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Abstract: An IrI-system modified with a ferrocene derived
bisphosphine ligand promotes a-selective arylation of styrenes
by dual C@H functionalization. These studies offer a regioiso-
meric alternative to the Pd-catalyzed Fujiwara–Moritani
reaction.

The intermolecular Heck reaction is the foremost method
available for the C@H arylation of alkenes.[1] For processes
involving styrenes, arylation occurs predominantly at the b-
position.[1, 2] In electronically predisposed cases, significant
levels of a-arylation are observed,[3] but complete selectivity
for C@C bond formation at this position can be achieved only
under specialized conditions.[4] The related intermolecular
Fujiwara–Moritani reaction, which is most effective in the
presence of directing groups, operates under oxidative con-
ditions and is attractive because it achieves C@H arylation of
alkenes by dual C@H functionalization, thereby circumvent-
ing the preparation of an aryl (pseudo)halide (Sche-
me 1A).[1c,5] The regioselectivity trends of this process
mirror the Heck reaction, such that the method also does
not provide a general approach to the a-selective arylation of
styrenes. This type of selectivity has been observed in rare
cases involving heteroarenes, but substrate scope is severely
limited.[6] The paucity of general methods for direct styrene a-
arylation often mandates multistep synthetic workarounds,
thereby increasing cost, effort, and waste.[7]

We have previously described Ir-catalyzed branch selec-
tive hydroarylations of styrenes with acetanilides 1 (DG =

NHAc, Scheme 1B).[8a] These processes were posited to occur
via a sequence of carbonyl directed C@H activation (to I),
alkene hydrometallation (to II), and C@C reductive elimi-
nation (to 3). In this report, we show that modification of the
Ir-center with specific bisphosphine ligands alters the reaction
outcome to provide a method for the a-selective arylation of
styrenes (1 to 4). This new dual C@H functionalization

method is regioisomeric with respect to the Fujiwara–
Moritani and Heck reactions,[1, 5] and previous Ir-catalyzed
C@H alkenylation processes,[9,10] thereby providing proof-of-
concept for a unique approach to the a-arylation of styrenes.
Note that products mechanistically related to 4 have been
observed as minor components in enamide C@H alkylation
reactions.[11]

Natural abundance 13C kinetic isotope effect (KIE)
experiments on our previously developed alkene hydroaryla-
tion reaction (1 to 3, DG = NHAc) are suggestive of a C@C
reductive elimination pathway for the formation of 3 (see the
Supporting Information).[8a,b, 12,13] Accordingly, we reasoned
that the proposed C@H alkenylation process outlined in
Scheme 1B (1 to 4) requires a catalyst system that can enforce
access to an alkene carbometallation manifold at the expense
of the prevailing C@C reductive elimination pathway. It has
previously been shown by Shibata and co-workers that
styrene carbometallation occurs with complete branch selec-
tivity using bisphosphine-ligated iridacycles derived from C@
C bond activation of biphenylene.[14] Accordingly, if a carbo-
metallative manifold could be accessed, then we expected
high regioselectivity for the formation of III, which, in turn,
would provide a-arylated styrene 4, rather than the corre-
sponding b-arylated isomer (not depicted).

An assay of potential ligand systems was undertaken on
the coupling of acetanilide 1a and styrene 2a using [Ir-
(cod)2]OTf as precatalyst and dioxane as solvent. From these
studies, we observed that the use of dppf (L-1) afforded a 3:7

Scheme 1. Introduction.
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mixture of alkene 4aa and hydroarylation product 3aa, with
the former generated in 23% yield. This prompted the
evaluation of a variety of related ligand systems L2–L6, which
were prepared in three steps from ferrocene (see the SI).[15] In
general, the selectivity for alkenylation vs. hydroarylation,
and the yield of 4aa increased as the aromatic unit of the
ligand became more electron poor, with L-4 providing 4aa in
24% yield and 8:2 selectivity over 3aa. However, L-5, which
possesses highly electron withdrawing pentafluorophenyl
units, did not provide 4aa, and instead a mixture of branched
and linear hydroarylation products 3aa and iso-3aa
formed.[16] Ligand systems with more electron rich aromatic
units, such as L-6, were not effective, and resulted in
hydroarylation only. As L-4 provided the highest selectivity
for 4aa, further optimization studies were undertaken using
this ligand. Pleasingly, by increasing the reaction time to
72 hours we found that 4aa could be formed in 62% yield.
The conversion of III to 4 releases an IrIII-dihydride, and, as
indicated by GCMS analysis of crude reaction mixtures,
turnover is achieved by reduction of a sacrificial equivalent of
styrene to ethyl benzene. As such, we reasoned that oxidants
other than styrene might offer additional improvements. In
the event, by using 200 mol% tert-butylethylene as an
exogenous oxidant[9] and increasing the catalyst loading to
7.5 mol%, 4aa was formed with 10:2 selectivity over 3aa and
could be isolated in pure form in 74 % yield (further
optimization studies with respect to the oxidant are detailed
in the SI). For clarity, the product numbering system used in
Table 1 is retained throughout subsequent discussion: 3 =

hydroarylation product; 4 = C@H arylation product; first
letter specifies anilide precursor; second letter specifies
styrene precursor.

With optimized conditions in hand, we sought initially to
explore scope with respect to the directing group (R1,
Table 2A). These studies revealed that a wide range of
sterically distinct anilide-based systems can be employed (1a–
i), such that 4aa–ia were all formed in good to excellent yield,

with high selectivity over the corresponding hydroarylation
product (3).[17] Note that systems where R1 = aryl are not
suitable because competing ortho- selective hydroarylation of
this unit predominates.[8c] The process tolerates diverse
substitution on the anilide partner (Table 2B). Indeed, para-
substituted systems engage efficiently (4oa–rb), and arenes
possessing meta-substitution undergo highly regioselective
C@H alkenylation at the less hindered ortho-position; for
example, C@H arylation of styrene 2a with acetanilide 1m
provided 4ma (65% yield) as a single regioisomer and with
good selectivity over the corresponding hydroarylation prod-
uct (5:1). The functional group compatibility of the process is
good, with, for example, the potentially labile C@Br bond of
4oa remaining intact for further diversification. Ortho-
substitution can impact selectivity; 4ua was formed with
only 2:1 selectivity over 3ua, but generation of 4vb was highly
selective. In all cases, the target products were easily

Table 1: Selected optimization results.

[a] Yields and selectivities were determined by 1H NMR analysis using
1,3,5-trimethoxybenzene as a standard. [b] Reaction run at 0.5 M.
[c] Isolated yield.

Table 2: Scope of the anilide component.[a]

[a] Isolated yields of the C@H arylation product are quoted. Selectivites
(C@H arylation product 4 : hydroarylation product 3) were determined by
1H NMR analysis of crude material and are quoted in parentheses.
[b] 10 mol% catalyst was used.
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separated from the minor hydroarylation products by column
chromatography.

Using anilide 1 f, we have assessed the scope of the
alkenylation process with respect to the styrene partner
(Table 3). Electronically diverse systems all participate with
acceptable levels of efficiency; for example, para-fluoro
system 4 fd and para-methyl system 4 fb were generated in
75% and 77% yield, respectively. An electronic trend is
evident for alkenylation vs. hydroarylation selectivity (cf. 4 fb
vs. 4 fe), however, steric effects are more pronounced. Indeed,
ortho-substitution on the styrene lowers product selectivity,
such that fluoro system 4 fj was formed with 2:1 selectivity
over the corresponding hydroarylation product. Despite this
modest selectivity, analytically pure 4 fj could still be isolated
in 50 % yield. At the present stage, the process is applicable to
styrenes only; alkyl substituted alkenes participate with low
levels of efficiency with respect to both yield and product
selectivity.

The anilide-based C@H alkenylation products are useful
intermediates for synthesis, especially in heterocyclization
processes. Treatment of the alkenylation products with POCl3

effects smooth cycloaromatization to provide quinolines,[18] as
exemplified by the synthesis of 5a–d (Scheme 2A). Note that
this de novo heteroaromatization strategy offers high levels of
modularity, and its suitability for the construction of chal-
lenging polycyclic systems, such as 5c and 5d, is significant.
The protocol even extended to the two-step conversion of
estrone derived acetanilide 1w to the unusual quinoidal
steroid 5e. Other classes of heterocyclization can also be
achieved; treatment of 4aa with SelectFluor[19] or iodine[20]

provided adducts 6 and 7, respectively (Scheme 2B). Free
aniline 8 was accessed by acid hydrolysis of 4ha and could be
converted in high yield to cinnoline 9 or dihydroquinoline 10,
which possesses a tetrasubstituted stereocenter.

The C@H alkenylation processes outlined here represent
proof-of-concept for a broader family of styrene a-arylation

protocols. In preliminary efforts to extend the scope of our
approach, we have assayed a selection of other aromatic
partners leading to the observation that a-selective arylation
using pyrrole 11 a is feasible (Scheme 3 A). Here, L-4 was not
a suitable ligand, but, instead, we found that use of ferrocene-
based system (S,S)-f-Binaphane[21] provided targets 12 a–c in
62–74% yield. The seemingly fickle nature of the ligand

Table 3: Scope of the styrene.[a]

[a] See Table 2 footnotes. [b] 10 mol% catalyst was used. [c] Run at 1.0M.

Scheme 2. Product derivatizations.

Scheme 3. Extensions of the C@H alkenylation process.
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requirements highlights a future challenge in the develop-
ment of new processes. For pyrrole 11b, which is arylated at
C3, C@H alkenylation to provide 12d was highly regioselec-
tive. Using L-4 we have also found that dehydrogenative C@C
bond formation can be combined with a further dehydrogen-
ation event. When enamide 13 was exposed to optimized
conditions dehydrogenative aromatization (to 1n) was fol-
lowed by C@H alkenylation, which provided 4na in 60% yield
(Scheme 3B).[22]

It is pertinent to comment on mechanistic details of the
processes described here. A control experiment involving
resubjection of hydroarylation product 3aa to optimized C@H
arylation conditions did not provide alkene 4aa. This result
supports the idea that 4 aa is generated via a carbometallative
pathway (I to III to 4 in Scheme 1B) rather than via
dehydrogenation of 3aa. C@H arylation of deuterio-2c with
acetanilide 1q resulted in scrambling of the deuterium labels
in product deuterio-4 qc and in recovered deuterio-2c and 1q.
This suggests that reversible styrene hydrometallation (I to II)
is also operative under optimized conditions (Scheme 4).

Accordingly, the minor alkene hydroarylation products (e.g.,
3aa) might arise via either C@C reductive elimination from II
or C@H reductive elimination from III. At the present stage
we have been unable to discriminate these pathways, such
that meaningful rationalizations for product selectivity in
each case cannot be made.

In summary, we outline a unique Ir-catalyzed method for
the a-selective C@H arylation of styrenes. This dual C@H
functionalization protocol offers a regioisomeric alternative
to the well-established Pd-catalyzed Fujiwara–Moritani reac-
tion. Efforts to broaden the utility of the method are ongoing
and the results of these studies will be reported in due course.

X-ray data is available under CCDC 1838966–1838967.
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