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Abstract. Fibroblast contraction of stressed collagen 
matrices results in activation of a cAMP signal trans- 
duction pathway. This pathway involves influx of extra- 
cellular Ca 2+ ions and increased production of arachi- 
donic acid. We report  that within 5 min after initiating 
contraction, a burst of phosphatidic acid release was de- 
tected. Phospholipase D was implicated in production 
of phosphatidic acid based on observation of a trans- 
phosphatidylation reaction in the presence of ethanol 
that resulted in formation of phosphatidylethanol at the 
expense of phosphatidic acid. Activation of phospholi- 
pase D required extracellular Ca 2+ ions and was regu- 
lated by protein kinase C. Ethanol treatment of cells 

also inhibited by 60-70% contraction-dependent re- 
lease of arachidonic acid and cAMP but had no effect 
on increased cAMP synthesis after addition of exoge- 
nous arachidonic acid or on phospholipase A2 activity 
measured in cell extracts. Moreover,  other treatments 
that inhibited the burst of phosphatidic acid release af- 
ter contraction--chelat ing extracellular Ca 2+ or down- 
regulating protein kinase C--also  blocked contraction 
activated cyclic AMP signaling. These results were con- 
sistent with the idea that phosphatidic acid production 
occurred upstream of arachidonic acid in the contrac- 
tion-activated cAMP signaling pathway. 

IVING organisms can sense and react to mechanical 
stimuli, although the underlying regulatory mecha- 
nisms are not yet well understood. A variety of 

studies have shown that many types of cells respond to 
mechanical stress by an increase in cell mass or number, 
and that mechanical signals are important determinants of 
cell differentiation (Ryan, 1989; Thyberg et al., 1990; 
Heidemann and Buxbaum, 1990; Erdos et al., 1991; 
Daniels and Solursh, 1991; Watson, 1991; Vandenburgh, 
1992; Davies and Tripathi, 1993; Ingber, 1993; Grinnelt, 
1994; Simpson et al., 1994; Reinhart, 1994). From an evo- 
lutionary perspective, the capacity of cells to recognize 
mechanical stimuli may have developed first as a require- 
ment for unicellular organisms to control cell volume in 
changing osmotic environments (Hamill and McBride, 
1995). 

In some cases, mechanosensitive regulation has been at- 
tributed to autocrine signaling mechanisms (Sadoshima et 
al., 1993; Wilson et al., 1993), but direct cytoskeletal mod- 
ulation (Wang and Ingber, 1994) and mechanoreceptive 
membrane channels (Hamill and McBride, 1995) also may 
be involved. Studies on mechanoregulated control of tran- 
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scription when endothelial cells are subjected to fluid 
shear have led to identification of distinct mechanical 
stress-responsive promoters that upregulate the PDGF B 
chain gene and downregulate the endothelin 1 gene (Res- 
nick et al., 1993; Malek et al., 1993). On the other hand, in- 
duction of c-los by cardiac myocytes subjected to mechan- 
ical stretch was reported to occur primarily through the 
serum response element (Sadoshima and Izumo, 1993). 

Most experiments on mechanoregulation have mea- 
sured how cells react when they are subjected to increased 
mechanical stress. Equally important but less well studied 
is the cellular reaction to decreased stress. We have been 
particularly interested in the latter because of its potential 
role in promoting quiescence and regression of wound tis- 
sue fibroblasts after wound contraction (Arem and Mad- 
den, 1976; Burgess et al., 1990). 

An in vitro model using fibroblasts cultured in collagen 
matrices has been developed for studying relaxation of 
mechanical stress (Grinnell, 1994). In this model, cells in 
anchored matrices reorganize collagen fibrils as a conse- 
quence of cell migration (Harris et al., 1981). Subsequently, 
when the stressed matrices are released experimentally, 
the cells undergo a smooth muscle-like contraction as a 
result of which stress dissipates. During contraction, actin 
stress fibers shorten and eventually disappear, fibronectin 
is released from binding sites on the cell surface, and tran- 
sient budding (ectocytosis) of 200 nm plasma membrane 
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vesicles occurs (Mochitate et al., 1991; Tomasek et al., 
1992; Lee et al., 1993). 

After fibroblasts contract stressed collagen matrices, 
cells become quiescent (Mochitate et al., 1991). Develop- 
ment of quiescence has been found to occur, at least in 
part, because the cells become less responsive to PDGF 
(Nakagawa et al., 1989; Nishiyama et al., 1991). They show 
decreased PDGF-induced receptor aggregation (Ting- 
strom et al., 1992) and loss of PDGF receptor autophos- 
phorylation (Lin and Grinnell, 1993). 

Recently, we found that fibroblast contraction of stressed 
collagen matrices also triggers a signal transduction path- 
way resulting within minutes in a 10-20-fold increase in 
cellular cAMP levels and activation of protein kinase A. 
This contraction-activated signal transduction pathway re- 
quires extracellular Ca 2+ ions and involves increased pro- 
duction of arachidonic acid (He and Grinnell, 1994). 

Increased production of arachidonic acid could have re- 
suited directly from increased activity of phospholipase 
A2 or indirectly from increased activity of phospholipase 
C or phospholipase D (Burgoyne and Morgan, 1990). In 
this report, we present evidence that fibroblast contraction 
of stressed collagen matrices results in activation of phos- 
pholipase D. The findings suggest that phospholipase D 
activation is an early step in the contraction-activated 
cAMP signal transduction pathway, and that this pathway 
is regulated by protein kinase C. 

Materials and Methods 

Cell Culture 
Human foreskin fibroblasts were cultured in collagen matrices as de- 
scribed previously (Mochitate et al., 1991; Lee et al., 1993). Briefly, early 
passage cells (106/ml matrix) in DME (without serum) were mixed with 
neutralized collagen (Vitrogen 100; Celtrix Labs, Santa Clara, CA) (1.5 
mg/ml). The mixtures were warmed to 37°C, and then 0.2-ml aliquots were 
polymerized for 1 h in 24-well culture plates that had been inscribed previ- 
ously with a 12-mm-diam circular score. The precise time of warming var- 
ied somewhat with different lots of collagen, but was always selected to 
ensure that the cells were dispersed throughout the matrix after collagen 
polymerization. The attached matrices were cultured for 48 h in culture 
medium (DME supplemented with 10% FBS and 50 Ilg/ml ascorbic acid). 

During the 48-h culture period, stress developed in the attached col- 
lagen matrices. Contraction was then initiated by releasing the attached 
matrices from the substratum with a thin spatula. After releasing the ma- 
trices, few cells were left behind on the plastic surface. In some experi- 
ments, extracts were prepared from the cells, in which case aliquots of the 
extracts were used to measure lactate dehydrogenase (LDH) 1 activity (di- 
agnostic kit; Sigma Chemical Co., St. Louis, MO), and other data collected 
were normalized to LDH units as described previously (Lin and Grinnell, 
1993). 

Phospholipase A2 Activity 
Phospholipase A2 activity was measured using a modification of the 
method described by Diez and Mong (1990). To prepare suhstrate vesi- 
cles, 1 ixl (0.88 nmol) of 1-palmitoyl-2-[14C]arachidonyl phosphatidylcho- 
line (sp act, 57 mCi/mmol) (New England Nuclear, Boston, MA) was 
dried under N2, suspended in 10 ~l FI20 by vortexing for 1 rain, sonicated 
for 5 min (model 2210; Branson Ultrasonics Corp., Danbury, CT), and 
then vortexed a second time. Reactions were carried out in 50-~1 volume 
containing 10-1xl aliquots of cell extracts (see below), substrate vesicles, 
50 mM riffs HCI (pH 8.0), 100 mM NaC1, 2 mM CaCl2, and 15% glycerol. 
After 30 rain at 37°C, the reactions were stopped by addition of 50 txl of 
chloroform/methanol (1:2, vol/vol, containing 0.05 N hydrochloric acid 

1. Abbreviations used in this paper: LDH, lactate dehydrogenase; TPA, 
12-o-tetradecanoylphorbol-13-acetate. 

and 20 Ixg arachidonic acid). To extract lipids, the samples were mixed 
with 50 Ixl chloroform and 50 Ixl of 4 M KCI, centrifuged at 14,000 rpm for 
1 rain, and the organic lower phase (50 I.d) was spotted onto the preadsor- 
bent layer of pregrooved plates (LK6D; Whatman Inc., Clifton, NJ). The 
plates were developed in petroleum ether/diethyl ether/acetic acid (75:25: 
1, vol/vol). The region corresponding to free arachidonic acid was visual- 
ized by exposure to I2 vapor, scraped into scintillation vials, and mixed 
with 10 ml of solvent (Budget-solve; Research Products International 
Corp., Mount Prospect, IL). Radioactivity was determined in a scintilla- 
tion counter (model LS3801; Beckman Instruments, Inc., Fullerton, CA). 
Each data point represents extracts combined from 6 matrices. LDH ac- 
tivity also was measured (see above), and phospholipase A2 activity was 
normalized to picomoles per minute per 106 LDH units. 

Cell extracts were prepared as follows. Collagen matrix cultures that 
were attached or released to initiate contraction were placed in 180 Ixl 
(30 ixl/matrix) of ice-cold homogenization buffer (20 mM Tris HCI, pH 8.0, 
1 mM EDTA, 10 mM fLmercaptoethanol, 1 mM 4-(2-aminoethyl)-ben- 
zene-sulfonylfluoride HCI, 5 ixg/ml leupeptin, 5 txg/ml pepstatin A). Sam- 
ples were homogenized (50 strokes) with a 1-ml Dounce homogenizer (B 
pestle; Wheaton Scientific, Millville, N J) at 4°C and then centrifuged at 
100,000 g for 1 h at 4°C. The supernatant fraction and particulate fraction 
resuspended in extraction buffer were assayed separately as indicators of 
cytoplasmic and membrane-bound phospholipase A2. Extracting cells un- 
der conditions where Ca 2+ is chelated results in maximal enzyme recovery 
and prevents translocation of soluble phospholipase A2 to the particulate 
fraction, while only partially causing translocation of membrane-bound 
phospholipase A2 to the soluble fraction (Channon and Leslie, 1990). 

Synthesis of lnositol Phosphates 
Inositol phosphates were assayed similarly as described by Brown et al. 
(1991). Fibroblasts in attached collagen matrices were cultured for 2 d in 
0.5 ml of inositol-free culture medium containing 4 ixCi/ml [3H]myoinosi- 
tol (sp act, 10-20 Ci/mmol) (New England Nuclear). Subsequently, the 
cultures were rinsed briefly and preincubated in culture medium contain- 
ing 10 mM LiCl for 20 rain before releasing the matrices or adding brady- 
kinin. After removing excess medium, reactions were terminated by addi- 
tion of 500 tzl of ice-cold 5% PCA. After 1 h, the extracts were diluted to 
1 ml with H20 and extracted with an equal volume of tri-n-octylamine/ 
1,1,2-trichlorotrifluoroethane (Sigma Chemical Co.). The samples were 
mixed thoroughly and centrifuged at 2,500 rpm for 5 min. Then 800/xl of 
the aqueous phase was applied to a 1-ml Dowex AG1-X8 anion exchange 
column (mesh size 100-200, formate form) (Bio-Rad Laboratories, Rich- 
mond, CA). The columns were washed twice with 10 ml H20 and once 
with 8 ml 50 mM ammonium formate. Inositol phosphates were bulk 
eluted with 6 ml 1.2 M ammonium formate/100 mM formic acid. Eluates 
were mixed with l0 ml of Budget-solve, and radioactivity was determined 
as above. Each data point represents the extract from one matrix. 

Synthesis of 1,2-Diacylglycerol, Phosphatidic Acid, 
and Phosphatidylethanol 
Fihroblasts in attached collagen matrices were cultured overnight in 0.5 ml 
culture medium containing 10 ~Ci/ml [3H]palmitic acid (sp act, 39 Cit 
mmol) (New England Nuclear) or 2.5/xCi/ml [3HJarachidonic acid (sp act, 
100 Ci/mmol) (New England Nuclear) as indicated. Subsequently, the cul- 
tures were washed with four changes of fresh culture medium during 1 h, 
after which matrices were released to initiate contraction. For phospha- 
tidic acid and phosphatidylethanol measurement, reactions were stopped 
using concentrated HCI, and lipids were extracted with 1-butanol (Bremer, 
1963; Bjerve et al., 1974). For 1,2-diacylglycerol measurement, reactions 
were stopped, and cellular lipids were extracted by the Bligh and Dyer 
(1959) procedure. Phosphatidic acid separation was accomplished by dou- 
ble one-dimensional TLC (Gruchalla et al., 1990) or two-dimensional TLC 
(Thomas and Holub, 1991), and phosphatidylethanol separation was car- 
ried out by one-dimensional TLC (Gruchalla et al., 1990). After drying, 
thin-layer plates were sprayed with EN3HANCE (Dupont-New England 
Nuclear) and autoradiography performed by using XAR film (Eastman 
Kodak Co., Rochester, NY) for 2-3 d. The identity of radiolabeled bands 
was based on chromatography of authentic lipid standards (Avanti Polar 
Lipids, Inc., Alabaster, AL) visualized by iodine vapor. To quantify phos- 
phatidic acid levels, the autoradiographs were analyzed using a laser scan- 
ning densitometer (Ultrascan XL; LKB Instruments, Inc., Bromma, Swe- 
den). 
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Synthesis of [JH]Arachidonic Acid Metabolites 
Arachidonic acid production was measured as described previously (He 
and Grinnell, 1994). Attached collagen matrix cultures were cultured 
overnight in 0.5 ml culture medium containing 1 txCi/ml [3H]arachidonic 
acid (sp act, 210 Ci/mmol) (New England Nuclear). Subsequently, the cul- 
tures were washed with four changes of fresh culture medium over 1 h, af- 
ter which matrices were released to initiate contraction. At the times indi- 
cated, 0.4-ml aliquots of the culture medium were mixed with 10 ml of 
Budget-solve, and radioactivity was determined as above. 

Synthesis of cAMP 
cAMP levels were measured using the two-column method (Salomon, 
1991) as described previously (He and Grinnell, 1994), Attached collagen 
matrix cultures were cultured for 2 h in 0.5 ml culture medium containing 
8 ~zCi/ml [3H]adenine (sp act, 36 Ci/mmol) (ICN Biomedicals, Irvine, 
CA). Subsequently, cultures were rinsed, 0.5 ml fresh culture medium 
(supplemented with 0.1 mM IBMX to block cAMP degradation) was 
added, and matrices were released to initiate contraction. To extract nu- 
cleotides from the cells, 0.5 ml ice-cold 10% TCA containing 0.2 mM 
cAMP as carrier was added to the cultures, and the samples were incu- 
bated on ice for 1 h. Acid extracts (800 p~l) were applied to 1-ml Dowex- 
50w columns (mesh size 200400) (Sigma Chemical Co.). The columns 
were washed twice with 1 ml H20 and then eluted with an additional 4 ml 
of H20. The eluted Dowex columns were drained completely, and the 
eluates were applied to 0.75-g alumina columns (Sigma Chemical Co.). 
3H-cAMP was eluted from the alumina columns with 3 ml of 100 mM imi- 
dazole buffer (pH, 7.3). Eluates were mixed with 10 ml of Budget-solve, 
and radioactivity was determined as above. Efficiency of cAMP recovery 
was ~50% based on OD260 measurements of carrier cAMP, and data pre- 
sented in the figures were normalized to recovery. Each data point repre- 
sents extract from one matrix. 

Results 

Activity of Phospholipase A2 and 
Phospholipase C during Fibroblast Contraction 
of Stressed Collagen Matrices 

Previous studies implicated influx of extracellular Ca 2+ in 
contraction-activated increases in arachidonic acid release 
and cAMP production (He and Grinnell, 1994). Influx of 
Ca 2+ has been reported to activate cytoplasmic phospholi- 
pase A2 (Brooks et al., 1989), presumably by promoting 
binding of cytoplasmic enzyme molecules to the plasma 
membrane (Channon et al., 1990; Kramer et al., 1991; 
Clark et al., 1991). Therefore, we measured phospholipase 
A2 before and during contraction to learn whether there 
were overall changes in enzyme activity or a shift in en- 
zyme location from the cytoplasmic fraction to the mem- 
brane-bound fraction. In these experiments, cells were ex- 
tracted under conditions where Ca 2+ was chelated, which 
results in maximal enzyme recovery and prevents binding 
of cytoplasmic phospholipase A2 to the membrane during 
extraction, but causes partial release of membrane-bound 
enzyme (Channon and Leslie, 1990). Fig. i shows that dur- 
ing contraction there was no detectable change in mem- 
brane-bound phospholipase A2, but we did observe a 2.5- 
fold increase in the activity of soluble phospholipase A2. 
Despite the increase in phospholipase A2 activity, there 
were no obvious changes in metabolites produced by 
phospholipase A2. That is, as shown in Fig. 2, lysophos- 
phatidic acid was undetectable before or during contrac- 
tion. Also, lysophosphatidylcholine was detected in fibro- 
blasts in attached matrices but showed no increase during 
contraction. 

Activity of phospholipase C during contraction was 
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Figure 1. Effect of  f ibroblast  contract ion on m e m b r a n e - b o u n d  
and cytoplasmic phosphol ipase  A2 (cPLA2) activity. Stressed 
collagen matrices were  released to initiate contraction. At  the 
times indicated after release, m e m b r a n e - b o u n d  and cytoplasmic 
phosphol ipase  A2 levels were  measured.  Activity was normal-  
ized to L D H  units extracted f rom the cells. Da ta  presented  are 
f rom duplicate samples. 

measured by analyzing metabolite production. Fig. 3 shows 
that there was an approximately twofold increase in 1,2- 
diacylglycerol levels after attached matrices were released. 
This increase could be detected within 1 min after initiat- 
ing contraction and remained constant over the next hour 
(data not shown). The results shown in Fig. 4, on the other 
hand, demonstrated that no increase of inositol phos- 
phates occurred during fibroblast contraction. As a posi- 
tive control, cells in attached matrices were treated with 
bradykinin, which elicited a predictable activation of phos- 
pholipase C resulting in a rapid rise in inositol phosphates 
(Burch and Axelrod, 1987; Etscheid and Villereal, 1989). 
Taken together, these results indicate that phosphoinosi- 
tide-specific phospholipase C was not activated during fi- 
broblast contraction. Release of 1,2-diacylglycerol may 
have occurred as a result of phospholipase C action on 
phosphatidylcholine (van Blitterswijk et al., 1991; Fisher et 
al., 1991; Carnero et al., 1994). 

Activity of Phospholipase D during Fibroblast 
Contraction of Stressed Collagen Matrices 

Unlike the modest changes in phospholipase A2 and phos- 
pholipase C described above, there appeared to be marked 
activation of phospholipase D initiated by matrix contrac- 
tion. This was shown first by analyzing phosphatidic acid, 
which occurred at low levels in fibroblasts in attached ma- 
trices and increased after attached matrices were released 
(Fig. 2 and Fig. 3 b). Elevated phosphatidic acid levels 
could be detected within 3 rain but not 1 min (data not 
shown). Fig. 5 shows that the increase in phosphatidic acid 
peaked 5-10 min after initiating cell contraction and de- 
clined to baseline levels by 60 min. Similar results were ob- 
tained regardless of whether cells had been radiolabeled 
with [aH]palmitic acid or [3H]arachidonic acid. 

To show more directly that phospholipase D was acti- 
vated, we took advantage of the enzyme's known capacity 
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Figure 2. Effect of fibroblast contraction on release of phosphati- 
dylcholine, lysophosphatidylcholine, and phosphatidic acid. Fi- 
broblasts in attached collagen matrices (A) were prelabeled over- 
night with [3H]palmitic acid. Matrices were released (B) to 
initiate contraction. After 10 min of contraction, lipids were ex- 
tracted and subjected to two-dimensional TLC. PA, phosphatidic 
acid; PC, phosphatidylcholine; LPA, lysophosphatidic acid; LPC, 
lysophosphatidylcholine. O, origin. 

to preferentially catalyze a transphosphatidylation reac- 
tion in the presence of primary alcohols (Thompson et al., 
1991; Moehren et al., 1994). Fig. 6 shows that addition of 
ethanol (0.5-2.5%) resulted in formation of phosphatidyl- 
ethanol after attached collagen matrices were released. In 
parallel experiments, as shown in Fig. 7, addition of etha- 
nol inhibited contraction-dependent phosphatidic acid pro- 
duction. On the other hand, 2.5% ethanol had no effect on 
the time course of collagen matrix contraction or cellular 
release of LDH activity, indicating that ethanol was not 
generally toxic for the cells. These results showed that fi- 
broblast contraction resulted in activation of phospholi- 
pase D, leading to increased production of phosphatidic 
acid. 

Effect of  Ethanol on Contraction-activated Production 
of  Arachidonic Acid and cAMP 

To study the possibility that phosphatidic acid production 

Figure 3. Effect of fibroblast contraction on release of 1,2-dia- 
cylglycerol and phosphatidic acid. Fibroblasts in attached col- 
lagen matrices (Att) were prelabeled overnight with [3H]palmitic 
acid. Ethanol (2.5%) was added to the cultures where indicated. 
10 min later, matrices were released (Rel) to initiate contraction. 
After 10 min of contraction, lipids were extracted. Phospholipids 
were resolved using one-dimensional TLC (a) or double one- 
dimensional TLC (b). TG, triglyceride; 1,2-DAG, 1,2-diacylglyc- 
erol; MAG, monoacylglyceride; PL, phospholipid; PA, phospha- 
tidic acid; LPA/PS, lysophosphatidic acid phosphatidylserine: PI, 
phosphatidylinositol. 

was an upstream event in the contraction-activated cAMP 
signal pathway, we also measured the effect of ethanol on 
production of arachidonic acid and cAMP. Fig. 8 shows 
that the dose response was similar for ethanol inhibition of 
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Figure 4. Effect of fibroblast contraction on release of inositol 
phosphates. Fibroblasts in attached collagen matrices (Att) were 
prelabeled for 2 d with [3H]myoinositol. Bradykinin (100 nM) 
was added to the cultures, or matrices were released (Rel) to ini- 
tiate contraction. At the times indicated after addition of brady° 
kinin or release, cultures were extracted, and inositol phosphate 
levels were analyzed. Data presented are averages and standard 
deviations based on duplicate samples. 
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Figure 5. Fibroblast contraction triggers a transient increase in 
phosphatidic acid release. Fibroblasts in attached collagen matri- 
ces were prelabeled overnight with [3H]palmitic acid (A) or 
[3H]arachidonic acid (B). Matrices were released (Rel) to initiate 
contraction. At  the times indicated after release, lipids were ex- 
tracted, and phospholipids were resolved using double one- 
dimensional TLC. PA, phosphatidic acid. 

increased production of phosphatidic acid, arachidonic 
acid, and cAMP. In control experiments (not shown), we 
found that treatment of cells with ethanol had no effect on 
activation of cAMP production in response to exogenously 
added arachidonic acid or on phospholipase A2 activity 
subsequently measured in cell extracts. These results were 
consistent with the idea that activation of phosphatidic 
acid production was required for increased arachidonic 
acid production in the contraction-activated signal trans- 
duction pathway. It should be noted, however, that the 
contraction-activated increase in arachidonic acid and 
cAMP production was not completely blocked even when 
phosphatidic acid production was totally inhibited by etha- 
nol (Fig. 8), suggesting that at least some arachidonic acid 
was produced independently of phosphatidic acid. 

Whether arachidonic acid derived from phosphatidic 
acid was released directly or first converted to 1,2-diacyl- 

Figure 6. Fibroblast contraction in the presence of ethanol trig- 
gers production of phosphatidylethanol. Fibroblasts in attached 
collagen matrices (Att) were prelabeled overnight with [3H]pal- 
mitic acid. Ethanol was added to the cultures at the concentra- 
tions indicated for 10 min. Matrices were released (Rel) to initiate 
contraction. After 10 rain, lipids were extracted and resolved by 
one dimensional TLC. PEt, phosphatidylethanol; PE, phosphati- 
dylethanolamine; PC, phosphatidylcholine; PI, phosphatidylino- 
sitol. 

Figure 7. Fibroblast contraction in the presence of ethanol inhib- 
its production of phosphatidic acid. Fibroblasts in attached col- 
lagen matrices (Att) were prelabeled overnight with [3H]palmitic 
acid. Ethanol was added to the cultures at the concentrations in- 
dicated for 10 rain. Matrices were released (Ret) to initiate con- 
traction. After 10 min, lipids were extracted and resolved using 
double one-dimensional TLC. PA, phosphatidic acid; LPA/PS, 
lysophosphatidic acid/phosphatidylserine; PI, phosphatidylino- 
sitol. 

glycerol could not be clearly ascertained. Fig. 3 a shows 
that ethanol did not inhibit increased production of diacyl- 
glycerol during contraction under conditions that blocked 
phosphatidic acid release, which seemed to favor the pos- 
sibility of direct release. On the other hand, lysophospha- 
tidic acid was undetectable in the cells or medium at any 
time, as already mentioned. 
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Figure 8. Parallel inhibition of phosphatidic acid, arachidonic 
acid, and cyclic AMP production by ethanol. Fibroblasts in at- 
tached collagen matrix cultures (Att; open symbols) were prela- 
beled overnight with [3H]palmitic acid or [3H]arachidonic acid, or 
for 2 h with [3H]adenine. Ethanol was added to the cultures at the 
concentrations indicated for 10 min. Matrices were released (Rel, 
solid symbols) to initiate contraction. After 10 min, samples were 
treated by one of the following protocols: (a) lipids were ex- 
tracted and resolved using double one-dimensional TLC, and 
phosphatidic acid production was quantified by scanning 
densitometry; (b) arachidonic acid release was measured; or (c) 
samples were extracted and used to measure cAMP production. 
Data shown are averages and standard deviations from duplicate 
samples. 
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Ca 2+ Dependence of  Phospholipase D Activation 

Several different phospholipase D isoenzymes varying in 
cellular location and regulatory features have been identi- 
fied (Billah, 1993; Exton, 1994). To learn whether phos- 
pholipase D activated during fibroblast contraction re- 
quires extracellular Ca 2+, studies with E G T A  were carried 
out. Fig. 9 shows that addition of 3 mM E G T A  to the incu- 
bations inhibited phosphatidic acid production when at- 
tached collagen matrices were released. This concentra- 
tion of  E G T A  slightly exceeds the concentration of Ca 2+ 
in 10% FBS-containing medium and blocks contraction- 
activated cAMP signaling (He and Grinnell, 1994). Fig. 9 
also shows that inhibition of phosphatidic acid production 
by E G T A  was overcome by addition to the medium of 
2 mM CaC12 but not 5 mM MgC12. Moreover,  addition of 
calcium ionophore A23187 resulted in increased phospha- 
tidic acid production by fibroblasts in attached matrices 
even in the absence of contraction. This increase also was 
prevented, at least partially, by addition of 3 mM E G T A  
to the medium. These studies indicate that contraction- 
activation of phospholipase D requires extracellular Ca 2+ 
influx. 

Protein Kinase C Dependence of Phospholipase D 
Activation and cAMP Signaling 

In other experiments, we tested whether contraction acti- 
vation of phospholipase D is regulated by protein kinase C 
(Billah, 1993; Exton, 1994). Fibroblasts in attached col- 
lagen matrices were incubated overnight with 100 nM 12-0- 
tetradecanoylphorbol-13-acetate (TPA), which decreased 
protein kinase C activity from ~1,200 to ~ 60  pmol/min/ 
105 L D H  units (measured using an assay system purchased 
from G I B C O  B R L  [Gaithersburg, MD]). As shown in Fig. 
10, this downregulation of protein kinase C blocked con- 
traction-activated phosphatidic acid production. More- 
over, as shown in Fig. 11, inhibition was not overcome by 

Figure 10. Stress-sensitive activation of phospholipase D is inhib- 
ited by downregulation of protein kinase C. Fibroblasts in at- 
tached collagen matrix cultures were prelabeled overnight with 
[3H]palmitic acid. Designated samples also contained 100 nM 
TPA. Matrices were released (Rel) to initiate contraction for the 
times shown, and then lipids were extracted and resolved using 
double one-dimensional TLC. PA, phosphatidic acid; LPA/PS, 
lysophosphatidic acid/phosphatidylserine; PI, phosphatidylino- 
sitol. 

stimulating cells with Ca 2+ ionophore. Therefore, down- 
regulation of protein kinase C prevented phospholipase D 
activation by Ca 2÷ influx. 

If phosphatidic acid production was an upstream event 
in contraction-activated cAMP signaling, then downregula- 
tion of protein kinase C should also have blocked increased 
production of cAMP during fibroblast contraction. Table I 
shows that this was the case. That is, overnight treatment 
of fibroblasts in attached matrices with phorbol  ester had 
little effect on basal cAMP levels but markedly inhibited 
the increase in cAMP that occurred when the matrices 
were released. Downregulat ion of  protein kinase C also 
inhibited the increase in arachidonic acid production dur- 
ing contraction (data not shown). Control experiments 
ruled out the possibility that downregulation of protein ki- 
nase C resulted from nonspecific inhibition of cAMP syn- 

Figure 9, Regulation of phosphatidic acid production by extra- 
cellular Ca 2÷. Fibroblasts in attached collagen matrix cultures 
(Att) were prelabeled overnight with [3H]palmitic acid. Cultures 
were incubated 10 min in medium containing 3.0 mM EGTA, fol- 
lowed by addition of 2.0 mM CaC12 or 5.0 mM MgCI2 to the des- 
ignated samples. Matrices were released (Rel) to initiate contrac- 
tion. Alternatively, 50 IxM A23187 was added to attached 
cultures. 5 min after initiating contraction or 10 min after adding 
A23187, lipids were extracted, and phospholipids were resolved 
using double one-dimensional TLC. PA, phosphatidic acid; LPA/ 
PS, lysophosphatidic acid/phosphatidylserine; PI, phosphatidyl- 
inositol. 

Figure 11. Ca 2+ influx is unable to overcome the inhibition of 
stress-sensitive signaling after protein kinase C downregulation. 
Fibroblasts in attached collagen matrix cultures were prelabeled 
overnight with [3H]palmitic acid. Designated samples also con- 
tained 100 nM TPA. A23187 was added at concentrations indi- 
cated for 10 min, and then lipids were extracted and resolved us- 
ing double one-dimensional TLC. PA, phosphatidic acid; LPA/ 
PS, lysophosphatidic acid/phosphatidylserine; PI, phosphatidyl- 
inositol. 
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thesis since the inhibitory effect of overnight TPA treat- 
ment could be overcome by adding arachidonic acid to the 
cells (Table I). 

Discussion 

The goal of our research has been to characterize mecha- 
noregulated events that occur when fibroblasts in stressed 
collagen matrices contract the matrix. Previously, we de- 
scribed a contraction-activated signal transduction path- 
way. This pathway involves influx of extracellular Ca 2+ 
ions and increased production of arachidonic acid result- 
ing within min in a 10-20-fold increase in cellular cAMP 
levels and activation of protein kinase A (He and Grinnell, 
1994). Here we report that within 5 min after initiating 
contraction, a burst of phosphatidic acid release was de- 
tected in fibroblasts that had been radiolabeled with 
[3H]palmitic acid or [3H]arachidonic acid. Phosphatidic 
acid production was found to depend on activation of 
phospholipase D. Activation was regulated by extracellu- 
l a r  C a  2+ ions and protein kinase C, and in this regard re- 
sembled a number of other instances of agonist-induced 
activation of phospholipase D (Billah, 1993; Exton, 1994). 

Phospholipase D was implicated in production of phos- 
phatidic acid based on our observation that a transphos- 
phatidylation reaction occurred in the presence of ethanol 
(Thompson et al., 1991; Moehren et al., 1994). Transphos- 
phatidylation resulted in formation of phosphatidyletha- 
nol at the expense of phosphatidic acid. Ethanol treatment 
of cells also inhibited by 60-70% contraction-dependent 
release of arachidonic acid and cAMP but had no effect on 
increased cAMP synthesis after addition of exogenous 
arachidonic acid or on phospholipase A2 activity subse- 
quently found in cell extracts. Other treatments that 
blocked contraction-activated cAMP signaling--chelating 
extracellular Ca 2+ (He and Grinnell, 1994) or downregu- 
lating protein kinase C (this work)--also inhibited the 
burst of phosphatidic acid release after contraction. Taken 
together, these results suggest that phosphatidic acid pro- 
duction was upstream of arachidonic acid in the contrac- 
tion-activated cAMP signaling pathway. 

Arachidonic acid could have been released from phos- 
phatidic acid indirectly through the combined action of di- 
acylglycerol and monoacylglycerol lipases (Rindlisbacher 
et al., 1987; Balsinde et al., 1991; Allen et al., 1992; Mattila 

Table L Effect of Protein Kinase C Downregulation on 
Contraction-activated cAMP Signaling 

cAMP 
Treatment (10 3 cpm) 

Art 3.9 ± 1.2 
TPA, Att 3.9 +- 0.2 

Rel 20.3 -- 3.4 
TPA, Rel 7.0 - 2.5 

Att + A A  19.0 ± 2.8 
TPA, Att + A A  15.4 - 4.1 

Fibroblasts in mechanically attached collagen matrices (Att) were treated as indicated 
with or without 100 nM TPA for 24 h. Subsequently, the cultures were released to ini- 
tiated contraction (Rel) or treated with araehidonic acid (AA) (final concentration = 
0.5 mM). cAMP levels were measured t0 min later. The culture medium contained 10 
ixCi/ml [3H]adenine. Data presented are from three separate experiments. 

et al., 1993) after conversion of phosphatidic acid to 1,2- 
diacylglycerol (Billah et al., 1989; Ahmed et al., 1994). Al- 
though we observed a twofold increase in 1,2-diacylglyc- 
erol during contraction, this increase was not blocked by 
ethanol. Moreover, the rise in 1,2-diacylglycerol levels 
took place earlier than the increase in phosphatidic acid 
and remained constant over the time during which phos- 
phatidic acid dramatically increased and then decreased. 
Therefore, it seems unlikely that 1,2-diacylglycerol was re- 
leased from phosphatidic acid. Rather, the early 1,2- 
diacylglycerol increase may have occurred as a result of 
phospholipase C action on phosphatidylcholine (van Blit- 
terswijk et al., 1991; Fisher et al., 1991; Carnero et al., 
1994). 

Another possibility was that arachidonic acid release oc- 
curred directly through the action of phospholipase A2 on 
phosphatidic acid (Billah et al., 1981). Consistent with this 
possibility, we found that human fibroblasts contained 
phospholipase A2 activity that liberated arachidonic acid 
from vesicles prepared with arachidonyl-phosphatidic 
acid (He, J., and F. Grinnell, unpublished observations), and 
cellular phospholipase A2 activity increased about twofold 
during contraction. Nevertheless, we were unable to de- 
tect the predicted increase in lysophosphatidic acid release 
that should have accompanied arachidonic acid produc- 
tion from phosphatidic acid, but lysophosphatidic acid 
may have been converted rapidly to other metabolites or 
degraded. We did detect lysophosphatidyleholine in fi- 
broblasts in stressed matrices, but levels of this metabolite 
did not increase during contraction, which suggests that 
arachidonic acid was not released by phospholipase A2 ac- 
tivity on phosphatidylcholine. Whatever the mechanism of 
arachidonic acid release from phosphatidic acid, it should 
be noted that activation of phospholipase D after contrac- 
tion was tightly regulated, and phosphatidic acid declined 
to basal levels within 30-60 min. Since elevated cAMP has 
been shown to inhibit agonist-induced phospholipase D 
activation in other systems (Agwu et al., 1991; Tyagi et al., 
1991; Garcia et al., 1992), it may be that the increase in 
phosphatidic acid production after contraction was tran- 
sient because of a feedback effect of cAMP. Based on pre- 
viously published studies, the site of cAMP inhibition 
probably occurs upstream of phospholipase D. This could 
be at the level of influx of extracellular Ca 2÷, but also 
might involve other mechanisms previously shown to reg- 
ulate phospholipase D such as tyrosine kinases (Uings et 
al., 1992; Cook and Wakelam, 1992; Dubyak et al., 1993) 
or small G proteins (Brown et al., 1993; Cockroft et al., 
1994; Malcolm et al., 1994), which have yet to be studied in 
the context of the contraction-activated signaling pathway. 

Although regulation of phospholipase D by cAMP as 
described here is consistent with the data, the results are 
somewhat paradoxical since previous studies with cultured 
fibroblasts have shown that phosphatidic acid inhibits ade- 
nylyl cyclase (Clark et al., 1980; Murayama and Ui, 1987; 
Wang et al., 1994). One possible explanation for this para- 
dox is in the extracellular environment of the cells. That is, 
differences in adhesive interactions of fibroblasts in mono- 
layer culture and in collagen matrices may prepare the 
cells to react to external signals through different signaling 
pathways. 

Another unique feature of the contraction-activated sig- 
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naling pathway is that the cells become quiescent. This is 
in marked contrast to other systems in which phospholi- 
pase D activation has been proposed to play a role in cell 
mitogenesis (Boarder, 1994), although this function of 
phospholipase D is controversial (Paul and Plevin, 1994). 
The mechanism by which fibroblasts in collagen matrices 
become quiescent after matrix contraction can be attrib- 
uted at least in part to decreased PDGF receptor function 
(Tingstr6m et al., 1992; Lin and Grinnell, 1993). Increased 
production of cAMP also may be important in quiescence 
considering recent findings that cAMP can block the ex- 
tracellular signal-regulated kinase pathway required for 
mitogenic activation (Cook and McCormick, 1993; Wu et 
al., 1993; Graves et al., 1993; Sevetson et al., 1993; Burger- 
ing et al., 1993). 

Finally, it should be noted that beyond identifying phos- 
pholipase D as an early step in contraction-activated 
cAMP signaling, our studies now show that protein kinase 
C regulates the overall pathway. That is, downregulation 
of protein kinase C by overnight treatment with phorbol 
ester resulted in inhibition of the contraction-dependent 
increased production of phosphatidic acid, arachidonic 
acid, and cAMP. Since the effect of protein kinase C 
downregulation could be overcome by arachidonic acid 
but not by calcium ionophore, the site of protein kinase C 
regulation appeared to be upstream of phosphatidic acid 
production and arachidonic acid production and down- 
stream of Ca 2+ influx, probably involving not only phos- 
pholipase D, but also phospholipase A2 activity (Lin et at., 
1993). 
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