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Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common cancer worldwide, with overall survival
of less than 50%. Current therapeutic strategies involving a combination of surgery, radiation, and/or chemotherapy are
associated with debilitating side effects, highlighting the need for more specific and efficacious therapies. Inhibitors of BCL-
2 family proteins (BH3 mimetics) are under investigation or in clinical practice for several hematological malignancies and
show promise in solid tumors. In order to explore the therapeutic potential of BH3 mimetics in the treatment of SCCHN, we
assessed the expression levels of BCL-2, BCL-XL, and MCL-1 via Western blots and immunohistochemistry, in cell lines,
primary cells derived from SCCHN patients and in tissue microarrays containing tumor tissue from a cohort of 191 SCCHN
patients. All preclinical models exhibited moderate to high levels of BCL-XL and MCL-1, with little or no BCL-2. Although
expression levels of BCL-XL and MCL-1 did not correlate with patient outcome, a combination of BH3 mimetics to target
these proteins resulted in decreased clonogenic potential and enhanced apoptosis in all preclinical models, including
tumor tissue resected from patients, as well as a reduction of tumor volume in a zebrafish xenograft model of SCCHN. Our
results show that SCCHN is dependent on both BCL-XL and MCL-1 for apoptosis evasion and combination therapy
targeting both proteins may offer significant therapeutic benefits in this disease.

Introduction
Head and neck cancer, of which squamous cell carci-

nomas account for over 90% of diagnoses, is the sixth
most common cancer worldwide1. Although etiological
factors, such as tobacco use, alcohol consumption, and
human papillomavirus (HPV) infection, as well as the
mutation of key genes associated with SCCHN have been
identified, this has not translated into better therapies and
the prognosis for many HPV negative (HPV−) patients
remains significantly poorer than for HPV positive
patients2–4. With the currently preferred treatment
modalities of surgery, radiotherapy and/or chemotherapy,
local recurrence or metastasis is observed in >50% of

HPV− patients and is often associated with significant
morbidity and mortality5, thus emphasizing the urgent
need for improved therapeutic strategies. Until recently,
the only targeted therapy approved for SCCHN was the
monoclonal antibody, cetuximab, which inhibits the epi-
dermal growth factor receptor (EGFR). Although EGFR is
frequently overexpressed in SCCHN4, responses to
cetuximab have been varied, and generally disappoint-
ing4,6. However, there is new promise for immunotherapy,
with the recent FDA approval of the PD-1 specific anti-
body Pembrolizumab for first-line treatment of SCCHN7.
Evasion of apoptosis is one of the cardinal features of

cancer. Most anticancer therapies facilitate cancer cell
death by inducing the intrinsic pathway of apoptosis,
which is regulated by the balance of antiapoptotic and
proapoptotic BCL-2 family proteins8. High expression
levels of antiapoptotic BCL-2 family members (BCL-2,
BCL-XL, and MCL-1) allow apoptotic evasion in multiple
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malignancies, prompting the development of a novel class
of inhibitors (BH3 mimetics) for these proteins9. The first
BH3 mimetics, ABT-737 and ABT-263 (Navitoclax),
inhibit BCL-2, BCL-XL, and BCL-w10,11, and were fol-
lowed by more selective inhibitors, such as the BCL-2-
specific Venetoclax (ABT-199), recently approved for
treatment of chemorefractory chronic lymphocytic leu-
kemia12,13, in addition to newly diagnosed acute myeloid
leukemia, in combination with hypermethylating agents,
such as azacytidine and decytabine14. Similarly, BH3
mimetics that specifically target either BCL-XL or MCL-1
show promise in several hematological malignancies15–19.
Studies utilizing BH3 mimetics in SCCHN have largely
been limited to ABT-737, which reportedly synergizes
with cisplatin, etoposide and radiation20–22.
Our aim was to assess the potential of BH3 mimetic

therapy in SCCHN utilizing several preclinical models
including explant cultures of surgically resected human
tumors and a zebrafish xenograft model.

Materials and methods
Cell lines, primary cells, and explant culture
UM-SCC-1 (derived from an oral cavity primary

tumor), UM-SCC-11B, UM-SCC-17A, and UM-SCC-
17AS (all derived from larynx), UM-SCC-74A and UM-
SCC-81B (derived from oropharynx) were obtained from
T. Carey (University of Michigan), and authenticated by
short tandem repeat (STR) profiling. Cell lines were cul-
tured in DMEM with high glucose and GlutaMAX
(Gibco, 32430-027), supplemented with 10% fetal bovine
serum (FBS) (Life Technologies, 10270106) and 1× NEAA
(Gibco, 11140-035), and grown in a humidified incubator
at 37 °C and 5% CO2. Primary (low passage, <20) SCCHN
cells LIV7K (derived from a T3N2bMx oral tongue pri-
mary tumor), LIV37K (T3N2bMx floor of mouth), and
LIV72TS (T3N2c oral tongue) were generated following
informed consent under REC EC47.01 (LIV7K) or 10/
H1002/53 (LIV37K and LIV72TS) and cultured in KSFM
(Gibco, 17005-034) supplemented with bovine pituitary
extract and human recombinant EGF (Gibco, 37000-015).
SCCHN primary tumor tissue (6 oral cavity, 1 larynx, and
3 oropharynx) was obtained from individuals undergoing
surgery as a primary treatment, with informed consent
under REC 10/H1002/53, cut into pieces of 1–2mm3 and
cultured in DMEM with high glucose and GlutaMAX,
supplemented with 10% FBS, 100 U/ml penicillin, 0.1 mg/
ml streptomycin (Sigma, P0781), and 2.5 µg/ml Ampho-
tericin B (Gibco, 15290-026).

Cloning and generation of H2B-mRFP-positive cells for
zebrafish xenografts
Histone H2B-mRFP fusion protein cDNA was amplified

from pHIV-H2B-mRFP (AddGene #18982) by polymerase
chain reaction and transferred to a modified form of the

lentiviral plasmid pLJM1 (AddGene #19319) and sequence-
verified. To make H2B-mRFP-expressing lentivirus, 4 × 106

HEK293T cells were transfected with the lentiviral packa-
ging plasmids; pMD2.G (AddGene #12259) and psPAX2
(AddGene #12260) together with pLJM1 H2B-mRFP using
polyethylenimine (1mg/ml), and lentivirus harvested 72 h
later. This was used for transducing UM-SCC-81B cells, in
the presence of Polybrene (4 µg/ml) by spinoculation (2000
rpm, 1 h). Upon validation of nuclear expression of H2B,
cells stably expressing H2B were selected by exposure to
puromycin (1 µg/ml) for 2 weeks.

Reagents
ABT-199 (Selleck, S8048), A-1331852 (a gift from

Abbvie), S63845 (Apex Biotech Corporation, AB-A8737)
and cisplatin (Abcam, ab141398) were used. Antibodies
against BCL-2 (Cell Signaling Technology (CST) 4223),
BCL-XL (Santa Cruz, sc-8392), MCL-1 (Santa Cruz, sc-
819), GAPDH (Santa Cruz, sc-25778) were used for
Western blotting. For IHC, antibodies against BCL-2
(1:200, CST 15071), BCL-XL (1:200, CST 2764), MCL-1
(1:50, Abcam, ab114026; 1:50, Proteintech, 16225-1-AP;
1:50, Sigma, HPA008455; 1:25, CST 39224) and cleaved
PARP (1:50, CST 5625) were used. For transient trans-
fections, siRNAs specific to BCL-2 (QIAGEN,
SI00299411), BCL-XL (QIAGEN, SI03025141), MCL-1
(QIAGEN, SI02781205), and a non-targeting control, siC
(QIAGEN, 1027310) were incubated with Interferin
siRNA transfection reagent (Polyplus transfection Inc.)
and added to cells at a concentration of 10 nM for 72 h.

BH3 profiling, apoptosis, and colony formation assays
BH3 profiling and apoptosis (assessed by measuring the

extent of phosphatidylserine (PS) externalization) were
performed as described previously16. For colony forma-
tion assays, a defined number of cells were exposed to
different drugs and/or X-ray irradiation using a CellRad
X-ray irradiator (Faxitron Bioptics) and incubated for
7–14 days. Cell colonies were fixed using 1:7 vol/vol acetic
acid/methanol for 5 min and stained with 0.5% crystal
violet (in 20% methanol) for 2 h, then counted on a Gel-
Count colony analyzer (Oxford Optronix). Plating effi-
ciency (PE) for the untreated controls and surviving
fraction (SF) were determined using the formulae:

PE ¼ no: of colonies formed=no: of cells seeded½ � and
SF ¼ no: of colonies formed= no: cells seeded ´PEð Þ½ � ´ 100:

Western blotting
Whole cell extracts were prepared in RIPA buffer con-

taining cOmplete Mini protease inhibitor cocktail (Sigma,
11836170001) and MG-132 (20 µM) followed by cen-
trifugation at 14,000 rpm at 4 °C for 10min. Proteins were
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resolved on 10 or 15% sodium dodecyl sulfate poly-
acrylamide gel electrophoresis, transferred to nitrocellu-
lose membranes (VWR, 10600002.P), incubated with the
indicated primary and secondary antibodies and visua-
lized using ECL reagents (GE Healthcare) and ChemiDoc
(BioRad).

Immunohistochemistry (IHC), image acquisition, and
analysis
Explants, surgically resected from patients, were accli-

matized overnight to the culture conditions before
exposure to BH3 mimetics for 48 h. Explants were fixed in
4% paraformaldehyde at 4 °C for 24 h and infiltrated with
paraffin using a HistoCore PEARL Tissue Processor
(Leica). Following embedding in paraffin blocks, tissues
were cut into 5 μm sections. Sections from explants and
TMAs (generated in-house—clinical and pathological
patient details in Table 1) were processed and stained
using the Bond RXm autostainer (Leica). Briefly, TMA
sections were deparaffinized, subjected to heat induced
epitope retrieval, endogenous peroxidase activity blocked,
and then incubated with the relevant primary antibodies
and a non-species-specific linker and HRP, which were
detected using DAB+ chromogen. Sections were coun-
terstained with hematoxylin, dehydrated, cleared and
mounted using EcoMount (Biocare Medical). Images were
acquired at 20× magnification using a Nikon Eclipse E800
microscope for explants, or by scanning at 40× magnifi-
cation using an Aperio slide scanner (Leica) for TMAs.
Explant staining was quantified by counting the SCCHN
nuclei in each image and determining the percentage of
positively stained cells. TMA antibody staining intensity
was analyzed using QuPath software23. The cytoplasmic
DAB optical density was measured for each tumor cell
within a tissue sample, and a histo-score (H-score; a
quantitative measurement of the intensity of staining for a
particular antibody) generated for that sample. The H-
score was averaged between two or three tissue samples
available per patient. Kaplan–Meier survival curves were
generated using GraphPad Prism version 8.0.1 (GraphPad
Software) and overall survival data from patients in the
lower- and upper-most quartiles for expression (H-score)
of each antiapoptotic protein.

Zebrafish xenografts
Zebrafish studies were completed under the approval of

the University of Liverpool Animal Welfare and Ethical
Review Body. Nacre ubiq:secAnnexinV-mVenus embryos24,
obtained from The University of Manchester Biological
Services Facility, were incubated at 28 °C in egg water
(60 μg/ml Tropic Marin salt in distilled water) until 48 h
postfertilization (hpf). Following cell implantation, fish were
maintained in a humidified light-cycling incubator (14 h on,
10 h off) at 34 °C. For toxicity studies, embryos at 72 hpf

were exposed to increasing concentrations of BH3 mimetics
(at 34 °C) and mortality assessed up to 120 hpf. For xeno-
graft studies, UM-SCC-81B cells stably expressing H2B-
mRFP were injected into the pericardial cavity at 48 hpf, as

Table 1 SCCHN patient cohorts.

Oral Cavity

n (%)

Hypopharynx

n (%)

Larynx

n (%)

Age at diagnosis

<60 years 44 (45) 8 (40) 23 (41)

≥60 years 53 (55) 12 (60) 33 (59)

Unknown 0 0 18

Gender

Male 68 (70) 14 (70) 51 (91)

Female 29 (30) 6 (30) 5 (9)

Unknown 0 0 18

T stage

T1 7 (7) 4 (20) 1 (2)

T2 51 (53) 6 (30) 13 (23)

T3 10 (10) 6 (30) 22 (39)

T4 28 (29) 4 (20) 20 (36)

Unknown 1 0 18

N stage

N0 35 (37) 4 (20) 29 (52)

N1 17 (18) 2 (10) 8 (14)

N2 42 (44) 14 (70) 19 (34)

N3 1 (1) 0 (0) 0 (0)

Unknown 2 0 18

ECS

Yes 42 (44) 7 (37) 16 (29)

Noa 54 (56) 12 (63) 39 (71)

Unknown 1 1 19

Recurrenceb

Yes 32 (42) 3 (15) 6 (12)

No 45 (58) 17 (85) 45 (88)

Unknown 20 0 23

Survival at 5 years

Alive 36 (40) 10 (50) 27 (48)

Deceased 53 (60) 10 (50) 29 (52)

Unknown 8 0 18

Clinical and pathological characteristics of patients comprising oral cavity,
hypopharynx and larynx tissue microarrays. ECS extracapsular spread.
aIncludes those patients who are N0 (no nodal involvement).
bRecurrence data is to 10 years post-diagnosis for oral cavity, and 5 years for
hypopharynx and larynx.
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previously described25. At 72 hpf, fish were screened for the
presence of red fluorescent cell masses, following anesthe-
tization using MS-222 (160 µg/ml for maximum 15min)
and images acquired using a Leica MZ16F microscope.
Successfully xenografted fish were randomly placed indivi-
dually in wells of a 24-well plate and either DMSO or BH3
mimetics added to 1mM Tris-buffered egg water. Fish were
euthanized by 120 hpf using MS-222 (250 µg/ml). Images of
tumor masses were acquired and 2D tumor areas calculated
using ImageJ software.

Statistical analysis
Statistical analyses were conducted using GraphPad

Prism version 8.0.1 (GraphPad Software) as described in
the Figure legends. In all instances, *P < 0.05, **P < 0.01,
***P < 0.001.

Results
SCCHN cell lines express varying levels of anti-apoptotic
proteins and are primed to undergo apoptosis
Given the poorer clinical outcome associated with HPV−

SCCHN, we wished to explore the potential of BH3
mimetic therapy in this disease. We first determined the
expression profile of the major antiapoptotic BCL-2 family
proteins in six HPV− cell lines, derived from different head
and neck subsites. MCL-1 and BCL-XL were expressed in
all the cell lines, whereas BCL-2 was expressed in only 3 of
the 6 cell lines tested (Fig. 1a). To ascertain the respon-
siveness of SCCHN cell lines to apoptotic stimuli, BH3
profiling was utilized by exposing cells to increasing con-
centrations of BIM peptide, which binds promiscuously to
all anti-apoptotic BCL-2 family members26. All cell lines
exhibited a concentration-dependent increase in mito-
chondrial membrane depolarization (Fig. 1b), suggesting
they were all primed to undergo apoptosis.

BH3 mimetics, as single agents, do not induce apoptosis in
SCCHN cell lines, nor do they sensitize cells to cisplatin or
irradiation
None of the specific BH3 mimetics, ABT-199 (BCL-

2 specific12), A-1331852 (BCL-XL specific15), or S63845
(MCL-1 specific17), induced pronounced apoptosis as
single agents (Fig. 1c). Moreover, none of the BH3
mimetics synergized with cisplatin or irradiation in sig-
nificantly reducing the clonogenic potential of the
SCCHN cell lines tested, except UM-SCC-1 cells, which
showed synergism between A-1331852 and either cispla-
tin or radiotherapy (Supplementary Figs. S1 and S2).

IHC of SCCHN tumor tissue reveals high expression of BCL-
XL and MCL-1 but little/no BCL-2
Next, we examined the expression of BCL-2, BCL-XL,

and MCL-1 in TMAs comprising tissue obtained from 191
SCCHN patients at the time of surgery, from oral cavity,

hypopharyngeal and laryngeal tumors. The patient popu-
lation was representative of the typical spectrum of HPV−

SCCHN (Table 1). The TMAs included tissues classified as
core (center of the primary tumor), advancing front (inva-
sive edge of the tumor) and normal (non-malignant adja-
cent tissue). IHC was performed using antibodies validated
by Western blotting and IHC in SCCHN cell lines in which
the anti-apoptotic proteins were downregulated with RNAi
(Supplementary Fig. S3). A growing literature surrounds
the use of antibodies that are not carefully validated for
IHC analysis, which result in inconsistent, and often mis-
leading, correlations with patient outcome27,28. While the
antibodies against BCL-2 and BCL-XL exhibited specificity
in both Western blots (characterized by a specific band at
the predicted molecular weight) and IHC (characterized by
specific mitochondrial staining, which decreased following
siRNA transfections), problems were evident with the dif-
ferent MCL-1 antibodies used (Supplementary Fig. S3).
Some antibodies detected multiple isoforms of MCL-1,
whereas others were specific to the predominant, anti-
apoptotic isoform29. IHC revealed differing staining pat-
terns of MCL-1, ranging from nuclear localization to
cytosolic/mitochondrial staining (Supplementary Fig. S3).
Using RNA interference and specific mitochondrial stain-
ing as primary indicators of specificity, we deemed clone
D5V5L the most specific MCL-1 antibody, which was used
in all subsequent experiments. TMAs were stained with the
appropriate antibodies and protein expression levels scored
according to the staining intensity, denoted by the histo-
score (H-score) (Fig. 1d–f).
Expression of BCL-2 was low in all normal and tumor

tissue from the oral cavity and hypopharynx (Figs. 1d and
2a), whereas it appeared to be more highly expressed in
the tumor core, advancing front and in the adjacent
normal tissues of the larynx (Fig. 2b). BCL-XL expression
was significantly elevated in the tumor core and advancing
front of oral, hypopharyngeal and laryngeal SCCHN,
compared to adjacent normal tissues (Figs. 1e and 2a, b).
MCL-1 was highly expressed in the tumor core from the
oral cavity compared to the normal tissue, whereas this
was not evident in the advancing front (Fig. 1f). MCL-1
expression was generally higher in the tumor core and
advancing front of hypopharynx, compared to the normal
tissues, whereas in the larynx, MCL-1 was relatively highly
expressed both in normal and tumor tissues (Fig. 2a, b).
Taken together, this data suggested that BCL-XL is the
most consistently upregulated BCL-2 family member in
SCCHN, although targeting BCL-XL alone did not result
in enhanced apoptosis in SCCHN cell lines (Fig. 1c).

High expression levels of BCL-XL and MCL-1 do not
correlate with patient outcome
No correlation was observed between expression of

BCL-2, BCL-XL, or MCL-1 and overall survival of patients
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with oral cavity tumors (Fig. 3a–c). This was surprising as
numerous studies have reported positive correlations
between these proteins and patient outcome in different
malignancies, often using antibodies that had not been
validated for IHC analysis. The importance of using
carefully validated antibodies was further emphasized by
the stark contrast in survival plots generated using dif-
ferent MCL-1 antibodies (Supplementary Fig. S4). Since
individual expression levels of MCL-1 and BCL-XL did
not correlate with patient survival, we compared the
quartiles with the highest and lowest expression of both
MCL-1 and BCL-XL together and found no statistically
significant differences in overall survival (Fig. 3d).

Combination therapy targeting BCL-XL and MCL-1 induces
apoptosis in preclinical models of SCCHN
Although we did not find a correlation between BCL-XL

and MCL-1 and patient outcome, these antiapoptotic

proteins are highly expressed in the majority of SCCHN
patients, suggesting their involvement in carcinogenesis.
As many solid tumors depend on both BCL-XL and MCL-
1 for survival30, it raised the possibility that targeting these
two proteins together may be a beneficial treatment
strategy. In support of this, a combination of specific BCL-
XL and MCL-1 inhibitors, A-1331852 and S63845,
induced marked apoptosis in all SCCHN cell lines (Fig.
4a). In contrast, exposure to the BCL-2-specific inhibitor,
ABT-199, either alone or in combination with A-1331852
or S63845 did not enhance apoptosis (Supplementary Fig.
S5). These results strongly suggested that these cell lines
are dependent on both BCL-XL and MCL-1 for survival,
with little or no contribution from BCL-2. Furthermore, a
combination of A-1331852 and S63845 markedly inhib-
ited the clonogenic potential of all six SCCHN cell lines,
whereas either inhibitor alone exerted little or no inhibi-
tion (Fig. 4b). Together, A-1331852 and S63845 markedly

Fig. 1 BCL-XL and MCL-1 but not BCL-2 are highly expressed in SCCHN cell lines and oral cavity tissue microarrays from SCCHN patients.
a Western blot analysis of the three major anti-apoptotic BCL-2 family proteins in SCCHN cell lines. Sites of primary tumors are indicated in brackets:
OC oral cavity, LX larynx, OP oropharynx. b BH3 profiling with increasing concentrations of BIM peptide revealed that the indicated SCCHN cell lines
were primed to undergo apoptosis. c SCCHN cell lines exposed to the indicated BH3 mimetics (100 nM) for 24 h failed to undergo apoptosis, as
assessed by phosphatidylserine (PS) externalization. d–f Representative IHC images of oral cavity (OC) normal tissue, primary tumor core and
advancing front (AF), stained using antibodies against d BCL-2 e BCL-XL, and f MCL-1 (clone D5V5L) and counterstained with hematoxylin. Scale bars
50 μm. Dot plots depict the relative staining intensities (H-scores) of the specified antibody. Each dot represents the data from an individual patient.
The IHC images shown correspond to the yellow circles in the graph. b, c One-way ANOVAs with Dunnett’s multiple comparisons tests, with a single
pooled variance. Error bars=mean ± SEM of at least three independent experiments. d–f Normality tests were performed, followed by Kruskal Wallis
tests with Dunn’s multiple comparisons tests. Error bars=mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001.
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inhibited the growth of 3D tumor spheroids, which mimic
the in vivo behavior of tumor cells more closely than 2D
cultures31, whereas S63845 alone caused a modest inhi-
bition and A-1331852 had no effect (Fig. 4c, d). Consistent
with these findings, primary cell lines derived from oral
cavity tumors also expressed both BCL-XL and MCL-1
with little detectable BCL-2 (Fig. 4e). Furthermore, the
combination of A-1331852 and S63845 induced apoptosis
and inhibited the clonogenic potential of all SCCHN
patient-derived cell lines (Fig. 4f, g).

Targeting BCL-XL and MCL-1 induces apoptosis in tumor
tissues resected from SCCHN patients
To increase the translational relevance and more closely

mimic the in vivo setting, tumor tissues that maintain
tissue architecture as well as several aspects of the tumor
microenvironment were surgically resected from SCCHN

patients and exposed to A-1331852 and/or S63845, and
the extent of apoptosis assessed by the appearance of
cleaved PARP in apoptotic nuclei. Exposure of tumor
explants to either A-1331852 or S63845 alone did not
induce apoptosis, whereas the combination resulted in a
significant induction of apoptosis (Fig. 5a, b).

Targeting BCL-XL and MCL-1 reduces tumor burden in
zebrafish xenografts
To ascertain whether this combination was effective

in vivo, a NC3Rs (National Center for Replacement,
Refinement and Reduction of animals in research)-com-
pliant zebrafish SCCHN xenograft model, which allows
moderate to high throughput analyses for cancer dis-
covery studies, was employed. BH3 mimetics have pre-
viously been administered to zebrafish embryos, with
minimal toxicity32. Initial toxicity studies with our BH3

Fig. 2 BCL-XL and MCL-1 but not BCL-2 are highly expressed in hypopharynx and larynx tissue microarrays from SCCHN patients.
Representative IHC images of normal tissue, primary tumor core and advancing front (AF) from a hypopharynx (HP) and b larynx (LX) stained against
the indicated antibodies and counterstained with hematoxylin. Scale bars 50 μm. The plots depict the relative staining intensities (H-score) of the
specified antibody. Each dot represents the data from an individual patient. The IHC images shown correspond to the yellow dots in the graph.
Normality tests were performed, followed by Kruskal Wallis tests with Dunn’s multiple comparisons tests. Error bars=mean ± SD. *P < 0.05, **P < 0.01,
***P < 0.001.
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mimetics were performed using 3–5 day zebrafish
embryos, and sublethal concentrations (1–2 μM) chosen
for subsequent experiments (Supplementary Fig. S6). To
establish tumors in vivo, fluorescently labeled SCCHN
cells were microinjected into the pericardial cavity at 48
hpf. Following verification of the presence of fluorescent
cell masses 24 h postinjection, zebrafish embryos were
randomly allocated either to a DMSO only (control)
group or exposed to a combination of A-1331852 and
S63845 for 48 h (72–120 hpf) and final tumor area
assessed (Fig. 5c, d). Dual inhibition of BCL-XL and MCL-
1 resulted in a significant dose-dependent reduction in
tumor size compared to controls (Fig. 5c, d). These results
were in agreement with the data generated using cell lines,
primary cells and patient explants.

Discussion
A major mechanism by which cancer cells evade

apoptosis is overexpression of antiapoptotic BCL-2 family
proteins8. Hematological malignancies largely depend on
a single antiapoptotic member for survival, and as a result,

monotherapy with BH3 mimetics has been success-
ful12,16,17. However, as our study and others show, solid
tumors depend on more than one BCL-2 family member
for survival, and in most instances, neutralization of both
BCL-XL and MCL-1 is required to induce efficient
apoptosis30,33,34.
Studies investigating the BCL-2 family of proteins in

SCCHN have reached conflicting conclusions with
respect to BCL-2 expression and its correlation with
SCCHN patient outcome35–46. Whilst the basis for these
discrepancies is unknown, it could be partly attributed to
a lack of proper antibody validation. Using a carefully
validated BCL-2 antibody (Supplementary Fig. S3), we
convincingly demonstrate an overall low expression of
BCL-2 (Figs. 1 and 2) and conclude that the most suc-
cessful BH3 mimetic, venetoclax (ABT-199, currently
used in ~146 clinical trials) is highly unlikely to be
effective for the majority of SCCHN patients.
Just a handful of papers exist correlating BCL-XL and

MCL-1 expression with patient outcome in
SCCHN36,41,43,47,48. Many of these studies have relied on

Fig. 3 Expression levels of the antiapoptotic BCL-2 family members do not correlate with patient overall survival. Kaplan–Meier curves
comparing the overall survival of patients (censored at 60 months) in the highest versus lowest quartiles for expression of a BCL-2, b BCL-XL, c MCL-1,
and d BCL-XL and MCL-1, in oral cavity tumors. Numbers at risk are displayed below each graph, to demonstrate the numbers of patients analyzed
per category. Comparison of survival curves used the log-rank (Mantel–Cox) test.
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mRNA levels rather than IHC and report either a positive
or negative correlation to clinical outcome. In our study,
expression of BCL-XL and MCL-1 was generally higher in
tumors than surrounding normal tissues, suggesting that
some selectivity could be gained by targeting these pro-
teins (Figs. 1 and 2). MCL-1 expression appeared to
decrease in the oral cavity advancing front (Fig. 1), pos-
sibly due to the functional redundancy between MCL-1
and BCL-XL. BCL-XL may play an additional role in the
invasive advancing front, as it has recently been proposed
to promote epithelial–mesenchymal transition and tumor
metastasis49.
Despite high expression in tumor compared to normal

tissues, expression levels of BCL-XL and MCL-1 did not
correlate with patient outcome in SCCHN (Figs. 1–3).
This could have been confounded by heterogeneity in the
adjuvant treatment (none or radiotherapy±chemotherapy)
post-surgery and warrants a prospective cohort analysis.
Although BCL-XL and MCL-1 were not prognostic indi-
cators in SCCHN, dual inhibition resulted in extensive
apoptosis in all preclinical models including tumor

explants, as well as a decreased tumor burden in zebrafish
xenografts (Figs. 4 and 5). Since BCL-XL and MCL-1
share a high degree of functional redundancy both in
tumor survival and in normal cellular homeostasis, a
combination of inhibitors targeting these proteins may
result in some degree of toxicity to normal tissues. Inhi-
bition of BCL-XL results in thrombocytopenia due to
platelets being dependent on BCL-XL for survival50,
whereas inhibition of MCL-1 will affect survival of neu-
trophils51, thus mandating the establishment of a ther-
apeutic index and optimal scheduling for the drug
combination, as has been achieved to manage Navitoclax-
induced thrombocytopenia in patients52. Furthermore, it
is important to note the preferential expression of both
BCL-XL and MCL-1 in tumor compared to the normal
tissues (Figs. 1 and 2), which provides a basis for BH3
mimetics to selectively target the tumor tissue.
First-line therapy of cisplatin only modestly improves

overall survival in SCCHN patients, at the cost of sig-
nificant toxicity. Furthermore, many HPV− SCCHN
patients with locally advanced disease are simply not fit

Fig. 4 Inhibition of both MCL-1 and BCL-XL induces apoptosis in SCCHN cell lines and primary cells. SCCHN cell lines exposed to a
combination of A-1331852 and S63845 (100 nM each) for 24 h exhibited a enhanced apoptosis and b decreased clonogenicity, compared to the
individual BH3 mimetics. c Phase contrast images (scale bars 100 μm), and d line graph to show fold change in spheroid volume over 12 days,
following exposure to the specified drug(s). Dotted lines in c demarcate the outline of each intact spheroid. e Western blot analysis of antiapoptotic
protein levels in SCCHN primary cells. These cells, exposed to a combination of A-1331852 and S63845 (100 nM) for 4 h exhibited f enhanced
apoptosis and g decreased clonogenicity, compared to the indicated treatments. a, b, f One-way ANOVAs with Dunnett’s multiple comparisons tests,
with a single pooled variance; d two-way repeated measures ANOVA with Dunnett’s multiple comparisons test; g unpaired, two-tailed t tests. Error
bars=mean ± SEM of at least three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001.
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enough for cisplatin therapy, thus emphasizing the need
to identify and introduce better, more targeted therapies
for this malignancy. It is possible that dual inhibition of
BCL-XL and MCL-1 could potentially replace cisplatin in
patients unable to tolerate this, or reduce the doses of
radiotherapy and/or cisplatin administered to patients.
In conclusion, we convincingly demonstrate that BCL-

XL and MCL-1 but not BCL-2 are highly expressed in
tumor tissues of SCCHN patients. The low expression or
absence of BCL-2 suggests that there may be little benefit
in using venetoclax to treat SCCHN. We also show that
SCCHN is dependent on both BCL-XL and MCL-1 for
survival, which can be efficiently targeted to induce
marked apoptosis and tumor shrinkage, suggesting that a
combination BH3 mimetic therapy may offer significant
benefits in SCCHN.
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Fig. 5 A combination of A-1331852 and S63845 induces apoptosis in SCCHN patient explants and reduces tumor burden in zebrafish
xenografts. a Representative IHC images from two patients (scale bars 50 μm) and b quantitation of cleaved PARP staining in SCCHN explants from
up to 10 patients treated for 48 h, as indicated. Each point in the dot plot represents one patient. Approximately, 1000–2000 cells were counted per
patient, per treatment. One-way ANOVA with Dunnett’s multiple comparisons test. Error bars=mean ± SEM. ***P < 0.001. c Dot plots (each point
represents one zebrafish) show the size of each post-treatment xenograft at 120 hpf, normalized to the mean of the DMSO-treated (control) group.
One-way ANOVA with Tukey’s multiple comparisons test. Error bars=mean ± SD. **P < 0.01, ***P < 0.001. d Representative images (scale bars
200 μm) of zebrafish containing xenografts of UM-SCC-81B cells expressing H2B-mRFP. Arrowheads indicate the tumor cells and the effects of the
treatments. Pre-treatment images are labeled 72 hpf, and images acquired following 48 h exposure to the specified drugs are labeled 120 hpf. The
red fluorescence observed in the eyes is a result of a red lens reporter in the ubiq:secAnnexinV-mVenus fish.
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