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Atrial fibrillation (AF) is the most common cardiac dysrhythmia and percutaneous catheter
ablation is widely used to treat it. Panoramic mapping with multi-electrode catheters has
been used to identify ablation targets in persistent AF but is limited by poor contact and
inadequate coverage of the left atrial cavity. In this paper, we investigate the accuracy with
which atrial endocardial surface potentials can be reconstructed from electrograms
recorded with non-contact catheters. An in-silico approach was employed in which
“ground-truth” surface potentials from experimental contact mapping studies and
computer models were compared with inverse potential maps constructed by
sampling the corresponding intracardiac field using virtual basket catheters. We
demonstrate that it is possible to 1) specify the mixed boundary conditions required
for mesh-based formulations of the potential inverse problem fully, and 2) reconstruct
accurate inverse potential maps from recordings made with appropriately designed
catheters. Accuracy improved when catheter dimensions were increased but was
relatively stable when the catheter occupied >30% of atrial cavity volume. Independent
of this, the capacity of non-contact catheters to resolve the complex atrial potential fields
seen in reentrant atrial arrhythmia depended on the spatial distribution of electrodes on the
surface bounding the catheter. Finally, we have shown that reliable inverse potential
mapping is possible in near real-time with meshless methods that use the Method of
Fundamental Solutions.
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INTRODUCTION

Intracardiac catheters can acquire electrograms simultaneously at multiple sites on or close to the
heart wall and have been used to construct panoramic maps of electrical activity in patients during
persistent atrial fibrillation (AF) (Narayan et al., 2012; Pathik et al., 2018). While macro-scale atrial
activation is disorganized in AF, it is argued that repeated patterns of local electrical reentry in such
maps may provide targets for the percutaneous catheter ablation procedures used to treat this
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dysrhythmia (Narayan et al., 2012; Haissaguerre et al., 2016).
Effective contact mapping with multi-electrode catheters presents
challenges. The spatial distribution of electrodes in the 8-spline
basket catheters that have been used for intra-atrial mapping is
inherently non-uniform, with greater density along splines than
around the equator of these devices when fully deployed (Pathik
et al., 2018). Deformation of basket catheter splines in contact
with the wall can exacerbate sampling heterogeneity (Pathik et al.,
2018). Furthermore, experimental and modelling studies indicate
incomplete wall coverage, with ~50% only of electrodes close to
the atrial wall (<5 mm from endocardium) in typical studies of
the left atrium (LA) (Oesterlein et al., 2016;Martinez-Mateu et al.,
2018; Pathik et al., 2018).

Inverse methods can be used to reconstruct potential maps on
the heart surface from electrograms recorded with electrodes that
are not in contact with it (Johnson and Bronzino, 2000; Pullan
et al., 2005). This requires information about the geometry of the
heart surface, the 3D locations of the electrodes and the electrical
properties of the volume between them. Mesh-based solutions of
the inverse potential problem have been widely used for non-
invasive electrocardiographic imaging (ECGi) (Barr et al., 1977;
Johnson and Bronzino, 2000; Ramanathan and Rudy, 2001;
Pullan et al., 2005; Cluitmans et al., 2017; Duchateau et al.,
2019) but also for non-contact intracardiac potential mapping
with electrodes arrays mounted on the surface of inflatable
balloons (Khoury et al., 1995). To solve this problem, it is
necessary to specify Cauchy boundary conditions; that is to
assign both potentials and normal potential gradients at points
across the boundary on which electrical recordings are made
(Johnson and Bronzino, 2000; Pullan et al., 2005). This presents
no difficulties for ECGi or for intracardiac inverse potential
mapping if electrodes are mounted on an inflatable balloon.
Sampling surfaces are insulating in both instances and the
normal potential gradient is zero everywhere on them. This is
not the case, however, for a multi-electrode basket catheter and
normal potential gradients must be estimated on the virtual
surface that bounds the electrodes to solve mesh-based
formulations of the inverse potential problem. While reliable
solutions of the inverse potential problem can in principle be
obtained with mesh-based methods such as the finite element
method (FEM) or boundary element method (BEM) if
appropriate input information is provided (Johnson and
Bronzino, 2000; Pullan et al., 2005), meshless methods that
employ the Method of Fundamental Solutions (MFS)
(Fairweather and Karageorghis, 1998) offer a simpler
alternative. The latter approach has been used for ECGi
(Wang and Rudy, 2006; Bear et al., 2018) and was recently
proposed for non-contact intracardiac potential mapping
(Meng et al., 2022).

Here, we provide a systematic in silico analysis of mesh-based
and meshless methods for solving the intracardiac inverse
potential problem—for the first time as far as we are aware.
The mathematical bases of the approaches used in this setting are
summarized and a simple method for estimating Cauchy
boundary conditions from electrograms recorded with a multi-
electrode basket catheter is outlined. This is tested in a simplified
2D domain and then used for an FEM-based investigation of

inverse potential mapping in the 3D atria. The extent to which
accuracy is affected by catheter dimensions, electrode distribution
and noise are considered. Finally, we compare the efficacy of this
mesh-based approach with meshless methods that use the MFS.

This study demonstrates that reliable non-contact potential
mapping can be achieved across a wide range of basket catheter
dimensions using mesh-based inverse methods if the electrode
distribution is sufficient to provide representative samples of the
intracardiac potential field. It also shows that the MFS is equally
accurate over most of this range but computationally more efficient.

MATHEMATICAL BACKGROUND

The electrostatic potential ϕ in a biological volume conductor is
typically represented as

∇ · σ∇ϕ � − Iv (1)
where σ is the electrical conductivity tensor and Iv is the current
per unit volume defined within the solution domain Ω.
Electrostatic potentials associated with cardiac electrical
activity flow are caused by current flow via transmembrane
ion channels and transporters in heart muscle cells, but there
is no nett current flow elsewhere in the domain. Therefore,

∇ · σ∇ϕ � 0 inΩH (2)
where ΩH is a heart cavity.

A Mesh-Based Inverse Approach
A representation of the potential problem is given in Figure 1A. If
the potential on the endocardial surface ΓH is specified (Dirichlet
boundary conditions), ϕ can be estimated throughout ΩH by
solving the forward problem Eq. 2.

The objective of the corresponding inverse problem is to
reconstruct ϕ on ΓH from potentials recorded with an array of
electrodes introduced into the cavity on a catheter. This can be
expressed as a boundary value problem by defining a surface ΓC
that bounds the electrodes on the catheter and encloses the
domain ΩC. We seek to define a set of linear equations that
satisfies Eq. 2 in ΩH − ΩC and can be reformulated as

AϕH � ϕC (3)
where ϕH is a vector of data on ΓH and ϕC is a vector of data on ΓC.
The inverse problem is to determine ϕH given ϕC.

Both problems can be solved numerically using finite
difference, finite element and finite volume methods or, because
the problem can be reduced to the boundaries alone since σ is
uniform and isotropic throughout ΩH, using boundary integral
and boundary element methods (Oostendorp and van Oosterom,
1991; Johnson and Bronzino, 2000; Pullan et al., 2005). To do so,
it is first necessary to discretize the solution domain with an
appropriate mesh. Because the inverse problem is ill-posed,
solutions are not unique and this amplifies the effects of noise.
Tikhonov regularization (Johnson and Bronzino, 2000) is widely
used in this setting to reduce instability. It seeks to identify the
regularization parameter λ that optimises the objective function
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����AϕH − ϕC

����2 + λ
����LϕH

����2 (4)
where the first term is the sum of squared residuals from Eq. 3
and the second penalizes lack of smoothness of the solution
vector. With zero-order Tikhonov regularization L is the identity
matrix (Tikhonov and Arsenin, 1977). The closely related inverse
problem of electrocardiography ECGi, in which voltages
measured on the torso are used to calculate voltages on the
surface of the heart, has been solved using all the numerical
methods above (Barr et al., 1977; Johnson and Bronzino, 2000;
Pullan et al., 2005; Cluitmans et al., 2017; Bear et al., 2018).

To solve the intracardiac inverse problem, it is necessary to
specify appropriate boundary conditions at ΓC. Continuity of
potential and normal current flow is maintained on both sides of
the interface (Pullan et al., 2005).

That is

ϕin
C � ϕout

C

σin∇ϕin
C · n � σout∇ϕout

C · n (5)

where in and out indicate inner and outer sides of ΓC respectively.
For a balloon catheter, σin � ∞ and ∇ϕC · n � 0, and the

inverse problem for this case has been solved using a boundary
element method very similar to equivalent approaches used for
ECGi (Khoury et al., 1995; Pullan et al., 2005). However, current
flows freely across ΓC with a basket catheter and the dispersion of
current in ΩH −ΩC can vary substantially between these cases
depending on the geometry of ΓH and ΓC. The distribution of ϕ in
ΩH −ΩC reflects this and it follows that ϕ cannot be estimated
adjacent to ΓC unless Cauchy boundary conditions which specify
both ϕC and ∇ϕC.n are used. A simple way to set these boundary
conditions is to solve the forward problem Eq. 2 for the
subdomain ΩC using ϕC recorded on ΓC as Dirichet boundary
conditions so that ϕin adjacent to ΓC can be estimated. Provided

that ϕC samples the potentials on ΓC adequately, ∇ϕC · n can be
estimated enabling Cauchy boundary conditions to be specified.

Meshless Inverse Methods That Use the
Method of Fundamental Solutions
The Method of Fundamental Solutions (MFS) provides a means
of solving partial differential equations such as the Laplace
equation without the need to set up connected internal meshes
in the solution domain (Fairweather and Karageorghis, 1998).
This approach was applied to ECGi by Wang and Rudy (Wang
and Rudy, 2006) and here we extend it to intracardiac inverse
potential mapping.

The meshless/MFS formulation of the intracardiac problem is
presented in Figure 1B. Potentials ϕ(x) at points x in ΩH are
approximated as the linear superposition of source functions
positioned at locations {ξi}Ni�1 around a virtual surface ΓV that
enclosesΩH. It is assumed that the conductivity σ throughout the
extended domain bounded by ΓV is uniform and isotropic, and
that the electrical properties of the basket catheter can be
neglected.

At any instant, the potential ϕC(x) at each of theM electrodes
at x in ΩH is estimated as

ϕ(x) � ∑N

i�1σIiG(ξ i, x) (6)
where Ii � (I1, . . . , IN) are the source current magnitudes at
{ξi}Ni�1 and G is the fundamental solution of the 3D Laplace
operator at each point. That is,

G(ξ, x) � 1
4π|ξ − x| (7)

where |ξ − x| is the Euclidean distance between x and ξ.

FIGURE 1 | Schematic representations of (A)mesh-based and (B) meshless/MFS formulations of the intracardiac inverse potential problem which seeks to map
the potential distribution on the surface ΓH that bounds a heart cavity ΩH from a set ofM potentials ϕC(x) sampled at electrodes inside ΩH. In (A) potentials and normal
potential gradients on the surface ΓC that bounds the electrodes are related to the potential distribution on ΓH and in solution domainΩH −ΩC. In (B)N fictitious sources Ii
(open circles) distributed around a virtual boundary ΓV outside ΓH generate the current flux that gives rise to the potential distribution inΩH. These arematched to the
sampled potentials ϕC(x) enabling potential distribution on ΓH to be estimated.
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This results in an M × N system of equations and solution of
the inverse problem yields the source current magnitudes that
best match the ϕC(x) recorded with the catheter. The
corresponding endocardial potentials ϕH(x) can then be
reconstructed by evaluating Eq. 6 ∀ x ∈ ΓH.

This system is inherently under-determined because the
number of electrodes M is generally less than N, the number
of fictitious sources needed to map potentials faithfully onto ΓH.

METHODS

A well-established computational approach (Ramanathan and
Rudy, 2001) was used to quantify the accuracy with which
potentials around an external boundary can be reconstructed
from non-contact potentials sampled within the corresponding
domain using inverse solution methods. The basic steps were as
follows. First, “ground-truth” potential distributions, one simple
and one more complex, were specified on the external boundary.
The corresponding internal field was then determined by
numerical solution of Laplace’s equation and this potential
field was sampled at points corresponding to different catheter
dimensions and electrode distributions. Finally, potentials on the

outer boundary were reconstructed using the sampled potentials
and compared with ground-truth potentials to assess the accuracy
of inverse mapping. Key features of our mesh-based inverse
approach were tested first with simple 2D problems and then
extended to a more realistic 3D FEM analysis using atrial
endocardial boundary geometry and representative potential
distributions on this anatomy based on experimental
measurement and simulation. Finally, the efficacy of inverse
potential mapping using a meshless/MFS approach was
compared with a representative mesh-based FEM analysis.

2D Analysis
Aspects of the approach employed here are illustrated in Figure 2.
Two different arbitrary ground-truth potential distributions were
specified on the boundary ΓH of the circular domain ΩH and the
associated potential fields in ΩH were constructed by solving
Laplace’s equation with these boundary conditions (Figure 2A)
using the finite difference method (FDM) on a polar grid centered
on the origin.

Cauchy boundary conditions on ΓC were determined as shown
in Figure 2A. Potentials were sampled at discrete points
distributed uniformly on ΓC which bounds the circular interior
domain ΩC. Potentials around ΓC were reconstructed using

FIGURE 2 | 2D illustration of mesh-based inverse potential mapping. (A) Schematic of steps in specifying Cauchy boundary conditions on ΓC. The potential
distribution in ΩH (upper panel) is sampled at 8 recording electrodes (black dots). Potentials around ΓC are reconstructed from these samples with radial basis
interpolation and used as Dirichlet boundary conditions in numerical solution of potential distribution inΩC (lower panel). This enables estimation of potentials and normal
potential gradients around ΓC. B and (C) Potential distributions on ΓH reconstructed from potentials sampled in ΩH for (B) relatively simple, and (C)more complex
potential fields in ΩH. Ground-truth potential distributions in ΩH are given on left and the broken circles indicate the internal boundaries around which samples are
acquired (16 sites in both cases). Potentials on ΓH are reconstructed using Cauchy boundary conditions on ΓC and compared with ground-truth potentials in the graphs
at right. Normalized ground truth surface potentials (solid line, blue diamonds), and surface potentials reconstructed from samples acquired on internal boundaries with
relative radii 0.469 (dashed line, green squares) and 0.375 (dotted line, red circles) are plotted as functions of angular coordinate θ.
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radial-based interpolation and the corresponding potential field
in ΩC was estimated by solving Laplace’s equation with a polar
finite difference scheme. Gradients normal to ΓC were estimated
using the FDM with a polar grid centered on the origin of the
domains. Transfer Eq. 3 relating ϕH and ϕC were formulated
using the boundary integral approach developed by Barr et al.
(1977) (Barr et al., 1977), then discretized and evaluated as
outlined by this group. The inverse problem was solved
employing zero-order Tikhonov regularization (Tikhonov and
Arsenin, 1977) with the regularization parameter selected using a
U-curve algorithm (Chamorro-Servent et al., 2019) based on the
discrete Picard condition (Hansen, 2010). This optimizes the
singular value decomposition associated with the regularization
problem.

3D Analyses
Anatomic and experimental data used for 3D analyses were
acquired from an anesthetized closed-chest sheep employing
methods summarized below. All procedures were approved by
the Animal Ethics Committee of the University of Auckland and
conform to the Guide for the Care and Use of Laboratory Animals
(National Institutes of Health publication no. 85–23).

Gadolinium-enhanced (Gd-DTPA 0.2 mmol kg) ECG-gated
magnetic resonance images (MRIs) of the atria (1.0 mm2 ×
1.0 mm2 in-plane resolution approximately parallel to the
atrio-ventricular valve plane and 1.6 mm between slices) were
acquired with a 3T Siemens Magnetom Skyra scanner in late
diastole with lungs inflated. Atrial electrical activation was
subsequently mapped using 38 and 48 mm 64-electrode
Constellation™ catheters (Boston Scientific) introduced
percutaneously into the atria via the jugular vein under
fluoroscopic guidance. Catheters were positioned in the LA
using a guide wire and sheath introduced by trans-septal
puncture. Electrograms from LA catheters (bandlimited to
0.5–1,500 Hz and sampled at 3 kHz) were recorded
simultaneously in sinus rhythm (SR) using a multi-channel
acquisition system (UnEmap, Auckland UniServices) with
catheters in different locations. Serial biplane ciné X-ray views
of the catheters (LAO/RAO, 25 frames/second, with concurrent
Lead II ECG added for synchronization) were acquired
immediately after each electrical recording. The ventilator was
switched off during fluoroscopy to minimize respiratory motion.

Endocardial surface geometry from a representative LA was
segmented from serial MRI using Amira 5.4 (Thermo Fisher
Scientific) and reconstructed in 3D with the atrial appendage
cropped (see Figure 2). LA electro-anatomic maps were
reconstructed for this heart from recordings in SR with 3D
electrode locations estimated from biplane X-ray records
(Meng et al., 2017). Ground-truth potential distributions in SR
were constructed at selected activation times by interpolating
potentials around the activation wavefront from recorded
electrograms. Ground truth data representing reentrant atrial
activation were simulated. Meandering spiral wave reentry was
simulated on an isotropic 2D monodomain with Fenton Karma
activation kinetics (Fenton and Karma, 1998) using a standard
cross-field S1-S2 stimulus protocol (Pandit et al., 2005). Points on
the 2D domain were sampled and mapped onto the 3D surface

mesh so that surface area was similar in both, with a contour
adjacent to the boundary in the former assigned to the mitral
valve orifice. Extracellular potentials were approximated from the
transmembrane currents computed at each 3D point at a
sampling rate of 1 kHz.

The open-source software environment SCIRun (Burton et al.,
2011) was used for FEM solutions of 3D forward problems. A
triangular surface mesh (1,529 nodes) was fitted to the LA andΩH

was discretized using tetrahedral elements. Intracardiac potential
fields were computed from the ground-truth surface potential
distributions by solving Laplace’s equation throughout ΩH. The
intracardiac field was sampled at points corresponding to
electrodes on two basket catheter configurations with 1) 64
channels with 8 equally spaced electrodes along 8 splines at
equal radial angles, and 2) 130 channels with 8 equally spaced
electrodes along 16 splines at equal radial angles and electrodes at
upper and lower poles. Basket dimensions were uniformly scaled
to vary the ratio of catheter volume to LA volume. The centroids
of catheters and the LA chamber were aligned to allow maximum
catheter expansion and to ensure reproducibility between results.
Noise was imposed by adding Gaussian noise independently to
the electrograms recorded at each electrode with power set at
realistic levels. Signal-to-noise ratio (SNR) is quantified as the
ratio of root-mean-squared (RMS) voltages of reconstructed
electrograms and noise.

SCIRun was also used for FEM solutions of 3D inverse
problems. The methods outlined above for estimating Cauchy
boundary conditions for the 2D case were extended to 3D as
follows. Intracardiac fields were sampled at points corresponding
to electrodes on specified intracardiac catheters. A triangular
mesh was fitted to ΓC (6,720 nodes) and the potential field on this
surface was reconstructed from the sampled data using radial-
based interpolation. Laplace’s equation was solved in ΩC using
these potentials as Dirichlet boundary conditions and ∇ϕ · n was
estimated on ΓC with the FDM using a polar grid centered on the
catheter. Finally, the volume between boundaries ΓC and ΓH was
discretized with a tetrahedral mesh. The inverse problem was
solved subject to the potential and normal potential gradient
boundary conditions specified on it using zero-order Tikhonov
regularization (Tikhonov and Arsenin, 1977) employing the
L-curve method to calculate the regularization parameter
(Hansen, 2010).

Inverse solutions with the MFS were run with purpose-written
code and a more detailed account of the methods used is given in
Meng et al. (Meng et al., 2022). In brief, the virtual boundary Γv
was formed by uniform radial inflation of the atrial surface mesh
ΓH by 6% and individual sources were associated with each of its
nodes. Inverse endocardial potential distributions for intracardiac
potentials “sampled” with virtual catheters were obtained using
zero-order Tikhonov regularization (Tikhonov and Arsenin,
1977) employing the L-curve method to calculate the
regularization parameter (Hansen, 2010). Comparisons
between FEM and MFS inverse solutions were made at
common points on ΓH.

Correspondence between ground-truth and reconstructed
potential maps were quantified by evaluating normalized root-
mean-squared error (nRMSE) and correlation coefficient (CC).
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nRMSE �

��������������∑N
i�1(ϕi

GT − ϕi
R)2∑N

i�1(ϕi
GT)2

√√
and

CC � ∑N
i�1(ϕi

GT − μGT)(ϕi
R − μR)���������������∑N

i�1(ϕi
GT − μGT)2√ �������������∑N

i�1(ϕi
R − μR)2√ (8)

where N is the number of surface points compared, ϕiGT and ϕiR
are ground-truth and reconstructed potentials at surface point i,
while μGT and μR are mean values for ground-truth and
reconstructed potentials, respectively, across the surface.

Activation times (ATs) for ground-truth and reconstructed
electrograms were estimated as maximum negative rate of
potential change and the activation time difference ΔT at each
surface point was evaluated as the difference between the ground-
truth and reconstructed ATs

ΔT � |ATGT − ATR| (9)
SCIRun was used for 3D FEM forward and inverse

calculations and for visualization of all 3D results. Meshless/
MFS inverse solutions were run in purpose-written C code. All
other computation (2D analysis, estimation of potential
gradients, regularization and evaluation of correspondence
measures), was implemented in the MATLAB programming
language (The Mathworks, Natick, Massachusetts).

RESULTS

2D Analysis of Mesh-Based Intracardiac
Potential Mapping
We used a simple 2D analysis initially to test the feasibility of our
methods for estimating intracardiac Cauchy boundary
conditions. Figure 2A illustrates the steps involved. It shows
that the ground truth potential field in ΩC (upper panel) is
replicated qualitatively in the lower panel using a limited set
of samples around ΓC. Table 1 presents corresponding median
CC and nRMSE for ϕ and ∇ϕ · n around ΓC and demonstrates
that both can be estimated with good accuracy in this case. Error

increased as ΓC was enlarged relative to ΓH but was offset by
increasing the number of samples.

In this figure, we also compare ground-truth potentials on ΓH
with corresponding inverse results reconstructed from samples
around internal circles in simple (Figure 2B) and more complex
(Figure 2C) fields. Surface potentials reconstructed from samples
around an internal radius of 0.469 relative to ΓH were close to
ground-truth (nRMSE 0.02 and 0.06, CC 1.0 and 0.99 for simple
and more complex fields, respectively). However, error increased
when the dimension of ΓC was reduced further. With a relative
radius of 0.375 (~14% of the domain area), reconstructed surface
potentials were overestimated, and the complex surface potential
distribution captured less well (nRMSE 0.14 and 0.48, CC 0.99
and 0.70 for simple and more complex fields, respectively). These
results demonstrate that mesh-based inverse potential mapping
can be used to reconstruct surface potential distributions, but that
accuracy is influenced by the dimension of the surface relative to
the solution domain.

3D Analysis of Mesh-Based Intracardiac
Potential Mapping Accuracy
Figure 3 presents the results of an in silico analysis of the accuracy
with which LA surface potential distributions can be
reconstructed from non-contact electrograms recorded in SR
using 64-channel basket catheters. The ground truth
endocardial potential distribution at one instant (43.9 msec
after onset of atrial activation) is shown in Figure 3A with the
3D locations of basket catheter electrodes superimposed (the
volume ratio of the catheter with respect to LA cavity was 0.67).
The corresponding inverse reconstruction of atrial surface
potentials in Figure 3B is qualitatively similar to the ground-
truth map, while reference and inverse electrograms at a
representative site (point 1 in Figure 3B) correspond closely
throughout the activation cycle (Figure 3C). Figures 3D–F show
acceptable non-contact mapping accuracy for a wide range of
catheter dimensions (median: CC >0.96; nRMSE <0.12; ΔT =
3 ms for catheter-atrial volume ratios >0.3). However, error
accumulates progressively when catheter dimensions are
decreased below this range.

TABLE 1 | Effects of number of points on sampling boundary ΓC represented in Figure 2A and its location relative to outer boundary ΓH on the accuracy with which
potentials and normal potential gradients on ΓC are reconstructed. Potential distribution inΩH shown in Figure 2A. ΓC is concentric with ΓH and the radius of the former is
increased as indicated by the area ratio ΩC relative to ΩH. Samples are acquired at 8,16 and 32 uniformly spaced points around ΓC.

Area ratio 0.049 0.195 0.346 0.541 0.779 0.914 Samples

ϕ(xj) CC 0.9999 0.9995 0.9991 0.9989 0.9984 0.9970 8
nRMSE 0.0041 0.0101 0.0128 0.0137 0.0170 0.0241

zϕ(xj )
zn

CC 0.9996 0.9961 0.9947 0.9977 0.9879 0.9689
nRMSE 0.0078 0.022 0.0263 0.0268 0.0280 0.0428

ϕ(xj) CC 1.0000 1.0000 1.0000 0.9999 0.9997 0.9986 16
nRMSE 0.0022 0.0020 0.0023 0.0031 0.0078 0.0161

zϕ(xj )
zn

CC 0.9998 0.9996 0.9994 0.9989 0.9949 0.9797
nRMSE 0.0049 0.0061 0.0079 0.0105 0.0184 0.0347

ϕ(xj) CC 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 32
nRMSE 0.0014 0.0017 0.0020 0.0023 0.0027 0.0046

zϕ(xj )
zn

CC 0.9999 0.9997 0.9995 0.9996 0.9996 0.9996
nRMSE 0.0030 0.0055 0.0074 0.0062 0.0055 0.0156
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FIGURE 3 | Effect of catheter size on accuracy of inverse potential mapping. Comparison of ground truth potential maps on endocardial surface of LA in SR with
inversemaps reconstructed using FEM. Inverse potential maps were reconstructed from electrograms “sampled” using a 64-electrode basket catheter, with centroids of
catheter and LA chamber aligned. The upper panel presents typical results for a catheter which bounds a volume fraction of 0.67 relative to LA volume. These include (A)
ground-truth surface potential distribution 43.9 msec after onset of activation with basket catheter superimposed, and (B) corresponding potential maps
reconstructed using FEM. Finally, in (C) a ground-truth electrogram (black) at point 1 is compared with corresponding electrograms reconstructed using FEM (blue). In
the lower panel, (D) correlation coefficient (CC) (E) normalized root-mean-squared error (nRMSE), and (F) activation time difference (ΔT) are presented as functions of
relative catheter volume for FEM. Median values and interquartile range are given. Abbreviations: FEM, finite element method; SR sinus rhythm.

FIGURE 4 | Effect of boundary value specification on accuracy of inverse potential mapping using FEM. Comparison of ground truth potential maps on endocardial
surface of LA in SR 43.9 msec after onset of activation with inverse maps reconstructed using FEM from potentials sampled with centrally located internal basket
catheters with 64 equi-spaced electrodes. In (A) and (B), respectively, relative root-mean-squared error (nRMSE) and correlation coefficient (CC) are presented as
functions of catheter volume relative to LA. Additional error introduced by not estimating normal potential gradients on the virtual surface bounding electrodes is
indicated by the no flux results (open circles) in which normal potential gradients are set to zero. Abbreviations: FEM, finite element method; SR, sinus rhythm.
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Figure 4 presents the error introduced when the normal
potential gradient on the surface bounding the electrodes, ΓC,
is not accounted for. In this example, one time-point only is
considered (43.9 msec after onset of atrial activation). zϕ(xj)

zn is
assumed to be zero which corresponds to a no-flux condition at
ΓC. Incorporation of realistic estimates of normal potential
gradients on ΓC reduces nRMSE, with greatest absolute
reduction in error for the intermediate range of relative
volume ratios. The effects are modest with ~9% reduction in
CC and ~10% increase in nRMSE at a catheter-atrial volume ratio
of 0.3 and absolute error appears to be reduced at the extremes of
the relative volume ratio range.

Results of an analysis of inverse mapping accuracy for more
complex atrial rhythms in the presence of noise are presented in
Figure 5. In this case, a simulated rotor with a moving core was
used as ground-truth. Three activation cycles were sampled with a
130-electrode basket catheter and Gaussian noise at RMS voltages
of 18, 56 and 178 µV was added to these records. The upper panel
shows representative results for a catheter-atrial volume ratio of
0.67. Ground-truth surface potential maps (Figure 5A) were
reconstructed with reasonable accuracy in the absence of noise
(see Figure 5B). Median results were CC = 0.92, nRMSE = 0.11

and ΔT = 2 ms; clearly better than the corresponding result with a
64-electrode catheter (CC = 0.83, nRMSE = 0.14 and ΔT = 3 ms).
At this catheter dimension also, inverse mapping was robust in
the presence of realistic levels of electrical noise. Results with
systematic variation of relative catheter dimension and noise are
shown in Figures 5D–F. Accuracy was relatively invariant despite
increasing noise as catheter-atrial volume ratio was reduced from
0.67 to ~0.2. At dimensions less than this, however, there was a
progressive increase in error which scaled with noise level. It is
noteworthy that activation time estimates were markedly
degraded by noise at reduced catheter dimensions.

An important final observation is that the transfer matrices
used for 3D FEM analyses were over-determined in all cases, with
the LA represented by a 1529-node triangular surface mesh while
a 6720-node triangular mesh was fitted to the catheter. This was
necessary to achieve stable solutions.

Comparison of FEM and MFS Inverse
Solutions
In Figure 6, we compare the performance of mesh-based inverse
mapping employing a FEM solver with a meshless approach that

FIGURE 5 | Effects of catheter dimension and noise on inverse potential maps reconstructed during macro-reentry using FEM. LA surface potentials during 3
cycles of simulated atrial flutter are reconstructed from electrograms sampled inside the LA cavity with 130-electrode basket catheters and compared with ground-truth
data. The upper panel presents typical results for catheters that bound a volume fraction of 0.67 relative to LA volume. These include (A) the ground-truth surface
potential distribution at one instant with catheter electrodes overlaid (B) corresponding potential map reconstructed using electrograms “sampled” with a 130-
electrode basket catheter, and (C) electrograms reconstructed at location 1 from sampled records with 18 µV RMS (blue), 56 µV RMS (red) and 178 µV RMS (black) of
added Gaussian noise compared with the ground truth electrogram (grey) at the same site. In the lower panel, (D) correlation coefficient (CC) (E) normalized root-mean-
squared error (nRMSE), and (F) activation time difference (ΔT) are presented as functions of catheter-atrial volume ratio for these levels of added noise. Median values and
interquartile range are given. Abbreviation: FEM, finite element method.
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employs the MFS. We used the simulated rotor in Figure 5 as
ground-truth and again “sampled” 3 activation cycles with 130-
electrode basket catheters of different dimensions. FEM inverse
solutions matched ground-truth maps quite well, with median
values of CC = 0.91 and nRMSE = 11.3% across the activation
sequence at a catheter-atrial volume ratio of 0.67. Corresponding
results for the meshless/MFS approach were 0.95 and 4.9%, but
activation time differences with ground truth were the same for
both. While CC was marginally better with MFS than FEM for
catheter-atrial volume ratios >0.3, this measure decreased more
rapidly with the MFS when catheter dimensions were reduced
further (see Figure 6A). Likewise, ΔT was greater with the MFS
for catheter-atrial volume ratios <0.3. In contrast, nRMSE was
substantially less for MFS than FEM inverse results across the full
volume range.

The main difference between methods was that the MFS was
much more efficient computationally than the FEM in our hands.
Transfer matrices were simple to set up and inverse solutions
were obtained in near real-time using purpose-written code.
Finally, the meshless/MFS formulation was robust, with stable
inverse solutions despite the fact that transfer matrices were
inherently under-determined.

DISCUSSION

Summary
In this paper, we present the results of a computational analysis of
the accuracy with which endocardial potential maps can be
reconstructed from non-contact multi-electrode basket catheter
recordings. This inverse problem is addressed initially using a
mesh-based approach where transfer relationships are
formulated between potentials on the two boundaries involved.
This is accurate in principle because assumptions made about the
electrical properties of the solution domain are limited (and
inherently realistic). However, it requires Cauchy conditions to

be specified on the surface ΓC that bounds the electrodes. A simple
and robust way of doing this is outlined and used to solve
representative 2D and 3D problems. We demonstrate that
effective non-contact intracardiac potential mapping can be
achieved using mesh-based methods and that accuracy is
determined by 1) the spatial complexity of the intracardiac
potential field, 2) the dimensions of the catheter relative to
those of the cavity, 3) the distribution of electrodes on the
catheter, and 4) the signal-to-noise ratio of the potentials
acquired. Finally, we show that a much simpler meshless
method which uses the MFS is at least as accurate as mesh-
based inverse potential mapping over a wide range of catheter
dimensions and computationally far more efficient. This work
addresses an important problem in cardiac electrophysiology and
is the first in silico investigation of this topic, as far as we
are aware.

Mesh-Based Inverse Potential Mapping
With the mesh-based inverse solvers used in this analysis, it is
necessary to specify potentials at sufficient points on the surface
ΓC that bounds the electrodes to ensure that the transfer matrices
are well-determined. These boundary potentials can be faithfully
reconstructed by interpolation if their distribution is represented
by the data sampled. This is not sufficient here for complete
specification of boundary conditions. It is evident that current
flux through an open basket catheter affects the distribution of
potentials across the heart cavity and with mesh-based inverse
solvers this is captured by specifying normal potential gradients
on ΓC as outlined in the Mathematical Background.

Our 2D analysis demonstrates that intracardiac potential fields
in the vicinity of ΓC can be reconstructed accurately from a
relatively small number of potentials sampled uniformly around
this boundary. The difference between estimated and expected
potentials and normal potential gradients on ΓC depended on
matching the number of electrodes to the spatial complexity of
the potential distribution, and correspondence improved as the

FIGURE 6 | Comparison of inverse potential maps reconstructed during macro-reentry using FEM and meshless methods that employ the MFS. LA surface
potentials throughout 3 activation cycles in simulated atrial flutter reconstructed from electrograms sampled inside LA cavity with 130-electrode basket catheters and
compared with ground-truth data. (A) Correlation coefficient (CC) (B) normalized root-mean-squared error (nRMSE), and (C) activation time difference (ΔT) are
presented as functions of catheter-atrial volume ratio for FEM (blue) and meshless/MFS (red). Median values and interquartile range are given. Abbreviations: FEM,
finite element method; MFS method of fundamental solutions.
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distance between ΓC and heart surface ΓH increased. These
findings indicate that it is possible to specify the boundary
conditions necessary for non-contact potential mapping using
mesh-based inverse solution methods. We have demonstrated
that normal potential gradients on ΓC can be estimated with
acceptable accuracy and have shown in Figure 4 that inclusion of
this information improves the accuracy of 3D non-contact
potential mapping with mesh-based inverse solvers. The
robustness of this approach is confirmed by the precision of
non-contact potential mapping across a wide range of catheter
dimensions in complex rhythms and in the presence of noise
(Figures 3, 5).

Our analyses show that the accuracy of inverse potential
mapping decreases when catheter dimensions are reduced and
this becomes more marked as noise levels are increased. In the 3D
examples presented here (Figures 3, 5), error remains relatively
low as catheter-atrial volume ratios decrease to ~0.3 but increases
exponentially with further reduction. These findings are
intuitively reasonable. With increasing distance from the heart
surface, intracardiac potentials are progressively attenuated and
smoothed. The extent to which high temporal frequencies on ΓH
can be recovered depends on the regularization method used, but
the presence of noise introduces additional problems (Johnson
and Bronzino, 2000; Pullan et al., 2005). Because themagnitude of
intracardiac electrograms decreases toward the center of ΓH, the
signal-to-noise ratio of records sampled with a small catheter is
reduced and the noise is amplified by inverse mapping. Finally, if
the catheter is too small it cannot provide an adequate
representation of the potentials distributed throughout the
cavity, particularly when they are complex spatially.

The 3D analyses above also show that the accuracy with which
potentials on ΓH are reconstructed is improved by matching the
number of electrodes to the spatial complexity of the “ground
truth” potential distribution. While acceptable non-contact
mapping accuracy was achieved in SR using a 64-electrode
basket catheter (see Figure 3), a 130-electrode catheter was
needed to achieve similar performance for non-stationary
reentrant activity (see Figure 5 and related text). If the
electrode distribution is not sufficiently dense, high spatial
frequencies cannot be recovered and low frequency artefacts
(aliasing) may occur (Rice, 1950). This holds for both non-
contact and contact mapping.

Comparison of Mesh-Based and Meshless
Inverse Potential Mapping
As noted at the start of the Discussion, we opted to use mesh-
based inverse potential mapping as the reference method in this
study because assumptions made about the electrical properties of
the solution domain with this approach are minimal. We argue
that the correspondence of the 3D FEM solutions presented here
with ground truth and the stability of these results support this
strategy. In contrast, the meshless/MFS alternative with which it
is compared employs a much simpler representation of the
intracardiac forward problem but introduces additional
assumptions about the current sources that give rise to
intracardiac potential distributions. The fact that the MFS

approach performs better for catheter-atrial volume ratios >0.3
(Figure 6) warrants further consideration. It is likely that much of
the apparent improvement with meshless/MFS is due to the
compact support for linear interpolation in the FEM
implementation used. This gives rise to discontinuities across
element boundaries (see Figure 5B) whereas potentials on the
heart surface are continuous with meshless inverse mapping. We
note that there is no difference in ΔT for catheter-atrial volume
ratios >0.3 and argue that meshless/MFS inverse potential
mapping is at least as accurate as mesh-based inverse methods
over this range.

The major advantage of meshless/MFS methods in this setting
is that the forward transfer function is computationally simple
and can be assembled very rapidly. In contrast, with mesh-based
alternatives, such as FEM, the forward transfer function is
complex and time consuming to assemble and invert.
Furthermore, our results indicate that the meshless/MFS
representation of the intracardiac problem is much better
conditioned and therefore more robust than FEM. This is
reflected by the fact that an over-determined transfer matrix
was needed for stable inverse solutions with FEM, whereas
accurate solutions were obtained with MFS despite the fact
that transfer matrices were under-determined.

Potential Clinical Impact of These Findings
Non-contact intracardiac mapping systems that have been used
clinically have utilized balloon-mounted multi-electrode array for
potential mapping (Khoury et al., 1995; Khoury et al., 1998;
Schilling et al., 1999) or have reconstructed membrane charge
density from electrograms recorded with an open basket catheter
(Willems et al., 2019). While the inverse problem techniques used
are different, one would expect the information recovered to be
affected similarly by electrode density and positioning, and
catheter size, i.e. the number of recording electrodes, their
physical spacing on the catheter and proximity of the
electrodes to the atrial wall once the catheter is fully deployed.
Validation studies have shown that the accuracy with which
endocardial electrograms are constructed with the first of these
approaches is inversely related to the distance from the electrodes
array to corresponding points on the cavity surface (Earley et al.,
2006). As far as we are aware, an equivalent systematic validation
has not been completed for the second. This study indicates that
reliable non-contact potential mapping can also be performed
using multi-electrode catheters and could be carried out in near
real-time using meshless methods that employ the MFS.

In terms of optimal catheter design, greater electrode density
and more uniform distribution would be expected to provide
higher resolution. However, the question of how much is enough
has only started to be addressed recently. Martinez et al.
(Martinez-Mateu et al., 2018) showed computationally that
methods used to transform basket electrogram signals back
into catheter surface potential maps may result in the creation
of fictitious repetitive activation patterns resembling AF rotors
when the input information was too sparsely sampled. Williams
et al. (Williams et al., 2018) on the other hand defined optimal
endocardial sampling densities, both computationally and in-
vivo, required to resolve activation patterns of varying
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complexities. They report that a minimum endocardial sampling
density of 1.0–1.5 points/cm2 is required, with higher densities
needed to resolve spiral wave activity. Whilst they were looking at
endocardial interpolation of contact recordings not inverse
solutions, it is evident from our work here that potential
pitfalls in inverse mapping also need to be addressed with
good catheter design and mechanistic insight.

Limitations
It could be argued that the BEM is better matched to the mesh-
based inverse potential problem addressed here (Oostendorp and
van Oosterom, 1991; Johnson and Bronzino, 2000; Pullan et al.,
2005). The FEM generates sparse transfer matrices and is
computationally expensive, while BEMs reduce the solution
domain to the boundaries only giving rise to compact transfer
matrices that can reduce computational overheads and improve
accuracy (Johnson and Bronzino, 2000; Pullan et al., 2005).
However, our purpose here was to benchmark the mesh-based
approach and we opted to use FEM to avoid possible instability
that can occur when boundaries are geometrically complex as is
the case in the atria. We note that our mesh-based analysis has
proved stable and that the meshless/MFS methods with which
they are compared are much more efficient computationally than
either FEM or BEM. A further limitation is that although our
ground-truth data represent atrial rhythms of increasing
complexity they do not replicate the spatio-temporal disorder
that characterizes AF.

CONCLUSION

This computational analysis indicates that potentials on the
endocardial surface of a cardiac chamber can be reconstructed
with intracardiac multi-electrode basket catheters using inverse
solution methods provided that the boundary geometry is
specified and the 3D location of catheters with respect to it
are known. These data are now available clinically. Panoramic
electro-anatomic maps can therefore be generated at successive
time steps from non-contact recordings. Mapping accuracy is
determined by 1) the distance of recording electrodes from the
endocardium, 2) their distribution within the subdomain
sampled, and 3) rhythm complexity. These issues should be
factored into the design of future non-contact multi-electrode
basket catheters. We conclude that reliable non-contact potential

mapping can be carried out in near real-time using meshless
methods that employ the MFS.
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