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Superantigens are bacterial proteins that generate a powerful

immune response by binding to Major Histocompatibility

Complex class II molecules on antigen-presenting cells and T cell

receptors on T cells. A recent article reveals that at least one of the

superantigens, staphylococcal enterotoxin B (SEB), also binds the

co-stimulatory molecule CD28, suggesting that a much larger and

potentially more stable complex is formed at the immunological

synapse than was previously thought. This revelation greatly

clarifies some of the mystery surrounding how and why these

toxins are able to elicit such a toxic immune response at extremely

low concentrations. These findings also highlight a novel role for

CD28 in microbial pathogenicity.

Bacterial superantigens (Sags) constitute a family of very

stable bacterial proteins that are the most potent known

activators of the immune system. They can cause food

poisoning or, if they occur at sufficient concentration in the

blood or lymphoid tissue, systemic shock [1]. Those unfortu-

nate enough to eat food contaminated with Staphylococcus aureus

will experience a brief but violent episode of vomiting and

diarrhoea just a few hours later—the gut’s attempt to expel the

Sag before it wreaks havoc with the immune system. If a Sag

does get into the bloodstream, and if the patient has no

neutralising antibody from previous exposure, then the Sag

will induce a sudden and profound T cell stimulation that

generates a cascade of cytokines, resulting in symptoms that

include high fever, headache, vomiting, hypotension, aches,

and rash, causing the condition known as Toxic Shock

Syndrome. This life-threatening illness is often associated with

young females who have developed an intra-vaginal infection

of a staphylococcal strain producing the Sag Toxic Shock

Syndrome Toxin (TSST) [2,3]. Deep tissue infections by

Streptococcus pyogenes can also produce similarly powerful Sags

capable of causing lethal shock [1]. Interestingly, the Sag-

induced immune response is not targeted at the bacteria

themselves, but rather Sags function to direct a nonspecific T

cell- and cytokine-mediated immune response that somehow

assists in bacterial survival. Although many cytokines are

produced in response to a single Sag, acute toxicity is blamed

on the excessive production of three T cell cytokines—

Interleukin-2 (IL-2), Interferon-c (INF-c), and particularly

Tumour necrosis Factor a (TNF-a) [4,5].

Perhaps the most notable feature of Sags is their extreme

potency: many of the more than 30 different staphylococcal and

streptococcal Sags stimulate profound proliferation and cytokine

production in up to 20% of all peripheral T cells, at concentrations

in culture that approach 1 femtomolar (10215 moles/l). This is

especially remarkable since T cells are not directly involved in the

immediate defence against these bacteria. Why S. aureus and S.

pyogenes should produce such a powerful T cell response has never

been clearly resolved. One hypothesis proposes that Sags are

important in the very early stages of colonisation when the

bacteria are struggling to establish a niche. By stimulating local T

cells, Sags may suppress the recruitment and activation of their

real enemy—neutrophils and macrophages, which would destroy

the bacteria. Sags must therefore be effective at vanishingly low

concentrations and it is only when the bacterial colony becomes

well established and fails to shut off Sag production that the toxic

sequelae arise—a state that can be of little benefit to the bacteria

and even less benefit to the host.

Normally, microbial antigens are internalized by antigen

presenting cells, digested, and then presented as small peptides

on the cell surface bound together with Major Histocompatability

Complex class II (MHC class II) molecules; the combination of

MHC and peptide is then recognized by T cell Receptors (TcRs)

expressed on T cells, thus stimulating an immune response

specific to that peptide antigen. However, over the past two

decades many elegant studies have revealed that all Sags do one

thing very well—they hijack T cell antigen recognition by directly

cross-linking MHC class II and TcR, thus bypassing the antigen-

presenting stage and stimulating a much larger, inappropriate

immune response. All Sags therefore have at least two separate

binding sites—one for MHC class II and another for the b-chain

of TcR [6]. Mutagenesis studies have mapped these sites for a

number of different Sags and co-crystal structures of Sags bound

to either MHC class II or TcR have confirmed their location

[7,8]. What has been most surprising is the variety of binding

modes used by individual Sags (Figure 1). For example

Staphylococcal enterotoxin B (SEB) and C (SEC) cross-link

MHC class II a-chain and TcR b-chain. Streptococcal pyrogenic

exotoxin C (SPEC) binds to the other side of MHC class II and

cross-links TcR b-chain while Staphylococcal Enterotoxin A

(SEA) binds both a- and b-chain binding sites on MHC class II to

cross-link TcR b-chain. Staphylococcal enterotoxin H (SEH) is

the only Sag that binds to a TcR a-chain (Figure 1) [9]. Thus

although Sags share a very similar protein structure, each has

evolved its own way of binding to MHC and TcR—and this

remarkable binding diversity clearly offers S. aureus and S. pyogenes

an important survival advantage.

Although this Sag-MHC-TcR trimer model of Sag activation is

universally accepted [6], there are several perplexing aspects of

Sag behaviour that have never quite gelled, hinting that

something else might better explain their extreme potency and
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toxicity. For example, the binding affinities that Sags display

towards TcR and MHC class II are typically quite weak—in the

low micromolar range, yet Sags stimulate at concentrations

several million times lower than this [1]. Sags are also several

orders of magnitude less potent towards mouse T cells than

human T cells, even when presented on human MHC class II

[10]—a discrepancy that has never been fully explained.

Mutating the TcR binding site on Sags creates mutants that

have no mitogenicity yet still retain significant toxicity especially

when combined with small amounts of the Gram negative

bacterial pyrogen Lipopolysaccharide (LPS). This is a particularly

lethal combination, suggesting that mitogenicity and toxicity may

utilize separate mechanisms [1]. Finally, full activation and

cytokine production demands that T cells receive a second co-

stimulatory signal through the CD28 molecule, yet there was no

evidence that CD28 was effectively engaged during Sag

activation. Even so, T cells defective in CD28 are much less

responsive to Sag and CD28 deficient mice are completely

resistant to Sag toxicity, producing no TNF-a or INF-c [11,12].

It is well-known that CD28 on its own can deliver a potent signal

to T cells. This is best highlighted by the unfortunate 2006

clinical trial of the company TeGenero’s humanised anti-CD28

monoclonal antibody TGN1412: unexpectedly all six healthy

volunteers suffered near fatal toxic shock immediately following

Figure 1. The model structures of four trimer complexes reveal the diversity in Sags binding. In the first structure, SEC3 (similar to SEB) is
bound to the conserved MHC class II a-chain and engages a Vb8 domain [18,19]. Note how the TcR makes no contact with the normal peptide/MHC
surface as it would during normal peptide recognition. In the second structure TSST binds in the same location as SEC3 but in a different orientation.
TSST is very specific for the human Vb2 TcR [20,21]. In the third structure, the streptococcal Sag SPEC is bound to the other side of MHC class II and
ligates human Vb2 TcR [8,22] but in a quite different orientation to TSST. The fourth structure is of staphylococcal enterotoxin H (SEH) bound to the b-
chain of MHC class II but ligating a TcR through its Va27 domain—the only Sag known to engage a TcR a-chain [9]. In each of the structures the
location of the CD28 binding identified by Arad et al. [16] is represented by red space filling spheres. Note its position well away from both TcR and
MHC class II in a suitable position to engage a CD28 molecule in a tetrameric membrane complex in each of the four Sag orientations.
doi:10.1371/journal.pbio.1001145.g001
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injection of a small amount of TGN1412 [13]. In an insightful

letter in the New England Journal of Medicine discussing this

unfortunate incident, David Corry and Dorothy Lewis from the

Baylor College of Medicine proposed a linkage between the anti-

CD28 toxicity observed in this trial and Sags: ‘‘… together these

observations indicate that T cells activated by superantigen

binding to both CD28 and antigen receptor mediate the toxic

shock syndrome’’ [14,15]. New evidence, presented in this issue

of PLoS Biology, suggests they were right!

A paper in this issue of PLoS Biology [16] has carefully re-

examined the Sag staphylococcal enterotoxin B (SEB) and follows

on from an earlier study that first identified peptide antagonists of

SEB toxicity [14]. SEB is best known for its food poisoning

abilities, and although it is a relatively weak human T cell

mitogen compared to other Sags, it produces large amounts of

IL-2, TNF-a, and INF-c when added to human peripheral blood

cells and kills mice that have been pre-sensitised with the liver

toxin D-galactosamine [17]. In addition to MHC class II and

TcR, Arad et al. [16] found that SEB possesses a third binding

site to—you guessed it—CD28. This is a revelation and in

hindsight makes perfect sense, providing a much clearer rationale

for the extreme potency and toxicity exhibited by SEB and

possibly other Sags. These findings also highlight a novel role for

CD28 in microbial pathogenicity. The authors show that SEB

binds to a soluble form of CD28 through a relatively conserved

region that is distinct from both the MHC class II binding site

and the TcR binding site (shown by the red spheres in Figure 1)

[14]. They use short synthetic peptides that mimic both the SEB

and CD28 regions to effectively block SEB-induced cytokine

production by T cells. To strengthen their case, the authors

mutate the predicted CD28 binding site on SEB and show that

this mutant fails to stimulate IL-2, TNF-a, and INF-c in T cells.

SEB is also shown to bind to cells transfected with CD28 that lack

either MHC class II or TcR. Finally they use the technique of

peptide phage display to generate novel synthetic peptides

screened for inhibiting SEB binding to CD28-Fc. These peptides,

as well as peptides derived directly from CD28, protect mice from

SEB-induced lethality. Importantly the authors show that the

same CD28 binding site can be found on other Sags such as SEA

and TSST and that the synthetic peptides that inhibit SEB also

inhibit SEA- and TSST-induced cytokine production [14]. This

suggests that CD28 is a general target for all bacterial Sags. On

the opposing side of the complex, the SEB binding site on CD28

is mapped to a region needed for homo-dimerisation that is

distinct from the B7 binding site. CD28 may therefore be bound

by both SEB and B7 in the resulting membrane complex

(Figure 2).

While this discovery greatly clarifies the mechanism of Sag

toxicity, there are some nagging questions arising from this

study that will need further work. The linear region identi-

fied—SEB150–161—is predominantly a loop structure that

connects the b8-strand to the first bit of the highly conserved

a4 helix situated at the core of all staphylococcal and

streptococcal Sags. The 14-mer region used in these studies—

VQTNKKKVTAQELD—is reasonably conserved in other

Sags and is located on a face distinct from the MHC class II

and TcR binding sites (Figure 1). The problem is that the

majority of amino acid side chains in this sequence are buried

within the native SEB structure with only 4 of the 14 side-

chains exposed to the solvent and thus available to contact

CD28. At the moment it’s difficult to see how a linear synthetic

peptide of this region can block CD28 binding when the

structure it competes with is not solvent accessible. Another

curious finding is the functional mutant SEB-T150A.K152A,

which fails to induce cytokines in T cells but actually binds to

soluble CD28 with higher affinity than native SEB. This is the

opposite of what would be expected but could be explained by a

model where optimal signalling through CD28 requires only

transient interaction with SEB. The authors have focused only

on cytokine gene expression and protection from lethal toxic

shock as the means of assessing SEB activation. It would have

been nice to see whether T cell proliferation is also affected to

the same extent as cytokine production. If it is not, then this

would suggest that T cell proliferation is primarily mediated

through TcR ligation while the excessive cytokine toxicity

results from CD28 ligation.

Like any revealing discovery, more questions are raised than

answered—questions that will certainly be addressed in future

studies. There is no doubt that a new model that places Sags in the

middle of a large membrane complex consisting of MHC class II,

TcR, and now CD28 will be extensively tested in the coming

months. At this stage however, one can only marvel at the

extraordinary efficiency of these small protein toxins to engage the

three most crucial molecules in T cell antigen recognition. Exactly

why they do this is the next question, but given this new CD28

connection, there are now new approaches for developing

therapeutics against toxic shock.

References

1. Kotb M, Fraser JD, eds. (2008) Superantigens: molecular basis for their role in

human diseases. Washington: ASM Press. 263 p.

2. Todd J, Fishaut M, Kapral F, Welch T (1978) Toxic-shock syndrome associated

with phage-group-I Staphylococci. Lancet 2: 1116–1118.

Figure 2. A cartoon of what might be happening at the
immunological synapse during Sag engagement. In a model
consistent with the crystal complexes shown in Figure 1, CD28 provides
the essential 2nd co-stimulatory signal through separate B7 ligation.
CD28 is essential for Sag toxicity [11,12]. In the new model proposed on
the right, CD28 is part of a larger more stable complex directly ligated
by Sag. This new model explains much better the extreme potency and
cytokine toxicity observed with Sags. In theory this tetrameric complex
would be more stable being held together by 3 interactions rather than
2.
doi:10.1371/journal.pbio.1001145.g002

PLoS Biology | www.plosbiology.org 3 September 2011 | Volume 9 | Issue 9 | e1001145



3. Chesney PJ, Bergdoll MS, Davis JP, Vergeront JM (1984) The disease spectrum,

epidemiology, and etiology of toxic-shock syndrome. Annu Rev Microbiol 38:
315–338.

4. Miethke T, Duschek K, Wahl C, Heeg K, Wagner H (1993) Pathogenesis of the

toxic shock syndrome: T cell mediated lethal shock caused by the superantigen
TSST-1. Eur J Immunol 23: 1494–1500.

5. Bette M, Schafer MK, van Rooijen N, Weihe E, Fleischer B (1993) Distribution
and kinetics of superantigen-induced cytokine gene expression in mouse spleen.

J Exp Med 178: 1531–1539.

6. Li H, Llera A, Malchiodi EL, Mariuzza RA (1999) The structural basis of T cell
activation by superantigens. Annu Rev Immunol 17: 435–466.

7. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, et al. (1994) Three-
dimensional structure of a human class II histocompatibility molecule complexed

with superantigen. Nature 368: 711–718.
8. Li YL, Li HM, Dimasi N, McCormick JK, Martin R, et al. (2001) Crystal

structure of a superantigen bound to the high-affinity, zinc-dependent site on

MHC class II. Immunity 14: 93–103.
9. Saline M, Rodstrom KE, Fischer G, Orekhov VY, Karlsson BG, et al. (2010)

The structure of superantigen complexed with TCR and MHC reveals novel
insights into superantigenic T cell activation. Nat Commun 1: 119.

10. DaSilva L, Welcher BC, Ulrich RG, Aman MJ, David CS, et al. (2002)

Humanlike immune response of human leukocyte antigen-DR3 transgenic mice
to staphylococcal enterotoxins: a novel model for superantigen vaccines. J Infect

Dis 185: 1754–1760.
11. Mittrucker HW, Shahinian A, Bouchard D, Kundig TM, Mak TW (1996)

Induction of unresponsiveness and impaired T cell expansion by staphylococcal
enterotoxin B in CD28-deficient mice. J Exp Med 183: 2481–2488.

12. Saha B, Harlan DM, Lee KP, June CH, Abe R (1996) Protection against lethal

toxic shock by targeted disruption of the CD28 gene. J Exp Med 183:
2675–2680.

13. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, et al. (2006)

Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody
TGN1412. N Engl J Med 355: 1018–1028.

14. Arad G, Levy R, Hillman D, Kaempfer R (2000) Superantigen antagonist

protects against lethal shock and defines a new domain for T-cell activation. Nat
Med 6: 414–421.

15. Corry DB, Lewis DE (2006) Cytokine storm and an anti-CD28 monoclonal
antibody. N Engl J Med 355: 2592; author reply 2593–2594.

16. Arad G, Levy R, Nasie I, Hillman D, Rotfogel Z, et al. (2011) Binding of

superantigen toxins into the CD28 homodimer interface is essential for induction
of cytokine genes that mediate lethal shock. Plos Biol 9: e1001149. doi:10.1371/

journal.pbio.1001149.
17. Miethke T, Wahl C, Heeg K, Echtenacher B, Krammer PH, et al. (1992) T cell-

mediated lethal shock triggered in mice by the superantigen staphylococcal
enterotoxin B: critical role of tumor necrosis factor. J Exp Med 175: 91–98.

18. Venkatraman P, Nguyen TT, Sainlos M, Bilsel O, Chitta S, et al. (2007)

Fluorogenic probes for monitoring peptide binding to class II MHC proteins in
living cells. Nat Chem Biol 3: 222–228.

19. Cho S, Swaminathan CP, Yang J, Kerzic MC, Guan R, et al. (2005) Structural
basis of affinity maturation and intramolecular cooperativity in a protein-protein

interaction. Structure 13: 1775–1787.

20. Kim J, Urban RG, Strominger JL, Wiley DC (1994) Toxic shock syndrome
toxin-1 complexed with a class II major histocompatibility molecule HLA-DR1.

Science 266: 1870–1874.
21. Bonsor DA, Sundberg EJ (2010) Crystal structure of Toxic Shock Syndrome

Toxin 1 (TSST-1) in complex with the human T cell receptor beta chain
Vbeta2.1 (EP-8). RCSB Protein Data Bank 3MFG.

22. Sundberg EJ, Li H, Llera AS, McCormick JK, Tormo J, et al. (2002) Structures

of two streptococcal superantigens bound to TCR beta chains reveal diversity in
the architecture of T cell signaling complexes. Structure 10: 687–699.

PLoS Biology | www.plosbiology.org 4 September 2011 | Volume 9 | Issue 9 | e1001145


