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Quality by Design (QbD) and chemometric models are different sides of the same coin. While QbDmodels
utilize experimentally designed settings for optimization of some quality attributes, these settings can
also be utilized for chemometric prediction of the same attributes. We aimed to synchronize optimization
of comparative dissolution results of carvedilol immediate release tablets with chemometric prediction of
dissolution profile and content uniformity of the product. As an industrial application, selection of vari-
ables for optimization was done by performing risk assessment utilizing the archived product records at
the pharmaceutical site. Experimental tablets were produced with 20 different settings with the variables
being contents of sucrose, sodium starch glycolate, lactose monohydrate, and avicel Ph 101. Contents of
the excipients were modelled with F1 dissimilarity factor and F2 similarity factor in HCL, acetate, and USP
dissolution media to determine the design space. We initiatively utilized Partial Least Square based
Structural Equation Modelling (PLS-SEM) to explore how the excipients and their NIR records explained
dissolution of the product. Finally, the optimized formula was utilized with varied content of carvedilol
for chemometric prediction of the content uniformity.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Data-driven solutions have been extensively utilized during the
last two decades. Many fields widely applied these solutions, such
as pharmaceutical industry, healthcare, food, and agriculture
(Granato et al., 2018). Each field keeps looking for a cheap source
of data that can be processed with advanced analytics to yield
valuable and expensive information. In the field of pharmaceutical
industry, the use of non-destructive spectral techniques along with
multi-variate calibration models has delivered potential benefits to
the industry (Palou et al. 2012).

Pharmaceutical industry utilizes data-driven solutions in both
Research& Development (R&D) and routine manufacturing phases
(Rantanen and Khinast, 2015). FDA currently supports application
of improved development approaches e.g., quality by design
(QbD) in R&D phase it also supports use of process analytical tech-
nology (PAT) and multi-variate calibration models as tools to sup-
port continuous manufacturing (FDA, 2019). Regulatory bodies are
developing standards and controls for this conceptual shift in the
pharmaceutical development and manufacturing, however, deficits
in process monitoring and data collection are still limiting the use
of these solutions. Hence, the guidelines require to include risk
assessments for verifying how deficits in process monitoring and
data collection would affect quality of the products (FDA, 2004).

ICH Quality Implementation Working Group (QIWG) points to
consider for ICH Q8/Q9/Q10 guidelines categorized the mathemat-
ical models used in pharmaceutical development and manufactur-
ing into three categories:

(a) Low impact models; supporting processes of development
and manufacturing (e.g., formulation optimization),
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(b) Medium-impact models; contributing to assuring quality of
the products but they are not the sole indicators for their
quality,

(c) Quality and high impact models when prediction from the
model is a significant indicator of the quality of the product.

The document also provides standards for validation of models
and verification of prediction accuracy throughout the life cycle of
the product. Validation of the models can be performed by several
means; however, the impact and intended use of the model deter-
mines the most suitable validation method (ICH, 2012).

ICH Q8 R2 defines QbD models as multi-dimensional combina-
tion of variables which are related to quality of the product (e.g.,
formulation attributes and process controls). Design space incor-
porates a pre-defined confidence interval for every parameter asso-
ciated with product quality in the design. Within these
combinations of confidence intervals, the quality of the product
is assured (Mishra et al., 2018; Swain et al., 2019). These models
can fully rely on historical data or prior experience. However,
prospective studies are often needed especially when high variabil-
ity in the results of historical data exists (Singh et al., 2017). Har-
monizing with QbD models, NIR spectral techniques have been
utilized for optimization of various attributes of the pharmaceuti-
cal industry (Haneef and Beg, 2021; Taleuzzaman et al., 2021).
Some of these attributes are process related e.g., fluidized bed
granulation and tablet coating (Liu et al., 2017), drying (Pauli
et al., 2018), monitoring of blending (Harting and Kleinebudde,
2019; Nagy et al., 2018; Riolo et al., 2018), other attributes are
related to quality control testing of the product e.g., content unifor-
mity testing (Arruabarrena et al., 2014; Nagy et al., 2017), dissolu-
tion testing (Galata et al., 2021, 2019; Ojala et al., 2020; Zhao et al.,
2019), particle size determination (Bittner et al., 2011; Pauli et al.,
2019), and detecting polymorphs and counterfeit drugs (Dégardin
et al., 2016; Terra and Poppi, 2014).

One of the most important applications of these techniques is
predicting in-vitro dissolution, which became a vital test since con-
firmed to be correlated with drug in-vivo bioavailability
(Dokoumetzidis and Macheras, 2006). FDA recently recommended
spectral techniques and mathematical models as a potential alter-
native to the convenient methods of dissolution testing (FDA,
2019). Researchers have been extensively deploying multi-variate
models for prediction of dissolution using various mathematical
algorithms such as Principal Component Regression (Otsuka
et al., 2007), Partial Least Square (Galata et al., 2019; Zhao et al.,
2019), and Artificial Neural Networks (Galata et al., 2019). In par-
allel, various methods were also utilized for optimization of cali-
bration and modeling, such as mathematical preprocessing of
spectral data (Martens and Stark, 1991), and wavelength selection
methods (Deng et al., 2015). These methods were useful in increas-
ing predictability of models by removing uninformative or noisy
regions of the spectral data. Of the limitations of these models is
that NIR spectra can detect both purposeful variables (e.g., process
related and formulation related variables) which are intentionally
varied for calibration, and it also can detect non-purposeful vari-
ables (e.g., water content, particle size distribution and polymor-
phism) (Zhong et al., 2020). This phenomenon has pros and cons,
definition of purposeful and non-purposeful variables depends on
identity of the preselected calibrating variables. Hence, researchers
are prompted to carefully select calibration variables to get a
robust, precise, and reliable calibration models.

Researchers approached different methodologies for prediction
of dissolution profile of tablets, for instance, Freitas et al designed
formulations with varied excipient contents (Freitas et al., 2005),
Galata et al designed formulations with varied compression forces
(Galata et al., 2019), while Zhao et al designed formulations with
varied combination of formulation and process related variables
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(Zhao et al., 2019). Generally, there are substantial variables to
be considered for predicting reliable results of content uniformity
and dissolution testing of solid dosage forms. Some of these vari-
ables are process related (compression force, blending time, etc.),
and others are formulation related (concentration of excipients,
particle size distribution of constituents, etc.). Although NIR spec-
troscopy is reported to be capable of capturing both process and
formulation related variables to a great extent, adapted modeling
strategy for each product should be considered (Zhao et al., 2019).

Our current study aimed to improve quality of carvedilol imme-
diate release tablet on industrial scale. Carvedilol belongs to bio-
pharmaceutical classification system (BCS) class II. The drug has
low solubility and relatively poor bioavailability of about 25%,
hence, variation in formulation and process related parameters
would potentially affect the dissolution of the drug (Fernandes
et al., 2018). Another challenge was performing chemometric pre-
diction of dissolution profile on immediate release tablets, for
which dissolution results may not vary among the experimental
formulations at all the tested time points. On the other hand, the
product was suitable for prediction of content uniformity with
NIR multivariate calibrations, as carvdilol was representing 25%
of the total weight of tablet. While previous studies have only uti-
lized experimentally designed formulations for chemometric pre-
diction of some quality attributes, this current study initiatively
aimed to utilize a set of experimentally designed formulations to
synchronize optimization of comparative dissolution of Carvedilol
immediate release tablets with chemometric prediction of dissolu-
tion profile and content uniformity. We primarily selected these
tests for being time consuming and require high cost to be pro-
cessed compared to other QC tests. As a real-life application, we
conducted a risk assessment to determine predictor variables to
be utilized for optimization of comparative dissolution profile.
The risk assessment has underlined four excipients as potential
variables for optimization. We experimentally produced formula-
tions with varied contents of these excipients and built an QbD
model for optimization. We further utilized the NIR records of
these formulations for chemometric prediction of the dissolution
profile. After determination of the optimized formula, it was uti-
lized with varied content of carvedilol for chemometric prediction
of the content uniformity. We initiatively built a Partial Least
Square- Structural equation model (PLS-SEM) to underline the sig-
nificant variables that affect dissolution results of the product.
2. Materials and methods

2.1. Materials

Carvedilol was supplied from Cadila Pharmaceuticals, Ahmed-
abad, India. Sucrose was supplied from Cristalco, Paris, France. Avi-
cel Ph 101 was supplied from Mingtai chemical Co. LTD, Taiwan.
Lactose monohydrate was supplied from Megelle pharmaceuticals,
Waserburg, Germany. Sodium Starch glycolate was supplied from
Roquette freres, Lestrem, France. Aerosil was supplied from Evonik
industries, Essen, Germany. Polyvinylpyrrolidone (PVP) was sup-
plied from Jiaozuo Zhongwei Special Products Pharmaceutical
Co., Ltd, China. Croscarmellose was supplied from Blanver FARMO-
QUIMICA LTDA, Brazil. Magnesium Stearate was supplied from
accent microcell Pvt. Ltd, India.
2.2. Methods

2.2.1. Experimental design
Based on a conducted risk assessment included different formu-

lation related variables (risk assessment table is included in sup-
plementary material), contents of four excipients (sucrose,
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sodium starch glycolate, lactose monohydrate and avicel Ph 101)
were determined as potential predictor variables for optimization
of comparative dissolution profile. A mixture design model
(Gervasi et al., 2019) was performed using Design Expert software
(Version 10.0.0. Stat-Ease), modifying contents of the selected
excipients. Sucrose content ranged from 10 to 25 mg, sodium
starch glycolate content ranged from 5 to 10 mg, lactose monohy-
drate content ranged from 20 to 35 mg, and avicel Ph 101 content
ranged from 5 to 15 mg. All experimental runs contained fixed con-
tents of carvedilol, PVP, aerosil and Mg stearate (25, 3,4, and 2 mg
respectively), maintaining the tablet weight to 100 mg. 20 runs
were suggested by the software as presented in Table 1.

The experimental tablets were subjected to NIR measurement
and further to comparative dissolution testing with the innovator
using reference HPLC method. The calculated F1 and F2 factors
for each formula in HCL, acetate and USP medium were added to
the QbD model as responses. The recorded NIR spectra along with
HPLC dissolution results in USP medium were utilized for building
a chemometric model for prediction of dissolution results. Four
settings with varied comparative dissolution results were formu-
lated on larger scale (500 tablets) and were utilized for external
testing of the chemometric model.

Based on design space of QbD models, a formulation setting
with optimum comparative dissolution results was determined.
This formulation was further utilized with varied content of Carve-
dilol to construct NIR chemometric model for prediction of content
uniformity. Five different settings were manufactured modifying
content of carvedilol to 90%, 95%, 100%, 105% and 110% of the label
claim. Three settings (90%, 100%, 110% of the label claim) were for-
mulated on a larger scale (500 tablets) for external validation of the
chemometric model.

2.2.1.1. Tablet manufacturing. The experimental tablets consisted of
eight components: carvedilol (25 mg, as API), sucrose (10–25 mg,
as binding agent for wet granulation), lactose monohydrate
(20–35 mg, as diluent), avicel pH 101 (5–15 mg, as diluent),
sodium starch glycolate (5–10 mg, as disintegrating agent), PVP
K30 (3 mg, as binder), aerosil 200 (4 mg, as glidant), and Mg stea-
rate (2 mg, as glidant). API was blended manually with grinded
sucrose, avicel pH 101, PVP k30 & lactose monohydrate. This pow-
der mixture was sieved through 0.5 mm sized sieve (no. 35) and
then granulated with water. The wet granules were dried in Mem-
mert oven (Memmert GmbH, Germany) at 45 �C for approximately
3 h. Aerosil 200 was added to the dried granules and the mixture
Table 1
Applied experimental settings for optimization. The amounts are presented in mg.

Run Avicel Ph 101 Lactose Monohydrat

1 15 31
2 10.8 25.44
3 15 25.25
4 12.16 29.22
5 5 28
6 11 20
7 5.52 30.89
8 9.11 30.43
9 15 25.25
10 10 35
11 15 25.25
12 15 20
13 10 35
14 10 35
15 5 35
16 5 35
17 9.61 26.27
18 5 28
19 15 35
20 13.54 30.35
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was sieved through 0.5 mm sized sieve. Afterwards, sodium starch
glycolate was added, and this blend was then lubricated with Mag-
nesium stearate. Finally, compression was performed using 6 mm
round concave punch on Vanguard single tablet press (Vanguard,
USA) with 100 mg average tablet weight and hardness of 6–8 kp.
For content uniformity testing, the tablets consisted of same com-
ponents modifying content of the API to 90%, 95%, 100%, 105% and
110% of the label claim.

2.2.1.2. NIR spectroscopy. NIR spectroscopy measurements were
performed using Bruker Optics MPA (Multi-Purpose Analyzer) FT-
NIR spectrometer (Bruker Optik GmbH, Ettlingen, Germany) with
high intensity tungsten NIR source and InGaAs detector equipped
with a fiber optic probe for measurement of solids. Spectra were
recorded in range of 12000–4000 cm�1 wavenumber range setting
for 16 cm�1 spectral resolution. Each tablet was scanned 16 times
per each single measurement. Reflectance measurements were
carried out for dissolution testing while absorbance measurements
were carried out for content uniformity testing (Shi and Anderson,
2010).

2.2.1.3. NIR for dissolution testing. Three repeated NIR measure-
ments (reflectance mode, Bruker MPA with solid probe) were per-
formed for three tablets of each of the twenty experimental
formulations. 180 NIR spectra were recorded and further utilized
along with HPLC dissolution results of these experimental tablets
to build a chemometric model for prediction of dddissolution
results in USP medium. NIR spectra were also recorded for four set-
tings of experimental tablets manufactured on larger scale for
external validation of the chemometric model.

2.2.1.3.1. NIR for content uniformity. Five repeated NIR measure-
ments (absorbance mode, Bruker MPA with solid probe) were per-
formed for five tablets of each experimental formulation settings.
The recorded 125 NIR spectra were further utilized along with
HPLC assay results of these tablets to build a chemometric model
for prediction of content uniformity. NIR spectra were also
recorded for three settings of experimental tablets manufactured
on larger scale for external testing of this chemometric model.

2.2.1.4. In vitro dissolution testing. Dissolution profiles of the exper-
imental tablets were recorded utilizing a Hanson SR8-Plus dissolu-
tion tester (Chatsworth, CA, USA) under the following conditions:
900 ml dissolution medium, paddle type, 50 rpm. Samples were
taken at 7 time points (5, 10, 15, 20, 30, 45 and 60 min). Compar-
e Sucrose Sodium Starch Glycolate

10 10
24.75 5
17.64 8.12
14.62 10
25 8
25 10
20.11 9.48
21.46 5
17.64 8.12
13.26 7.74
17.64 8.12
25 6
13.26 7.74
13.26 7.74
21 5
16 10
20.13 10
25 8
11 5
17.12 5
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ative dissolution testing with the innovator was performed in three
dissolution media as follows: USP medium; 0.7% (7 ml/L) HCL
adjusted by sodium hydroxide 50% to pH 1.4 (USP, 2018), acetate
pH 4.5, and 0.1 N HCL. HPLC analysis for dissolution samples was
performed using a Waters Alliance system with UV detector fol-
lowing in-house validated method; the mobile phase was prepared
by dissolving potassium phosphate (2.7 g/L) adjusted to pH 2.0,
adding 450 ml buffer solution to 550 ml of acetonitrile. An L1 pack-
ing 4.6 mm� 25mm columnwas utilized for the analysis, at a flow
rate of 1 ml/min and injection volume of 20 ml. Absorbance of sam-
ples was measured at wavelength of 240 nm.

2.2.1.5. Content uniformity testing. HPLC assay of tablets was per-
formed following the method stated in the monograph of carvedi-
lol tablets in the USP Pharmacopoeia. A sample of powered tablets
-equivalent to 25 mg carvedilol- were utilized for the analysis.
Potassium phosphate buffer adjusted to pH 3.0 ± 0.1 was utilized
as buffer solution, the mobile phase was prepared by dissolving
sodium dodecyl sulphate in the buffer solution (1.04 g/150 ml),
adding 720 ml of acetonitrile and complete to 2L with water. An
L1 packing 4.6 mm � 25 mm column was utilized for the analysis,
at a flow rate of 1 ml/min and injection volume of 25 ml. The absor-
bance of samples was measured at wavelength of 240 nm (USP,
2018).

2.3. Data analysis

QbD models were generated by Design expert 10 software.
Optimization of wavelength selection was performed with OPUS
7 Quant software (Bruker optics, Germany). The descriptive
statistics and chemometrics were performed using The
Unscrambler X (Version 10.5, Camo Analytics, Norway). Structural
Equation Modelling (SEM) was performed using SmartPLS 3 soft-
ware (Version 3, Germany).
3. Results and discussion

3.1. Formula optimization

After dissolution profiles were recorded in HCL, acetate and USP
dissolution media, dissimilarity factors F1 and similarity factors F2
were calculated for the experimental tablets versus innovator
using reference HPLC method. ANOVA models were utilized to
assess contribution of the varied contents of excipients to variance
of the calculated similarity and dissimilarity factors. Hence, 6 mod-
els were performed, the results are presented in Table 2.

Values of predicted R2 of USP models were higher than 50%,
indicating a reasonable explanation of the calculated F1 and F2 fac-
tors with varying contents of the excipients. On the other hand,
values of predicted R2 of HCL and acetate models were lower than
50%, indicating that the change in contents of the excipients did
not explain much of the variance of the calculated F1 and F2 factors
for these media. Accordingly, we could not estimate confidence
intervals for contents of excipients for optimizing the calculated
F1 and F2 factors in HCL and acetate media. Hence, we primarily
utilized the calculated F1 and F2 factors in USP medium as
response variables for optimization of formulation and determina-
tion of the design space. Contents of Sucrose and Sodium starch
glycolate were significant predictors for F1 dissimilarity factor
(p < 0.0001, and p < 0.000 respectively) and F2 similarity factor
(p < 0.000, and p < 0.000 respectively) in the USP medium.

As we primarily aimed to synchronize optimization of compar-
ative dissolution results with chemometric prediction of USP disso-
lution results, we proceeded to select a time point, at which the
USP dissolution results of the experimental tablets were most
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varied, and further integrate it as response in both chemometric
and QbD models. The variation in dissolution results was assuring
effect of the varied contents of excipients. In contrast to similarity
factors as response variables in the QbD model, this newly inte-
grated response should be mainly calculated for each single tablet
of the experimental formulations, so it was suitable to be coupled
with NIR records of each tablet for chemometric prediction of dis-
solution. Variations in USP dissolution results at all tested time
points for the twenty experimental runs are presented in Fig. 1.
Variance of dissolution results across the tested formulations was
increasing starting from the first time point (5 min), reaching max-
imum variance at the third time point (15 min), and then start to
decrease till it reaches the lowest variance at the last time point
(60 min). Among USP dissolution results at each time point, disso-
lution at 15 min was the most correlated variable (Pearson corre-
lation) with the F1 and F2 factors in USP medium (r = 0.7,
p < 0.000 and �0.73, p < 0.000 respectively), it had also good cor-
relation with the results at the other time points (correlation
matrix between dissolution results is supplied in supplementary
material).

To verify selection of USP dissolution result at 15 min as a
response in the QbDmodel, dissolution results at the first four time
points of testing -time points with the highest variances- along
with USP similarity factors were subjected to two step cluster anal-
ysis using SPSS software (V25.0, IBM, USA). This clustering algo-
rithm optimally divided the results into three clusters based on
their mean values of the input variables. Again, dissolution result
at 15 min was the most important predictor, indicating it has the
highest variance among the input variables. 18.3% of the experi-
mental tablets (cluster 3) were meeting the criteria of F1 and F2
factors in the USP medium (mean values of 6.00 and 64.91 respec-
tively). It is worth noting that Cluster 3 was having a mean percent
of drug dissolved at 15 min of 43.65% (the lowest mean value
among the three clusters), matching with the innovator results at
this time point which ranged from 35 to 65%. Run 2 was the most
predominant formula (27.3%) in cluster 3, the results are presented
in Fig. 2.

Accordingly, amounts of excipients were modelled with new
response variable -dissolution at 15 min- using Design Expert soft-
ware. ANOVA model was significant (p = 0.0003) with predicted R2

of 0.5051, adjusted R2 of 0.6284 and the lack of fit test was insignif-
icant (p = 0.8030). Amounts of sucrose and sodium starch glycolate
were significant predictors (p < 0.000 and 0.0012, respectively).

Finally, the calculated F1 and F2 factors in USP medium along
with the dissolution results at 15 min were utilized as three
response variables for determination of the design space using
Design Expert software. The target range for F1 dissimilarity factor
was (1–15), the target range for F2 similarity factor was (50–100),
while the target range for dissolution at 15 min was (35–65%)
matching with that of the innovator. Overlay and desirability plots
for these responses are presented in Fig. 3.

The overlay plots clearly showed that the contents of sucrose
were negatively associated to F1 dissimilarity factor and positively
associated with F2 similarity factor in USP medium. Content of
sodium starch glycolate had the same association pattern to a les-
ser extent, while the contents of avicel Ph 101 and lactose mono-
hydrate did not show association with the response variables,
matching with the results of the ANOVA models. The desirability
plot suggested that the target values of the response variables
can be achieved by utilizing sucrose in range from 18 to 25 mg,
and sodium starch glycolate in range from 5 to 7.22 mg with any
convenient content of avicel Ph 101 and lactose monohydrate.
Hence, the software suggested 64 solutions to achieve the target
response variables, modifying content of the excipients within
the design space. The optimized formulation was designed by
modifying experimental formulation no. 18 which met the criteria



Table 2
The calculated dissimilarity (F1) and similarity (F2) factors, ANOVA models summary and regression coefficients.

Run F2 in USP F1 in USP F2 in HCL F1 in HCL F2 in Acetate F1 in Acetate

1 29 36 36 33 75 2
2 63 6 40 24 41 12
3 37 24 30 45 83 1
4 39 21 30 40 58 5
5 55 10 69 7 48 8
6 46 18 59 10 48 7
7 46 15 53 13 44 9
8 66 6 64 7 49 7
9 41 21 40 27 49 10
10 37 24 25 56 85 1
11 45 19 40 29 62 3
12 73 4 67 6 43 10
13 43 18 37 29 51 9
14 46 18 34 36 55 7
15 58 8 41 23 44 8
16 37 27 26 54 66 4
17 37 27 48 19 65 5
18 44 16 56 11 62 5
19 36 28 28 49 79 4
20 41 22 30 45 68 5
Models’ summary*
Predicted R2 0.5253 0.5983 0.4004 0.3896 0.1641 0.0706
Adjusted R2 0.6611 0.6976 0.5627 0.5392 0.3095 0.2162
Lack of fit (p value) 0.2427 0.1716 0.1836 0.5195 0.9758 0.9869
Standardized coefficients (p value)
Sucrose 78.97 (<0.0001) �7.16 (<0.0001) 81.21 (0.0002) �15.44 (0.0003) 26.47 (0.0042) 12.64 (0.0117)
Sod. Starch glycolate –32.07 (0.0006) 71.66 (0.0008) 37.33 (0.8203) 32.42 (0.8715) 84.23 (0.4332) �5.27 (0.1561)
Lactose monohydrate 41.6 (0.4761) 20.12 (0.7046) 20.98 (0.0128) 53.28 (0.0144) 67.66 (0.3709) 5.01 (0.6542)
Avicel pH 101 40.99 (0.5657) 28.41 (0.1022) 22.89 (0.0920) 50.28 (0.8715) 80.44 (0.1396) 3.52 (0.4578)
* All models were linear, and significant P < 0.001

Fig. 1. Variances of dissolution results in USP medium at each time point.
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for F1 and F2 factors in HCL and acetate media. Content of Sodium
starch glycolate was modified from 8 to 7 mg while content of lac-
tose monohydrate was modified from 28 to 29 mg, to pull contents
of sucrose and sodium starch glycolate into the design space. The
optimized formulation was subjected to comparative dissolution
testing with the innovator, and it met the criteria for F1 and F2 fac-
tors in HCL medium (F1 = 9 and F2 = 58), acetate medium (F1 = 3
and F2 = 63) and USP medium (F1 = 12, F2 = 52).

3.2. Chemometric model for prediction of USP dissolution profile

As discussed in the previous section, results of USP dissolution
were not varying at all tested time points in a way that allows
for chemometric prediction. After being verified to be the most cor-
related with the values of F1 and F2 factors in USP medium, we
520
used the dissolution result at 15 min as the response variable of
the chemometric prediction.

Upon NIR measurement of experimental tablets, each spectrum
consisted of 2203 spectral points. After calculation of the corre-
sponding dissolution results, we created a calibration set with
NIR spectral points as predictors’ matrix and percentage of drug
dissolved in the USP medium at 15 min as response variable.
OPUS� Quant software was used for wavelength selection and
mathematical preprocessing. The software optimally selected
1427 spectral points (9500–4000 cm -1) for calibration. Further,
orthogonal signal correction was applied as mathematical prepro-
cessing method.

The processed datapoints was subjected to Principal Compo-
nent Analysis (PCA) and Partial Least Square (PLS) regression anal-
ysis. PC1 and PC2 retained 65% and 8% respectively of the total



Fig. 2. Two step cluster analysis for four dissolution time points with the calculated similarity factors in USP medium.
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variance of the processed data points, indicating that the principal
components kept most of the information within processed spec-
tral data. The samples were classified into 3 levels based on the
value of the response variable (27.45–54.26%, 54.27–81.07% and
81.08–107.88%, respectively). The first two principal components
were able to discriminate the 3 levels of the response variable
Fig. 4.

PLS regression model was preliminary validated with leave one
out cross validation method. The model had R2 of cross validation
of 0.721 and RMSECV of 9.403. The results were adequate for appli-
cation as a medium impact model, which can efficiently predict the
level of dissolution at 15 min, indicate the similarity with the inno-
vator in USP medium, and contributes to assuring quality of the
products but they are not the sole indicators.

Four formulations (Run no. 1, 2, 12 and 15) with varied dissolu-
tion results at 15 min were prepared at larger scale (500 tablets)
for external testing of the calibration model. NIR measurements
of these experimental tablets were processed with the same math-
ematical preprocessing method of the calibration set, and then the
PLS model was used to predict the response variable. The experi-
mental tablets were further subjected to dissolution analysis with
reference HPLC method, the prediction vs HPLC results are pre-
sented in Table 3.

We further aimed to investigate how NIR explained the pre-
sented extent of variance of the response variable, and how we
could improve the percentage of explained variance and relatively
decrease prediction errors. Utilizing PCA and PLS methods, we
modeled the NIR records of the twenty experimental formulations
against the content of excipients within the experimental tablets
as response variables. Interestingly, the processed spectral data
was able to explain the variance of the content of excipients to a
great extent. Models were validated with Leave one out cross
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validation method. PCA classification showed excellent discrimina-
tion of different contents of the excipients with the processed NIR
data. The R2 of cross validation were 0.966, 0.8361, 0.963, and
0.962 for Ssucrose, sodium starch glycolate, lactose monohydrate
and avicel Ph 101, respectively. indicating for a good prediction
power. PCA classification for each of the four excipients are pre-
sented in Fig. 5.

At this point, we further proceeded to utilize Structural Equa-
tion PLS Modelling (PLS-SEM) to underline the significant paths
that explain the variance of dissolution test results. PLS-SEMmodel
was able to combine the conducted PCA and PLS models for predic-
tion of dissolution and contents of excipients into one single model
and further assess the significant predictors for USP dissolution
results at 15 min. Using smartPLS 3 software, we constructed a for-
mative PLS-SEM model in which content of excipients along with
the principal components resulted from NIR chemometric models
(content of excipients and dissolution models) were utilized as
observed variables. The observed variables in turn form latent vari-
ables for which we were assessing the interactions Fig. 6. Values
inside the circles are the R2, the values on arrows directed from
observed (yellow rectangles) to latent variables (blue circles) are
factor loadings, while the values on arrows directed latent variable
to another are regression coefficients.

The interesting finding was that the content of excipients along
their corresponding NIR principal components explained 80.4% of
the variance of NIR principal components of dissolution model.
Since it is well known that NIR is sensitive to both physical and
chemical attributes of the pharmaceutical formulations (Siddiqui
et al., 2017), we may refer the unexplained variance (19.6%) to
the unobserved calibrated variables with varying amounts of
excipients. It was clear that capability of NIR to determine concen-
tration of excipients contributes greatly and significantly to how it



Fig. 3. Overlay and desirability plots (at 15 mg of Avicel pH 101).
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explains the dissolution phenomenon, confirming the theory that
NIR is very sensitive to pharmaceutical excipients (Hédoux, 2016).

Towards NIR principal component of dissolution model, NIR
Principal components of sucrose model and sodium starch glyco-
late model had the highest standardized regression coefficients of
�0.488 and 0.370, respectively. At the final part of model, SEM-
PLS model explained 81.8% of the variance of USP dissolution
results at 15 min. We performed non-parametric bootstrapping
(5000 samples) to determine the statistically significant paths in
the model. The results are presented in Table 4.

Confirming on the results of QbD models, paths showing effect
of NIR PC scores of contents of sodium starch glycolate and sucrose
towards NIR PC scores of dissolution testing were significant
(p < 0.000 and p = 0.049, respectively). In contrast to Artificial Neu-
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ral Network (ANN) techniques, PLS-SEM was able to quantify con-
tributions of predictors and determine the significant pathways.
Hence, it could be used in later studies to quantify the contribution
of variables in mixed models which contain formulation and pro-
cess variables as predictors.

3.3. Chemometric model for prediction of content uniformity

Carvedilol was representing a considerable proportion of the
tablet weight (25%), making it suitable for accurate and precise
prediction of API content. After designing optimized formula as
discussed in section 3.1, it was utilized with different contents of
carvedilol (90%, 95%, 100%, 105%, 110% of the label claim) for NIR
prediction of content uniformity. Upon NIR measurement of exper-



Fig. 4. PC scores of dissolution experimental samples on PC1 and PC2 of the process spectral points.

Table 3
Results of HPLC vs. NIR predictions for dissolution testing at 15 min.

Run Average result of NIR prediction (%) Average result of HPLC analysis (%) Error (%) RMSEP

1 115.4 99.86 15.54 7.084457
2 43.95 40.16 3.79
12 56.61 46.91 9.7
15 34.27 35.02 �0.75

Fig. 5. PCA classification of excipients’ content with processed NIR spectral points.
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imental tablets, each spectrum consisted of 4407 spectral points.
OPUS� software optimally selected 988 spectral points ranged
from 9401 cm�1 to 7498 cm�1. Mean centering and vector normal-
ization was performed for mathematical preprocessing for selected
spectral data points. The processed data was modelled using PCA
classification and PLS regression against the HPLC analysis results
which ranged from 87.9 to 113.54%.
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Upon performing PCA on processed NIR data, PC1 retained 77%
of the total variance within the spectral data, while PC2 retained
7% (Fig. 7). The Fig. shows clustering the experimental sample into
five levels of API contents in (mg). The data were further subjected
to PLS regression, the model was preliminary validated by leave
one out cross validation method. The model had R2 of cross valida-
tion of 0.909 and RMSECV of 2.26.



Fig. 6. PLS-SEM formative model.

Table 4
Bootstrapping results for SEM-PLS Model.

Path T Statistics p values

Excipients -> Diss_15 min 0.967 0.334
Excipients -> NIR Diss scores 0.921 0.357
Excipients -> NIR Factors_ Lactose 0.845 0.398
Excipients -> NIR factors_ Avicel pH 101 1.477 0.14
Excipients -> NIR factors_ Sucrose 6.63 0.000
Excipients -> NIR factors_ sod starch glycolate 4.203 0.000
NIR Diss scores -> Diss_15 min 12.034 0.000
NIR Factors_ Lactose -> Diss_15 min 0.22 0.826
NIR Factors_ Lactose -> NIR Diss scores 0.451 0.652
NIR factors_ Avicel pH 101 -> Diss_15 min 0.443 0.658
NIR factors_ Avicel pH 101 -> NIR Diss scores 1.004 0.316
NIR factors_ Sucrose -> Diss_15 min 0.905 0.366
NIR factors_ Sucrose -> NIR Diss scores 1.965 0.049
NIR factors_ sod starch glycolate -> Diss_15 min 1.252 0.211
NIR factors_ sod starch glycolate -> NIR Diss scores 3.599 0.000
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3 formulations (90%, 100% and 110% of the label claim) were
prepared on larger scale (500 tablets) for external validation of
the model. We aimed to test the points at the extremes of the cal-
ibration curve along with the target point at 100% of the label
claim. After NIR measurement of the experimental tablets, spectral
524
data was processed with the same methods and utilized for predic-
tion of carvedilol content. Results are presented in Table 5, it
revealed that the model is good for application as a medium
impact model, which contributes to assuring quality of the prod-
ucts, but they are not sole indicators.
4. Conclusion

Pharmaceutical industry is convoying the great advancements
in spectral techniques and mathematical processing of spectral
data. There is a remarkable amount of data that can be produced
upon in-line spectral monitoring of the pharmaceutical products.
However, selection of calibrating variables remains to be the great-
est challenge in face of these revolutionary techniques. In real-life
pharmaceutical application of process analytical technology (PAT),
the calibrating variables should be defined depending on the
intended impact (Low-impact, Medium-impact, and High-impact)
of the model along with the chemical and physical attributes of
the pharmaceutical product. The current work aimed to synchro-
nize the QbD model for optimization of the comparative dissolu-
tion results with medium-impact chemometric models that
support in-line monitoring of content uniformity and dissolution



Fig. 7. PCA classification of content uniformity samples with NIR processed spectral points.

Table 5
Actual and predicted results of content uniformity test.

Average result of NIR
prediction (%)

Average result of HPLC
analysis (%)

Error
(%)

RMSEP

91.95 90.53 1.42 2.418684
102.61 99.79 2.82
108.87 110.76 �1.89
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testing of the product. Selection of calibrating variables of QbD
model was carried out by investigating critical process parameters
(CPPs) and the historical quality control results of the product.
Twenty different settings of varied concentrations of excipients
were utilized for optimization of the formulation and for calibrat-
ing the in-vitro USP dissolution chemometric model. The opti-
mized formula was utilized with varied contents of the API for
calibrating the content uniformity chemometric model. Four set-
tings of dissolution experimental tablets and three settings of con-
tent uniformity tablets were produced on larger scale for external
testing of the chemometric models. The produced chemometric
models were suitable as medium-impact models. NIR spectra also
perfectly predicted the contents of the excipients. Combining PCA
and PLS models for prediction of USP dissolution and the contents
of excipients into one PLS structural equation modeling (PLS-SEM)
revealed the significant paths that contributes to explanation of
dissolution phenomenon.
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