have a foot-print associ-

ated with emissions produced during the manufacturing process. In this 
way, a broad context of the environmental emissions and impacts gen-

erated by the stand-alone electricity energy system is considered. Thus, 
5

total emissions are determined through specific emission factors for the 
installed capacity of each technology that should be added to the emis-

sions produced by the operation of the thermal reciprocating engine. 
The emission factors applied in this paper were taken from [22]. The 
overall objective function for the Life Cycle Emissions (LCE) is given by 
the following expression:

𝑓2(𝑥) = 𝜖𝑃𝑉 ⋅ 𝑃𝑃𝑉 + 𝜖𝑊 𝑇 ⋅ 𝑃𝑊 𝑇 + 𝜖𝐵 ⋅ 𝑃𝐵 + 𝜖𝑇𝐺 ⋅ 𝑃𝑇 + 𝛾𝑇 ⋅𝑊𝑇 (16)

where,

𝑃𝐵 is the average charge level of the battery bank in Ah,

𝑃𝑇 is the average power output by the thermal reciprocating engine 
kW,

𝜖𝑃𝑉 is the emission factor for the photovoltaic system kgCO2/kW,

𝜖𝑊 𝑇 is the emission factor for the wind turbine system kgCO2/

kW,

𝜖𝐵 is the emission factor associated with battery installation 
kgCO2/Ah,

𝜖𝑇 is the emission factor associated with reciprocating engine man-

ufacturing kgCO2/kW,

𝛾𝑇 is the emission factor for thermal operation kgCO2/kWh.

3.1.3. Societal objective - Local Wealth Creation (LWC)

The third objective to be considered in the optimization problem ac-

counts the social impact of the stand-alone energy supply in the area. 
The inclusion of this objective constitutes the main contribution of the 
paper. The concept of Local Wealth Creation (LWC) is applied [6]. This 
concept combines economic growth with job creation accounting the 
acceptance and appropriation of the project by the community. This 
function considers the job creation during the life cycle [33]. The con-

tribution of the stand-alone generation system to economic growth is 
determined considering the energy intensity and the job creation related 
to each component of the system. The local wealth creation function is 
expressed as:

𝑓3(𝑥) = 𝜖𝑒𝑛𝑔 ⋅ (𝑃𝑉 +𝑊 𝑇 +𝐵 +𝑇 ) ⋅ 𝑙𝑡 + 𝛼 ⋅ 𝐽𝐶 (𝑥) (17)

where,

𝜖𝑒𝑛𝑔 is the local energy intensity in $/MWh,

𝛼 is the contribution factor to the LWC for job created in $/Jobs

𝐽𝐶 (𝑥) is the job creation function. The job creation function is de-

fined by unitary factors that relate the jobs created during to the con-

struction, transportation and installation of hybrid generation system 
technologies. Job requirements for operation and maintenance are also 
included. Given by the number of jobs created during the life cycle and 
based on the job creation factors presented in [7] and [33], the function 
of job creation is expressed as:

𝐽𝐶 (𝑥) = 𝐽𝑃𝑉 ⋅ 𝑃𝑃𝑉 + 𝐽𝑊 𝑇 ⋅ 𝑃𝑊 𝑇 + 𝐽𝐵 ⋅ 𝑃𝐵 + 𝐽𝑇𝐺 ⋅ 𝑃𝑇 + 𝐽𝑔 ⋅𝑊𝑇 (18)

where,

𝐽𝑃𝑉 is the job creation factor for photovoltaic system in Jobs/kW,

𝐽𝑊 𝑇 is the job creation factor for WT system in Jobs/kW,

𝐽𝐵 is the job creation factor for installation of the batteries in 
Jobs/kW,

𝐽𝑇𝐺 is the job creation factor for thermal installation in Jobs/kW,

𝐽𝑔 is the job creation factor for the operation of the reciprocating 
engine in Jobs/kWh.

3.1.4. Optimization model constraints

The three objectives detailed above are constrained to the energy 
balance of the system as well as the lower and upper bounds of the 
decision variables. Thus, one energy balance equation and four capacity 
constraints are recognized.

System energy balance in kWh/yr is given by

𝑃𝑉 +𝑊 𝑇 +𝐵 +𝑇 =𝐷 (19)
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Fig. 1. General planning algorithm.
where photovoltaic (𝑃𝑉 ), wind (𝑊 𝑇 ), storage (𝐵) and diesel gen-

erator (𝑇 ) generated energy flows expressed in kWh per year. These 
energy contributions are determined according to equations (10)-(15). 
Energy demand (𝐷) in kWh/yr is previously defined by the energy 
planner. For the sake of simplicity, the amount of energy wasted from 
renewable sources is considered negligible when it exceeds the demand 
and the battery bank is charged. The system capacity constraints are 
given by

𝐴𝑚𝑖𝑛
𝑃𝑉

≤𝐴𝑃𝑉 ≤𝐴𝑚𝑎𝑥
𝑃𝑉

(20)

𝐴𝑚𝑖𝑛
𝑊 𝑇

≤𝐴𝑊 𝑇 ≤𝐴𝑚𝑎𝑥
𝑊 𝑇

(21)

𝑃𝑚𝑖𝑛
𝐵

≤ 𝑃𝐵 ≤ 𝑃𝑚𝑎𝑥
𝐵

(22)

𝑃𝑚𝑖𝑛
𝑇

≤ 𝑃𝑇 ≤ 𝑃𝑚𝑎𝑥
𝑇

(23)

where lower and upper capacity bounds are specified by each technol-

ogy.

For the sake of simplicity, this model does not include distribution 
lines since generation facilities and loads are located in the same place. 
For this reason, a restriction on distribution losses is not included and 
no associated cost is added in the objective function of the economic 
aspect.

The average power output of each kind of renewable units depends 
on the decision variables 𝐴𝑃𝑉 and 𝐴𝑊 𝑇 and a scaling factor 𝑘𝑃𝑉 and 
𝑘𝑊 𝑇 in kW/m2, respectively.
6

𝑃𝑃𝑉 =𝐴𝑃𝑉 ⋅ 𝑘𝑃𝑉 (24)

𝑃𝑊 𝑇 =𝐴𝑊 𝑇 ⋅ 𝑘𝑊 𝑇 (25)

3.2. Solution approach

The planning problem is solved in three different stages. In the first 
stage I, the multiple objective optimization problem is solved with a 
Genetic Algorithm (MOGA) and the Pareto front (containing LCC, LCE 
and LWC performance indexes) is identified from the set of the feasi-

ble solutions. In the second stage II, the energy reliability index (EIR) 
is determined for each solution of the Pareto front. The most appropri-

ate solution is selected at third stage III by applying the proposed fuzzy 
satisfaction method (FSM) according to the three objectives obtained in 
stage I (LCC, LCE and LWC performance indexes) and the energy relia-

bility index (EIR) evaluated in stage II. The complete solution approach 
is described in detail in the ten-step algorithm depicted in Fig. 1.

3.2.1. Data setup

Step 1: Input parameters of the optimization algorithm are settled: 
the load curves, the annual irradiance curve, the annual wind speed 
curve, technology costs (CAPEX, OPEX), technical parameters of each 
technology, emission factors, job creation factors, project parameters 
such as interest rates and life cycle time, maximum demand and con-

sumption. Upper and lower limits of decision variables are also estab-

lished.



J.D. Rivera-Niquepa et al. Heliyon 6 (2020) e03534
3.2.2. Stage I: MOGA solution and Pareto front identification

Step 2: The mathematical problem is solved. A multiple objective 
genetic algorithm (MOGA) is run to solve the optimization problem 
stated in Eqs. (3)-(18) subject to Eqs. (19)-(25). Technical solutions for 
economic, environmental and societal objectives are identified. This ap-

proach is based on a variation of the algorithm NSGA-II (Non-Sorting 
Dominated Genetic Algorithm) with elitist selection of non-dominance 
[32]. The algorithm favors individuals with a higher value that help 
increase the diversity of the population, even if they have a lower fit-

ness value. It is important to assure the diversity of the population for 
the convergence of the Pareto optimal front and to identify the number 
of elite members (Pareto non-dominated solutions) in the iterative pro-

cess. There are two options for elite identification in the search of the 
Pareto optimal front: Pareto fraction and distance function. The frac-

tion function limits the number of individuals on the Pareto front (elite 
members) and the distance function helps maintain sufficient diversity 
to favor individuals who are far from the optimal front

The optimization problem yields the Pareto front with 𝑖 = 1, ..., 𝑛𝑠𝑜𝑙
solutions in the form 𝐱𝐢 = [𝐴𝑃𝑉 , 𝐴𝑊 𝑇 , 𝑃𝐵, 𝑃𝑇 ]𝑇 . Each solution is eval-

uated at objective function 𝑓𝑜𝑏𝑗

𝑖
, 𝑜𝑏𝑗 = 1, ..., 𝑛𝑜𝑏𝑗 . The average power 

output of renewable, charge level and thermal reciprocating engines 
are determined (𝑃𝑃𝑉 , 𝑃𝑊 𝑇 and 𝑃𝑇 ) from decision variables.

3.2.3. Stage II: energy reliability index evaluation

Step 3: Each solution of the Pareto front 𝑖 = 1, ..., 𝑛𝑠𝑜𝑙 is setup for ini-

tial time. Technical attributes of the system are calculated at hour 𝑡 = 1: 
1) Power output of renewable sources (0 ≤ 𝑃𝑃𝑉 (𝑡) ≤ 𝑃𝑃𝑉 , 0 ≤ 𝑃𝑊 𝑇 (𝑡) ≤
𝑃𝑊 𝑇 ) is determined according to equations (10) and (13), 2) State of 
charge (SOC) of the batteries is given by (𝑆𝑂𝐶𝑚𝑖𝑛

𝐵
≤ 𝑃𝐵(𝑡) ≤ 𝑆𝑂𝐶𝑛𝑜𝑚

𝐵
) 

for batteries: 𝑆𝑂𝐶 = 𝑃𝐵(𝑡)∕𝑃 𝑛𝑜𝑚
𝐵

, 3) the base output of thermal recipro-

cating engines 𝑃𝑇 (𝑡) is also fixed to give voltage-frequency support to 
the system. In order to promote the use of renewable resources and use 
the thermal resource as a reliability support only, the base output of the 
fossil-based plant is adjusted as 15% of the peak load 𝑃 𝑏𝑎𝑠𝑒

𝑇
= 0.15𝑑𝑚𝑎𝑥.

Step 4: (Conditional): At hour 𝑡 = 1 it is verified if the available re-

newable resource can satisfy the demand. Depending on the difference 
between the load demand (𝑑(𝑡)) and the available renewable resource 
(𝑃𝑟𝑒𝑛(𝑡) = 𝑃𝑃𝑉 (𝑡) + 𝑃𝑊 𝑇 (𝑡)), it is defined whether the batteries are suit-

able to be charged.

Step 5.1: If the batteries are charging, then the stored energy (Δ𝑃𝐶 ) 
in kWh is given by:

Δ𝑃𝐶 (𝑡) = 𝑃𝑟𝑒𝑛(𝑡) − 𝑑(𝑡) (26)

Thus, the total charge level 𝑃𝑅𝑐 (𝑡) is given by:

𝑃𝑅𝑐(𝑡) = Δ𝑃𝐶 (𝑡) + 𝑆𝑂𝐶(𝑡) (27)

(Conditional) If the total charge 𝑃𝑅𝑐 is greater than the nominal 
level 𝑃 𝑛𝑜𝑚

𝐵
, the batteries are charged at its nominal value, and the ex-

cess power (𝑃𝑑𝑢𝑠𝑡
𝑟𝑒𝑛

) is dissipated through a resistance. The output of the 
reciprocating engine 𝑃𝑇 (𝑡) remains at its base value. Then, power bal-

ance is given by:

𝑆𝑂𝐶(𝑡+ 1) = 𝑃 𝑛𝑜𝑚
𝐵

(𝑡) (28)

𝑃 𝑑𝑢𝑠𝑡
𝑟𝑒𝑛

(𝑡) = 0, (29)

𝑃𝑁𝑆(𝑡) = 0, (30)

𝑃𝑇 (𝑡) = 𝑃 𝑏𝑎𝑠𝑒
𝑇

(31)

(Conditional) If the total charge 𝑃𝑅𝑐 is lower than the nominal level 
𝑃 𝑛𝑜𝑚
𝐵

, the batteries are loaded with the available power.

𝑆𝑂𝐶(𝑡+ 1) = 𝑆𝑂𝐶(𝑡) + Δ𝑃𝐶 , (32)

𝑃 𝑑𝑢𝑠𝑡
𝑟𝑒𝑛

(𝑡) = 0, (33)

𝑃𝑁𝑆(𝑡) = 0, (34)

𝑃𝑇 (𝑡) = 𝑃 𝑏𝑎𝑠𝑒 (35)

𝑇
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The output of the thermal reciprocating engine remains at its base 
value 𝑃 𝑏𝑎𝑠𝑒

𝑇
.

In both cases, no load shedding is required, then power not supplied 
𝑃𝑁𝑆(𝑡) is zero.

Step 5.2: If the batteries are discharging 𝑃𝑟𝑒𝑛 ≤ 𝑑(𝑡) and Δ𝑃𝐷 ≥ 0

Δ𝑃𝐷(𝑡) = 𝑑(𝑡) − 𝑃𝑟𝑒𝑛(𝑡) (36)

It is verified if the total charge 𝑃𝑅𝑑 .

𝑃𝑅𝑑 (𝑡) = 𝑆𝑂𝐶(𝑡) − Δ𝑃𝐷 (37)

(Conditional) If 𝑃𝑅𝑑 is greater than 𝑃𝑚𝑖𝑛
𝐵

, batteries are going to be 
discharged and a new 𝑆𝑂𝐶(𝑡) is established for the next hour 𝑡 + 1.

𝑆𝑂𝐶(𝑡+ 1) = 𝑆𝑂𝐶(𝑡) − Δ𝑃𝐷, (38)

𝑃𝑑𝑢𝑠𝑡(𝑡) = 0, (39)

𝑃𝑛𝑠(𝑡) = 0, (40)

𝑃𝑇 (𝑡) = 𝑃𝑇𝑏𝑎𝑠𝑒 (41)

The output of the thermal reciprocating engine 𝑃𝑇 remains at its 
base value.

(Conditional) If 𝑃𝑅𝑑 is lower than 𝑃𝑚𝑖𝑛
𝐵

, battery charge level reaches 
its minimum value and the total battery discharge is given by

𝑃 𝑑𝑖𝑠
𝐵

(𝑡) = Δ𝑃𝐷 + 𝑃𝐵𝑚𝑖𝑛(𝑡) −𝑆𝑂𝐶(𝑡) (42)

The battery discharge output 𝑃𝑑𝑖𝑠
𝐵

(𝑡) is then compared with the avail-

able thermal output 𝑃𝑇 .

(Conditional) If the total discharge output 𝑃𝑑𝑖𝑠
𝐵

(𝑡) is lower than ther-

mal based output 𝑃𝑇 , the thermal output should be increased to meet 
the balance:

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶𝑚𝑖𝑛
𝐵

, (43)

𝑃 𝑑𝑢𝑠𝑡
𝐵

(𝑡) = 0, (44)

𝑃𝑁𝑆(𝑡)) = 0, (45)

𝑃𝑇 (𝑡) = 𝑃 𝑑𝑖𝑠
𝐵

(𝑡), (46)

(Conditional) If the total discharge output 𝑃𝑑𝑖𝑠
𝐵

(𝑡) is greater than 𝑃𝑇 , 
the thermal reciprocating engine is dispatched to its nominal output 
value but it cannot provide enough power to cover the peak demand 
and load shedding is required:

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶𝑚𝑖𝑛
𝐵

, (47)

𝑃 𝑑𝑢𝑠𝑡
𝐵

(𝑡) = 0, (48)

𝑃𝑁𝑆(𝑡) = 𝑃 𝑑𝑖𝑠
𝐵

(𝑡) − 𝑃𝑇 , (49)

𝑃𝑇 (𝑡) = 𝑃𝑇 . (50)

In this case, the load shedding is 𝑃𝑁𝑆(𝑡) = 𝑃𝑑𝑖𝑠(𝑡)-𝑃𝑇 .

Step 6: The sequential simulation for the estimation of the reliability 
of the technical arrangement is executed for a period of one year. This 
reliability analysis is carried out assuming that annual solar irradiance 
and annual wind speed conditions do not change significantly across 
the project lifespan. Then, Step 5 is repeated for each hour of the year 
from 𝑡 = 1 to 𝑡 = 8760 according to the annual load curve, the wind sped 
and irradiance annual curves.

Step 7: The annual Energy Reliability Index (EIR) is determined from 
power not supplied (PNS) figures obtained in Step 5.2 from hour 𝑡 = 1
to hour 𝑡 = 8760:

𝐸𝐼𝑅 = 1 −
∑8760

𝑡=1 𝑃𝑁𝑆

𝐷

(51)

where ∑8760
𝑡=1 𝑃𝑁𝑆 is the annual energy not supplied in kWh/year and 

𝐷 is the annual load consumption in kWh/year.
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𝐷 =
8760∑
𝑡=1

𝑑(𝑡) (52)

Step 8: Steps 3 to 7 are repeated for every solution of the Pareto set.

Step 9: At this point, all three optimized objectives – economic 
(LCC), environmental (LCE) and societal (LWC) – were characterized 
with a corresponding energy reliability index (EIR) for every feasible 
solution in the Pareto set.

3.2.4. Stage III: decision making: fuzzy satisfaction method FSM 
application

Step 10: Accounting the four objectives per Pareto solution summa-

rized at Step 9, the decision-making process is carried out in order to 
select the best option. In this paper a fuzzy satisfying method is used 
for this purpose.

The method is described as follows: for each feasible solution 𝑖 =
1, ..., 𝑛𝑠𝑜𝑙 of the Pareto set, a membership function 𝜌𝑜𝑏𝑗

𝑓−𝑖
is defined for 

each objective 𝑜𝑏𝑗 = 1, ..., 𝑛𝑜𝑏𝑗 . The magnitude of the membership func-

tion ranges from 0 to 1 reflecting the level upon which a given solution 
belongs or not to the set that minimizes the objective function 𝑓𝑜𝑏𝑗

𝑖
. All 

solutions should be evaluated in order to select the best one that eq-

uitably reconciles all the three objectives of the optimization problem. 
The method takes two formulations depending on whether the objective 
function 𝑓𝑜𝑏𝑗

𝑖
is minimized (Eq. (53)) or maximized (Eq. (54)).

On one hand, when the objective function 𝑓𝑜𝑏𝑗

𝑖
is minimized, a linear 

membership function is used for all objective functions as follows:

𝜌
𝑜𝑏𝑗

𝑓−𝑖
=

⎧⎪⎪⎨⎪⎪⎩

1 𝑓
𝑜𝑏𝑗

𝑖
≤ 𝑓

𝑜𝑏𝑗

𝑚𝑖𝑛

𝑓
𝑜𝑏𝑗
𝑚𝑎𝑥−𝑓

𝑜𝑏𝑗

𝑖

𝑓
𝑜𝑏𝑗
𝑚𝑎𝑥−𝑓

𝑜𝑏𝑗

𝑚𝑖𝑛

𝑓
𝑜𝑏𝑗

𝑚𝑖𝑛
< 𝑓

𝑜𝑏𝑗

𝑖
< 𝑓

𝑜𝑏𝑗
𝑚𝑎𝑥

0 𝑓
𝑜𝑏𝑗

𝑖
≥ 𝑓

𝑜𝑏𝑗
𝑚𝑎𝑥

(53)

where

𝜌
𝑜𝑏𝑗

𝑓−𝑖
is the weight assigned to the 𝑖-th solution of a minimization 

objective;

𝑓
𝑜𝑏𝑗
𝑚𝑎𝑥 It is the maximum value of the minimization objective ob-

tained;

𝑓
𝑜𝑏𝑗

𝑚𝑖𝑛
It is the minimum value of the minimization objective obtained;

𝑓
𝑜𝑏𝑗

𝑖
It is the value of the minimization objective obtained by the 𝑖-th 

solution.

On the other hand, when the objective function 𝑓𝑜𝑏𝑗

𝑖
is maximized, a 

linear membership function is used for all objective functions as follows:

𝜌
𝑜𝑏𝑗

𝑓−𝑖
=

⎧⎪⎪⎨⎪⎪⎩

1 𝑓
𝑜𝑏𝑗

𝑖
≥ 𝑓

𝑜𝑏𝑗
𝑚𝑎𝑥

𝑓
𝑜𝑏𝑗

𝑖
−𝑓

𝑜𝑏𝑗

𝑚𝑖𝑛

𝑓
𝑜𝑏𝑗
𝑚𝑎𝑥−𝑓

𝑜𝑏𝑗

𝑚𝑖𝑛

𝑓
𝑜𝑏𝑗

𝑚𝑖𝑛
< 𝑓

𝑜𝑏𝑗

𝑖
< 𝑓

𝑜𝑏𝑗
𝑚𝑎𝑥

0 𝑓
𝑜𝑏𝑗

𝑖
≤ 𝑓

𝑜𝑏𝑗

𝑚𝑖𝑛

(54)

where

𝜌
𝑜𝑏𝑗

𝑓−𝑖
is the weight assigned to the 𝑖-th solution of a maximization 

objective;

𝑓
𝑜𝑏𝑗
𝑚𝑎𝑥 is the maximum value of the maximization objective obtained;

𝑓
𝑜𝑏𝑗

𝑚𝑖𝑛
is the minimum value of the maximization objective obtained;

𝑓
𝑜𝑏𝑗

𝑖
is the value of the maximization objective obtained by the 𝑖-th 

solution.

The normalized weight of each solution (𝜌𝑖) combines the weights 
obtained for all the objectives considered in the decision making pro-

cess. This normalized weight makes it possible to compare solutions.

𝜌𝑖 =

∑𝑛𝑜𝑏𝑗

𝑜𝑏𝑗=1 𝜌
𝑜𝑏𝑗

𝑓−𝑖∑𝑛𝑠𝑜𝑙
𝑖=1

∑𝑛𝑜𝑏𝑗

𝑜𝑏𝑗=1 𝜌
𝑜𝑏𝑗

𝑓−𝑖

(55)

where, 𝜌𝑖 is the normalized weight for each solution.

When calculating the normalized weights 𝜌𝑖 for all 𝑛𝑠𝑜𝑙 solutions, it 
is possible to obtain the best solution within the Pareto set by selecting 
highest normalized weight.
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Table 4

Data setup.

Parameter Value

Average inflation rate, 𝜈 9%

Battery bank lifespan, 𝑏𝑙 6 years

NG init cost, 𝐶𝑇 6000 M$/kW

WT init cost, 𝐶𝑊 𝑇 600 M$/m2

NG maint cost, 𝐶𝑚𝑇 120 M$/kW

WT maint cost, 𝐶𝑚𝑊 𝑇 10.4 M$/m2/yr

Battery replac, 𝑌𝐵 4

𝐶𝑂2 price, 𝜆 5 k$/tCO2

Voltage bat bank, 𝑉𝐵 48 [V]

Inverter efficiency, 𝜂𝑖𝑛𝑣 95%

Wind generator eff, 𝜂𝐺 80%

NG em. fact, 𝜖𝑇 800 gCO2/kWh

Specific Heat fuel, 𝐻𝑓𝑢𝑒𝑙 35315 Btu/m3

Discount rate, 𝛾 12%

Project lifetime, 𝑙𝑓 25 yr

PV init cost, 𝐶𝑃𝑉 180 M$/m2

Batt init cost, 𝐶𝐵 150 M$/Ah

PV maint cost, 𝐶𝑚𝑃𝑉 16.4 M$/m2/yr

Batt maint cost, 𝐶𝑚𝐵 40 M$/Ah/yr

NG fuel cost, 𝐶𝑓𝑢𝑒𝑙 1500 M$/m3/yr

Em. factor Net, 𝜖𝑛 370 gCO2/kWh

PV Efficiency, 𝜂𝑃𝑉 16%

Wind conv eff, 𝜂𝑊 𝑇 60%

Gear box eff, 𝜂𝐺𝐵 70%

Wind turb conv eff, 𝜂𝑇𝐶 60%

NG Heat Rate, 𝐻𝑅 11.2 Btu/kWh

3.3. System data

The input parameters for the algorithm are summarized in Ta-

ble 4. All costs and prices are given in Colombian currency $. 𝐽𝑃𝑉 =
2.7 × 10−3, job creation factor for photovoltaic system in Jobs/kW, 
𝐽𝑊 𝑇 = 1.1 × 10−3, job creation factor for WT system in Jobs/kW, 
𝐽𝐵 = 0.01 × 10−3, job creation factor for installation of the batteries in 
Jobs/kW, 𝐽𝑇𝐺 = 12 ×10−6, job creation factor for thermal installation in 
Jobs/kW, 𝐽𝑔 = 0.14 × 10−4, job creation factor for the generator opera-

tion in Jobs/kWh. 𝜖𝑃𝑉 = 1392, CO2 em. factor for the photovoltaic sys-

tem kgCO2/kW, 𝜖𝑊 𝑇 = 675, CO2 em. factor for the wind turbine system

kgCO2/kW, 𝜖𝐵 = 55.3, CO2 em. factor associated with battery installa-

tion kgCO2/kW, 𝜖𝑇 = 400, CO2 em. factor for manufacturing kgCO2/kW, 
𝛾𝑇 = 252, CO2 em. factor for diesel/gas operation gCO2/kWh. 𝜖𝑒𝑛𝑔 is the 
local energy intensity in $/MWh, and 𝛼 is the contribution factor to the 
LWC for job created in $/JobsLC

4. Results

The proposed methodology was applied into a village located in the 
municipality of Guican, department of Boyacá (Colombia). According 
to [53] by 2013 the department had a total of 382,416 households and 
a coverage index (ratio of number of users with energy service to num-

ber of households) of 96.43%. According to the statistics presented in 
[53] a coverage growth of up to 97.6% was estimated for 2017. This 
means that 9,178 homes lack electricity. The village under study is lo-

cated in a rural off-grid zone at the north of the department (715059 
786264 18N UTM). The distance between the village and Tunja (the 
capital of the department) is 255 km, with an average altitude of 2983 
m.a.s.l. and a total population of 6,909 inhabitants. A share of 75% 
(5197 inhabitants) are located in rural zones.

Results of the application of the step-by-step planning algorithm de-

picted in Fig. 1 is presented.

Step 1 - Data Setup: The average annual load to serve is 2 MW, 
17.47 GWh/year with a peak load of 3.25 MW. The estimation of the 
wind and solar irradiance potential was obtained from the NREL [52]

according to the GPS location of the village under study. Annual de-

mand, solar irradiance, wind speed curves are depicted in Fig. 2.
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Fig. 2. Annual load demand curve 𝑑 (MW), annual solar irradiance curve, 𝑆𝐼

(kW/m2), speed curve 𝑣 (m/s), NREL-NRSDB Data, 2014 [52].

Technology and fuel costs consider particular conditions to build 
and operate off-grid solutions in rural areas of developing countries 
such as Colombia.

Optimization model constraints are defined as follows:

0 ≤𝐴𝑃𝑉 ≤ 8000 m2 (56)

0 ≤𝐴𝑊 𝑇 ≤ 15000 m2 (57)

1000 Ah ≤ 𝑃𝐵 ≤ 3000 Ah (58)

1000 kW ≤ 𝑃𝑇 ≤ 6000 kW (59)

Stage I, Step 2, optimization results: Fig. 3 depicts the results of the 
optimization process. The Pareto front comprises 133 non-dominated 
solutions. Thus, the Pareto set size is 133. The optimization process was 
carried out in a PC computer with the following characteristics: Intel 
(R) Core (TM) i7-5500U CPU @ 2.40 GHz, 8.00 GB (RAM). The op-

timization method was coded in Matlab using the gamultiobj function. 
The genetic algorithm runs with a population size of 380 and with 120 
generations. The processing time obtained was 204.15 seconds. The re-

sulting 3-dimension graphs show that cost in the life cycle cost (LCC) 
ranges between 25 and 40 billion $ (approx. US$8.6 and 10.3 million). 
This result implies an average LCC cost of US$0.27-0.32 per kWh. The 
life cycle of emissions (LCE) objective varies between 60 and 85 MtCO2. 
Finally, the local wealth creation (LWC) ranges between 22 and 28 bil-

lion $ (approx. US$ 13.6 and 15.3 million).

Stage II, Steps 3-9, reliability analysis: Once obtained the set of 
non-dominated solutions in Stage I, the energy reliability index (EIR) 
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Table 5

Best solution - Solution 109.

kW/Ah GWh Objective Value

𝑃𝑃𝑉 523.3 𝑃𝑉 4.58 LCC [Bi $] 32.9

𝑃𝑊 𝑇 341.8 𝑊 𝑇 3.00 LCE [MtCO2] 81.9

𝑃𝐵 1460 𝐵 12.78 LWC [bi$] 26.6

𝑃𝑇 1264.4 𝑇 11.07 EIR [%] 91

is calculated for each optimal solution of the Pareto, the results are pre-

sented in Fig. 4. The calculated EIR ranges 0.83 and 0.91. This means 
that load shedding is required in all solutions with different degree of 
severity.

Stage III, Step 10, decision making using a fuzzy satisfaction method 
FSM: In the top-right hand of Fig. 3 it is showed the results obtained for 
the normalized weights computed using Eq. (55). The highest normal-

ized weight is 0.009625 ∗ 10−3. The best normalized weight corresponds 
to the non-dominated solution number 109 of the pareto set. Table 5

lists the attributes of the best option. The best solution 109 is high-

lighted as a red bullet in the Pareto set shown in Fig. 3.

It is worth to note that the fuzzy satisfaction method (FSM) seeks 
the best solution in the around of the middle of the Pareto front. This 
result is consistent with the fact that in this area the four objectives are 
well balanced. The best solution represents a reduction of 4248 kTon 
CO2 year with respect to the emissions that would have been obtained 
if the energy had been taken from the grid.

The resulting dispatch profile of renewable and fossil-based tech-

nologies for the best solution 109 is depicted in Fig. 5.

The resulting capacity specifications by technology are determined 
according to the results for best solution 109 displayed in Table 5. 
The recommended nominal sizes of the system are 𝑃 𝑛𝑜𝑚

𝑃𝑉
= 700 kW, 

𝑃 𝑛𝑜𝑚
𝑊 𝑇

= 400 kW, 𝑃 𝑛𝑜𝑚
𝐵

= 1500 Ah, 𝑃 𝑛𝑜𝑚
𝑇

= 1500 kW. We can observe from 
Fig. 5 that the thermal reciprocating engine can represent around 40% 
of the annual load demand. The use of storage is really limited in Colom-

bia due to its higher costs. Solar PV and wind WT output have a share 
of almost 60% the annual load demand. Particular conditions of Colom-

bia such as moderate fuel cost and high renewable potential suggest 
to limit the use of storage as a solution to tackle renewable energy in-

termittency. Regarding the inclusion of societal considerations such as 
local wealth creation (LWC), the results show the importance of off-grid 
energy solutions to improve local economy.

The planning process for a stand-alone electricity system in Colom-

bia has considered three optimized objectives (economic EC, environ-

mental EV and social SC) and evaluated a reliability index (technical 
TC). Four technologies are considered: solar PV, wind WT, thermal re-

ciprocating engines (T) and batteries (B). The optimization process was 
carried out taking into account the costs on-site (a rural area) for every 
technology.

We obtained a design specification (solution 109) that reconciles 
the trade-offs among the four key performance indexes (LCC, LCE, LWC 
and EIR). The state of art in this topic is improved by including so-

cietal objectives – strongly dependent on local economies – in both 
the optimization and decision making processes. As a key contribution, 
the proposed methodology enhances the decision making process by 
applying a fuzzy satisfaction method considering economic, technical, 
societal and environmental attributes at once.

5. Conclusions

This paper presents a fuzzy-multiple objective optimization method-

ology to plan stand-alone electricity generation systems. The novelty 
of the proposal lies on the inclusion of societal impact (local wealth 
creation) in the FSM used here to select the more appropriate solu-

tion. We conclude that the use of decision-making processes based 
upon fuzzy satisfaction methods (FSM) in stand-alone system specifica-

tion produces satisfactory solutions accounting simultaneously four key 
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Fig. 3. Case study Pareto optimal set.
Fig. 4. Energy Index Reliability (EIR). Fig. 5. Hourly dispatch by technology to cover the system load.
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performance indexes (KPI): technical, economic, environmental and so-

cietal. Real-world application in Colombia suggests a fossil-renewable 
mix of 40-60% with a local health creation income of $26 Billion per 
year and a environmental impact of 80 MtCO2 per year. Finally, one of 
the recommendations to improve the model and to consider in future 
works, can be the inclusion of the losses in distribution lines, taking 
into account the magnitude of the power of the system and that the 
consumers can be at a significant distance from the generation node of 
the microgrid. With this factor it is necessary to reformulate the cost 
function and the calculation of CAPEX and OPEX of the project would 
change.
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