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Abstract: Accumulating evidence indicates that the reliable gene signature may serve as an
independent prognosis factor for lung adenocarcinoma (LUAD) diagnosis. Here, we sought to
identify a risk score signature for survival prediction of LUAD patients. In the Gene Expression
Omnibus (GEO) database, GSE18842, GSE75037, GSE101929, and GSE19188 mRNA expression
profiles were downloaded to screen differentially expressed genes (DEGs), which were used to
establish a protein-protein interaction network and perform clustering module analysis. Univariate
and multivariate proportional hazards regression analyses were applied to develop and validate
the gene signature based on the TCGA dataset. The signature genes were then verified on GEPIA,
Oncomine, and HPA platforms. Expression levels of corresponding genes were also measured by
qRT-PCR and Western blotting in HBE, A549, and PC-9 cell lines. The prognostic signature based
on eight genes (TTK, HMMR, ASPM, CDCA8, KIF2C, CCNA2, CCNB2, and MKI67) was established,
which was independent of other clinical factors. The risk model offered better discrimination between
risk groups, and patients with high-risk scores tended to have poor survival rate at 1-, 3- and 5-year
follow-up. The model also presented better survival prediction in cancer-specific cohorts of age,
gender, clinical stage III/IV, primary tumor 1/2, and lymph node metastasis 1/2. The signature genes,
moreover, were highly expressed in A549 and PC-9 cells. In conclusion, the risk score signature could
be used for prognostic estimation and as an independent risk factor for survival prediction in patients
with LUAD.

Keywords: lung adenocarcinoma; gene signature; overall survival; prognosis; bioinformatic analysis

Int. J. Mol. Sci. 2020, 21, 8479; doi:10.3390/ijms21228479 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/21/22/8479?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21228479
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 8479 2 of 20

1. Introduction

Lung cancer is still the deadliest cancer type worldwide. More than 1.6 million new patients
are diagnosed each year with lung cancer, and the disease is associated with poor quality of life and
high expenditure [1,2]. Lung adenocarcinoma (LUAD) is considered to be the most frequent type
of lung cancer, and approximately 40% of lung cancer patients have LUAD [3]. Despite advances
in cancer therapy in the past years, the prognosis of LUAD patients is still unsatisfactory, with poor
overall survival (OS) rate. It is well known that the genetic alterations have critical functions on
critical biological pathways during LUAD development and progression, and further promote the
recurrence of cancer as well as lower the survival rate of patients [4,5]. Thus, it is necessary to identify
reliable predictors for prognostic estimation, which could bring tremendously guiding value in the
management of the LUAD. Especially, the construction of multiple-gene signature would benefit
LUAD patients from prognostic prediction.

The widespread application of gene expression profiles and the availability of public genomic
datasets enable researchers to study and elucidate the underlying molecular mechanisms of diseases at
genome and transcriptome levels [6–8]. With the integration of genomics technology and bioinformatics
analysis, gene microarrays have been widely applied to collect and study gene expression profiles
in several cancer types [9,10]. While these tools allowed researchers to screen for tumor-associated
genes and identify the core prognosis factors, a single gene biomarker cannot offer efficient survival
prediction. A risk model based on multiple genes may offer a better prognostic factor for predicting the
survival of patients [11,12]. In this study, we aimed to establish a multiple-gene risk score signature
via systematic bioinformatics analysis.

Here, we obtained four gene expression profiles from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) and used these profiles to collect differentially expressed
genes (DEGs) and to identify the signature genes. We then constructed protein-protein interaction
(PPI) and subsequently performed a clustering module and biological pathways enrichment analyses.
We adopted univariate and multivariate Cox proportional hazards regression analyses to construct the
risk score model, and then used survival analyses as well as the receiver operating characteristic (ROC)
curve to verify the sensitivity and specificity of this model. We also illustrate the prognostic value of
the risk score signature. The detailed workflow of this work is provided in Figure 1.

https://www.ncbi.nlm.nih.gov/geo/
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Figure 1. Flow chart for the construction of a risk score model in lung cancer. 

  

Figure 1. Flow chart for the construction of a risk score model in lung cancer.
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2. Results

2.1. Identification of 573 DEGs Shared by Four GEO Profiles

To screen the DEGs between LUAD and normal lung tissues, we utilized the GSE18842, GSE75037,
GSE101929, and GSE19188 gene expression profiles from the GEO database. The clinical characteristics
of lung cancer patients contained in the Cancer Genome Atlas (TCGA) and these four GEO datasets are
shown in Table 1. It is noteworthy that data on some clinical characteristics (particularly T classification,
N classification, and M classification) were not provided for the four GEO datasets. The DEGs were
screened in each of the four GEO datasets, respectively. First, we found 1840 DEGs in GSE18842,
2856 DEGs in GSE19188, 1959 DEGs in GSE75037, and 1458 DEGs in GSE101929, respectively. Of them,
812, 1313, 792, and 553 genes were upregulated and 1028, 1543, 1167, and 905 genes were downregulated
in GSE18842, GSE19188, GSE 75037, and GSE101929 datasets, respectively (Figure 2A–D). Then, a total
of 573 overlapping DEGs (197 upregulated and 376 downregulated)were screened among these four
profiles (Figure 2E,F), which were used for the following analyses.These common DEGs significantly
forcused on mitotic nuclear division (biological process, BP),extracellular matrix (cellular component,
CC),and extracellular matrix structural constituent (molecular function, MF), as well as other functional
pathways (Supplementary Figure S1A). Moreover, cytokine-cytokine receptor interaction, IL-17
signaling pathway, p53 signaling pathway and cell cycle were also main signaling pathways enriched
by the 573 overlapping DEGs (Supplementary Figure S1B).

2.2. Candidate Core Genes Identification

STRING and Cytoscape 3.6.0 software programs were used to construct PPI network for the
573 overlapping DEGs and the network included 502 nodes and 4320 edges (Figure 3A). Moreover,
we obtained four clustering modules from Cytoscape’s MCODE plug-in. Supplementary Table S1
has shown that Cluster 1 included 72 nodes and 2326 edges with the highest MCODE score 65.521.
Furthermore, it significantly focused on cell cycle, DNA replication, Mitotic M-M/G1 phases, M Phase,
and other signaling pathways (adjusted p < 0.05) (Figure 3B). Meanwhile, other cluster modules were
mainly enriched in cell surface interactions at the vascular wall, Hemostasis, Beta3 integrin cell surface
interactions, and Peptide ligand-binding receptors (adjusted p < 0.05) (Figure 3C–E). More details are
provided in Supplementary Table S2. In this study, clustering module 1 was considered as the key
module. Then, the top 30 genes with largest degrees of connectivity in cluster 1 were shown in Table 2.
We selected the first 20 genes with the highest degrees of connectivity as the candidate core genes for
further study.

2.3. The Risk Model Based on the Eight Genes is Verified as an Independent Prognosis Factor

To establish the gene expression signature, we performed univariate and multivariate Cox
regression analyses for the 20 candidate core genes and identified eight DEGs (TTK, HMMR, ASPM,
CDCA8, KIF2C, CCNB2, MKI67, and CCNA2), as shown in Table 3. The risk score for OS was calculated
as follows:

Risk score = ((−0.462) × TTK expression level) + (0.633 × HMMT expression level)
+ ((−0.550) × ASPM expression level) + ((−1.309) × CDCA8 expression level)
+ (1.188 × KIF2C expression level) + ((−0.474) × CCNB2 expression level)
+ (0.570 ×MKI67 expression level) + (0.484 × CCNA2 expression level).
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Table 1. Clinical characteristics of patients with lung cancer in different datasets.

Characteristic TCGA Data (n, %) GSE18842 (n, %) GSE75037 (n, %) GSE101929 (n, %) GSE19188 (n, %)

Platform Illumina HiSeq2000 RNA
sequencing platform

Affymetrix Human Genome
U133 Plus 2.0 Array

Illumina HumanWG-6 v3.0
expression beadchip

Affymetrix Human Genome
U133 Plus 2.0 Array

Affymetrix Human Genome
U133 Plus 2.0 Array

Samples 551 (100.0%) 91 (100.0%) 166 (100.0%) 66 (100.0%) 156 (100.0%)
Normal 54 (9.8%) 45 (49.5%) 83 (50.0%) 34 (51.5%) 65 (41.7%)
Tumor 497 (90.2%) 46 (50.5%) 83 (50.0%) 32 (48.5%) 91 (58.3%)

Survival Status 486 (88.2%) NA NA 66 (100.0%) 82 (52.6%)
Death 162 (29.4%) NA NA 40 (60.6%) 50 (32.1%)

Survival 324 (58.8%) NA NA 26 (39.4%) 32 (20.5%)

Age 467 (84.8%) NA 166 (100.0%) 66 (100.0%) NA
<=65 227 (41.2%) NA 58 (34.9%) 43 (65.2%) NA
>65 240 (43.6%) NA 108 (65.1%) 23 (34.8%) NA

Gender 486 (88.2%) NA 166 (100.0%) 66 (100.0%) 134 (85.9%)
Female 264 (47.9%) NA 118 (71.1%) 38 (57.6%) 34 (21.8%)
Male 222 (40.3%) NA 48 (28.9%) 28 (42.4%) 100 (64.1%)

Stage 478 (86.8%) NA 33 (19.9%) NA NA
I 262 (47.5%) NA 20 (12.0%) NA NA
II 112 (20.3%) NA 8 (4.8%) NA NA
III 79 (14.3%) NA 5 (3.0%) NA NA
IV 25 (4.5%) NA NA NA NA

T classification 483 (87.7%) NA NA NA NA
T1 163 (29.6%) NA NA NA NA
T2 260 (47.2%) NA NA NA NA
T3 41 (7.4%) NA NA NA NA
T4 19 (3.4%) NA NA NA NA

N classification 474 (86.0%) NA NA NA NA
N0 312 (56.6%) NA NA NA NA
N1 90 (16.3%) NA NA NA NA
N2 70 (12.7%) NA NA NA NA
N3 2 (0.4%) NA NA NA NA

M classification 357 (64.8%) NA NA NA NA
M0 333 (60.4%) NA NA NA NA
M1 24 (4.4%) NA NA NA NA

For TNM classification, T, N, and M refer to primary tumor, regional lymph nodes, and distant metastasis, respectively. Abbreviations: TCGA, The Cancer Genome Atlas; NA, not available.
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Figure 2. Identification of differentially expressed genes (DEGs) from four Gene Expression 
Omnibus (GEO) profiles. (A–D) Upregulated (redcolored spots) and downregulated (greencolored 
spots) DEGs in lung adenocarcinoma (LUAD) (compared to normal lung tissues) screened from the 
GEO profile GSE18842 (A), GSE75037 (B), GSE101929(C), and GSE19188 (D). (E–F) A total of 197 
upregulated (E) and 376 downregulated (F) DEGs were shared among the four GEO expression 
profiles. 
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STRING and Cytoscape 3.6.0 software programs were used to construct PPI network for the 573 
overlapping DEGs and the network included 502 nodes and 4320 edges (Figure 3A). Moreover, we 
obtained four clustering modules from Cytoscape’s MCODE plug-in. Supplementary Table S1 has 
shown that Cluster 1 included 72 nodes and 2326 edges with the highest MCODE score 65.521. 
Furthermore, it significantly focused on cell cycle, DNA replication, Mitotic M-M/G1 phases, M 
Phase, and other signaling pathways (adjusted p < 0.05) (Figure 3B). Meanwhile, other cluster 

Figure 2. Identification of differentially expressed genes (DEGs) from four Gene Expression Omnibus
(GEO) profiles. (A–D) Upregulated (redcolored spots) and downregulated (greencolored spots) DEGs
in lung adenocarcinoma (LUAD) (compared to normal lung tissues) screened from the GEO profile
GSE18842 (A), GSE75037 (B), GSE101929(C), and GSE19188 (D). (E–F) A total of 197 upregulated
(E) and 376 downregulated (F) DEGs were shared among the four GEO expression profiles.
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Figure 3. Protein-protein interaction (PPI) network construction and enrichment analysis for modules.
(A) PPI network and module clustering analysis for the 573 shared DEGs. Blue, green, pink, and orange
nodes represent the four clustering modules, of which cluster 1 (blue) had the highest MCODE score.
(B–E) Biological pathway analysis for cluster 1 (B), cluster 2 (C), cluster 3 (D), and cluster 4 (E).
Significant signaling pathways were mainly involved in cell cycle and DNA Replication.



Int. J. Mol. Sci. 2020, 21, 8479 8 of 20

Table 2. Top 30 genes with highest degrees of connectivity in clustering module 1.

NO. Gene Degree NO. Gene Degree NO. Gene Degree

1 UBE2C 71 11 ASPM 71 21 KIAA0101 70
2 NUSAP1 71 12 CENPF 71 22 SPAG5 70
3 TPX2 71 13 CDCA8 71 23 KIF15 70
4 PBK 71 14 KIF2C 71 24 CEP55 70
5 MELK 71 15 AURKB 71 25 CENPE 70
6 TTK 71 16 CCNB2 71 26 CDC20 70
7 KIF11 71 17 KIF20A 71 27 BIRC5 70
8 TOP2A 71 18 MKI67 71 28 MCM10 70
9 HMMR 71 19 CCNA2 71 29 MAD2L1 70

10 RRM2 71 20 CCNB1 71 30 AURKA 70

Table 3. Identification of gene expression signature by univariate and multivariate Cox regression analysis.

NO. Gene
Univariate Analysis * Multivariate Analysis **

HR 95%CI p HR 95%CI Coef.
1 UBE2C 1.145 1.033–1.270 0.010 — — —
2 TPX2 1.226 1.089–1.381 0.001 — — —
3 PBK 1.264 1.100–1.453 0.001 — — —
4 MELK 1.233 1.069–1.422 0.004 — — —
5 TTK 1.247 1.053–1.477 0.010 0.630 0.341–1.165 −0.462
6 KIF11 1.358 1.148–1.608 <0.001 — — —
7 TOP2A 1.178 1.043–1.331 0.008 — — —
8 HMMR 1.472 1.243–1.742 <0.001 1.883 1.153–3.074 0.633
9 RRM2 1.298 1.128–1.493 <0.001 — — —

10 ASPM 1.409 1.169–1.698 <0.001 0.577 0.287–1.159 −0.550
11 CENPF 1.293 1.112–1.503 0.001 — — —
12 CDCA8 1.206 1.039–1.401 0.014 0.270 0.100–0.730 −1.309
13 KIF2C 1.234 1.074–1.417 0.003 3.281 1.232–8.738 1.188
14 AURKB 1.188 1.039–1.358 0.012 — — —
15 CCNB2 1.258 1.085–1.458 0.002 0.622 0.329–1.178 −0.474
16 KIF20A 1.350 1.136–1.605 0.001 — — —
17 MKI67 1.309 1.129–1.518 <0.001 1.768 1.103–2.835 0.570
18 CCNA2 1.328 1.150–1.533 <0.001 1.622 0.889–2.959 0.484
19 CCNB1 1.321 1.136–1.535 <0.001 — — —
20 NUSAP1 1.293 1.107–1.511 0.001 — — —

* The 20 DEGs were significantly associated with overall survival (p < 0.05) using univariate Cox regression analysis.
** Then, a least absolute shrinkage and selection operator (LASSO) regression on these 20 DEGs was performed
to identify the most informative gene set for survival prediction. Finally, eight genes marked in gray in the table
were selected to perform multivariate Cox regression analysis and to generate a prognostic risk model according
to their respective regression coefficients. Abbreviations: HR, hazard ratio; CI, confidence interval; p, p-value;
Coef., coefficient.

In the training group, LUAD patients were divided into high-risk and low-risk groups according
to median risk score, which was used as cut-off value. The survival analysis revealed that the survival
rate was distinctively lower in the high-risk group than low-risk group (p < 0.01), as shown in Figure 4A.
Additionally, the risk model offered a survival prediction with AUCs: 0.706, 0.748, and 0.698 at 1-, 3-
and 5-yearfollow-up, respectively (Figure 4B). The heatmap indicated that eight signature genes tended
to have higher expression in high-risk patients (Figure 4C). The distribution of LUAD patients was
plotted based on median cut-off value (Figure 4D). The survival status of patients in the training group
was illustrated in Figure 4E. Meanwhile, we observed similar results in the testing group (Figure 5).
Moreover, our risk model could be used as an independent prognosis predictor for LUAD patients in
the training (p < 0.01) and testing (p < 0.001) groups (Table 4) in multivariate Cox analysis.
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survival risk predicted by gene signature for 1-, 3-, and 5-year follow-ups. (C–E) Expression heatmap 
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Figure 4. Development of gene signature in the training group. (A) Survival curves of high- and
low-risk groups separated by gene signature. (B) Receiver operating characteristic (ROC) curves for
survival risk predicted by gene signature for 1-, 3-, and 5-year follow-ups. (C–E) Expression heatmap
of eight signature genes (C), risk score distribution (D), and survival status of patients (E). The risk
score based on gene signature appears to be correlated with survival status for lung cancer patients in
low- and high-risk groups.
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Table 4. Univariate and multivariate Cox regression analysis for risk score on overall survival of 
patients with LUAD. 

Parameter 
Univariate Analysis Multivariate Analysis 

HR 95%CI p HR 95%CI p 
Training Group 

Age 0.492 0.169−1.431 0.193 0.612 0.204−1.838 0.381 
Gender 1.128 0.656−1.940 0.663 1.062 0.605−1.865 0.833 
Stage 0.808 0.421−1.554 0.523 0.295 0.061−1.412 0.126 

T classification 1.753 0.826−3.721 0.144 2.755 1.086−6.988 0.033 

Figure 5. Validation of gene signature in the testing group. (A) Survival curve of high- and low-risk
groups separated by gene signature. (B) ROC analysis for survival rate predicted by gene signaturefor
1-, 3-, and 5-year follow-ups. (C–E) Expression heatmap of eight signature genes (C), risk score
distribution (D), and survival status of patients (E). The risk score based on gene signature in the testing
group also appears to be correlated with survival status for lung cancer patients in low- and high-risk
groups, which was consistent with that in training group.
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Table 4. Univariate and multivariate Cox regression analysis for risk score on overall survival of
patients with LUAD.

Parameter
Univariate Analysis Multivariate Analysis

HR 95%CI p HR 95%CI p

Training Group

Age 0.492 0.169–1.431 0.193 0.612 0.204–1.838 0.381

Gender 1.128 0.656–1.940 0.663 1.062 0.605–1.865 0.833

Stage 0.808 0.421–1.554 0.523 0.295 0.061–1.412 0.126

T classification 1.753 0.826–3.721 0.144 2.755 1.086–6.988 0.033

M classification 0.961 0.233–3.97 0.956 3.162 0.328–30.501 0.320

N classification 0.914 0.578–1.444 0.699 1.534 0.637–3.690 0.340

RiskScore 3.285 1.681–6.420 0.001 2.931 1.474–5.829 0.002

Testing group

Age 1.008 0.978–1.038 0.612 0.991 0.962–1.021 0.556

Gender 0.623 0.352–1.105 0.106 0.595 0.327–1.083 0.089

Stage 1.039 0.792–1.363 0.782 0.861 0.371–2.001 0.728

T classification 1.063 0.755–1.496 0.726 1.083 0.704–1.664 0.717

M classification 0.943 0.372–2.393 0.902 0.916 0.142–5.909 0.926

N classification 1.178 0.802–1.730 0.404 1.628 0.751–3.529 0.217

RiskScore 1.594 1.256–2.022 <0.001 1.662 1.284–2.152 <0.001

For TNM classification, T, N, and M refer to primary tumor, regional lymph nodes, and distant metastasis, respectively.
Abbreviations: LUAD, lung adenocarcinoma; HR, hazard ratio; CI, confidence interval; p, p-value.

We further analyzed the TCGA dataset to evaluate the prognostic value of the risk score signature
in LUAD patients (Figure 6). We found that the high-risk group was distinctively associated with
worse OS in >65 age (p = 0.008), male (p = 0.023), stage III/IV (p = 0.008), N1-3 (p = 0.024), and T1-2
(p = 0.027) subgroups. Then, the ROC analysis verified the accuracy of our gene signature in OS
prediction in subgroups with different clinical characteristics (Supplementary Figure S2).The values of
AUCs at 1, 3, and 5 years were between 0.965 and 0.610, which indicated that the risk model had a
robust performance to predict OS probabilities for LUAD patients.

2.4. Signature Genes Show High Expression in LUAD Samples

The results from our correlation analysis showed that the risk score was positively associated with
mRNA expression levels of all signature genes (p < 0.0001; Figure 7A), which was significantly higher
in LUAD tissues compared with normal lung tissues (Figure 7B). We also found that TTK, HMMR,
CDCA8, CCNA2, CCNB2, and MKI67 proteins were over-expressed in LUAD tissues versus normal
tissues (Supplementary Figure S3A). Compared to normal tissues, ASPM and KIF2C expressions
were significantly elevated in lung cancer tissues within three datasets (Hou Lung, Selamat Lung,
and Okayama Lung) [13–15] and five datasets (Hou Lung, Landi Lung, Okayama Lung, Stearman
Lung, and Su Lung) [13,15–18], respectively (Supplementary Figure S3B).
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Figure 6. The prognostic value of riskscore signature in LUAD. (A–J) Kaplan–Meier curves for OS in
patients with LUAD; clinical characteristics include age: ≤65 (A) and >65 (B), gender: female (C) and
male (D), clinical stage I/II (E) and III/IV (F), lymph node metastasis: N0 (G) and N1-3 (H), and primary
tumor: T1-2 (I) and T3-4 (J). Male, >65 age, stage III/IV, N1-2 and T1-2 subgroups were significantly
associated with worse OS in high-risk group with respective p < 0.05.
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Figure 7. Validations of eight genes contained in the risk score model. (A) Scatter plots between
mRNA expression of each gene (y-axis) and corresponding risk score (x-axis) in patients with LUAD for
these eight genes, which showed significant positive Pearson correlation coefficients. (B) Comparisons
of mRNA expression levels of each gene in LUAD tissues versus normal lung tissues, respectively.
All genes had higher expression levels in cancer tissues than in normal lung tissues. The red and gray
boxes represent cancer and normal tissues, respectively. The red-marked asterisk indicates that the
differential expression of each mRNA is significant (p < 0.05).
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2.5. Signature Genes with High Expression in LUAD Cells

Compared with human bronchial epithelial (HBE) cells, the mRNA levels of TTK, HMMR, ASPM,
CDCA8, KIF2C, CCNB2, MKI67, and CCNA2 were significantly upregulated in A549 and PC-9 cell
lines(p < 0.0001, Figure 8A). Meanwhile, TTK, HMMR, ASPM, CDCA8, KIF2C, CCNB2, MKI67,
and CCNA2 proteins were also significantly over-expressed in A549 and PC-9 compared to HBE
cells(p < 0.05, Figure 8B, Supplementary Figure S4).These results were consistent with expression levels
of riskscore signature genes in LUAD tissues.
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analysis of relative mRNA expression. The genes expression levels for each of the eight genes were
significantly increased in A549 and PC-9 cells compared to HBE cells (p < 0.0001). (B) Western blot
analysis of protein expression levels. Every protein appeared to have higher expression levels in A549
and PC-9 cells compared with HBE cells. The measurements of mRNA and protein expression levels
were performed in triplicate.

3. Discussion

Currently, LUAD is regarded as the most common subtype of lung cancer with a five-year OS rate
between 4% and 17% [3]. The pathogenesis of LUAD involves a diverse and complex set of events,
such as gene expression, autophagy activation, unexpected tumor microenvironment, immune cell
infiltration, abnormal cell cycle, DNA methylation, epigenetic interactions, and other molecular and
cellular events [19–23]. Moreover, accumulating evidence suggests that the corresponding signaling
pathways, such as the MAPK, AKT-mTOR, and Wnt/β-catenin signaling pathways, are more frequently
activated in LUAD [24–26]. While research into the tumor mechanism and treatment has made
significant progress, the prognosis still remains poor in LUAD. Hence, it is urgent to identify the
precise and effective prognostic signature to predict the survival of patients with LUAD.

Several risk score models based on gene expression for LUAD prognosis have been identified in the
previous studies. The 9-gene signature (HMMR, B4GALT1, SLC16A3, ANGPTL4, EXT1, GPC1, RBCK1,
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SOD1, and AGRN) has been identified as an independent prognostic factor for OS in LUAD patients
and is significantly associated with metastasis in the test series [2]. A 4-gene signature (CTNNB1 or
β-catenin, SOX9, DVL3, and Wnt2b) involved in Wnt/β-catenin pathway can significantly divide LUAD
patients into high- and low-risk groups with different OS rates [27]. An immune signature consisting of
40 genes can effectively differentiate high- and low-risk groups among patients with stage I or II lung
adenocarcinoma and independently predict OS [28]. Meanwhile, the clinical characteristics such as age
and stage can improve the prognostic accuracy of the immune signature. A 6-gene signature (RRAGB,
RSPH9, RPS6KL1, RXFP1, RRM2, and RTL1) can significantly stratify LUAD patients into high- and
low-risk groups, and remain as an independent prognostic factor to estimate OS in a multivariate
Cox proportional hazards model analysis [11]. An 8-gene signature (DLGAP5, KIF11, RAD51AP1,
CCNB1, AURKA, CDC6, OIP5, and NCAPG) has been constructed by a multivariate Cox regression
model that can clearly separate LUAD patients into groups with significantly different OS rates [29].
Our 8-gene prognostic signature (TTK, HMMR, ASPM, CDCA8, KIF2C, MKI67, CCNA2, and CCNB2)
was different from these previously identified gene signatures, indicating it might be a novel tool for
LUAD prognosis.

TTK is a mitotic checkpoint kinase that is highly expressed in several human cancers [30]. A high
TTK expression, moreover, is positively associated with higher grade aggressiveness and therapeutic
resistance in breast cancer, implicating the TTK might be involved in cancer cell proliferation and
poor patient survival rate [31]. HMMR is also highly expressed in human multiple malignancies,
such as gastric cancer and lung cancer, which may promote cancer progression and lower patient
survival rate [2,32]. Ye et al. suggested that TGF-β signaling and Hippo pathway could contribute
to sarcomagenesis and metastasis by upregulating the HMMR expression [33]. ASPM, the novel
Wnt co-activator, augments the Wnt-β-catenin signaling to maintain the subpopulation of cancer
stem cells in prostate cancer [34]. The expression of ASPM is incrementally upregulated in primary
and metastatic lung cancer, indicating its potential roles in the occurrence and progression of lung
cancer [35]. CDCA8, on the other hand, is involved in cell cycle regulation [36]. For example, CDCA8
suppression leads to cell cycle G1 phase arrest, upregulations of p21 and p27 expressions, and the
downregulations of CCND1 and Bcl-2 expressions [37]. Additionally, high CDCA8 expression showed
a significant correlation with poor survival in patients with cutaneous melanoma [38]. Results from
integrated analyses show that KIF2C is overexpressed in several solid cancers and has already been
identified as an important prognostic factor for cancers [39,40]. KIF2C, a mitotic centromere-associated
kinase, acts on cellular senescence mainly via p53 signaling; it frequently induced T cell responses in
certain cancers [39,41]. CCNA2 has critical functions in controlling cell cycle at the G1/S and the G2/M
transitions and is necessary for embryonic cell and hematopoietic lineage [42]. It has been reported
that CCNA2 might be associated with the progression of epithelial-mesenchymal transitions (EMT)
and metastasis [43]. CCNA2 expression, moreover, is significantly upregulated in many cancer types
according to the Human Protein Atlas database, implying its potential role in cancer development
and progression. Similarly, CCNB2 is also a key regulator of the cell cycle and may play a role in the
development and progression of cancers in humans [44–46]. In this study, we established the risk
score signature based on these eight genes and elucidated the prognostic value of the gene signature
for LUAD.

Despite the encouraging predictive value in LUAD prognosis, our risk model still has some
limitations. First, since our model is based on retrospective datasets and these datasets may have
unbalanced clinical features with treatment heterogeneity, its efficacy needs to be validated in clinical
trials with enough LUAD samples. Second, our risk model could not accurately predict survival
possibilities for LUAD patients in <=65 age, female, Stage I and II, N0, and T3-4subgroups of LUAD
patients, which might be due to limited samples. Meanwhile, the values of AUC at 1, 3, and 5 years
were lower than 0.8, indicating that we should try to establish a new and powerful risk score model in
the further analyses. Finally, the signaling pathways involved in the progression of LUAD need to be
examined more thoroughly, which is beyond the scope of our current study.
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4. Materials and Methods

4.1. Data Collection

Four gene expression profiles including GSE18842, GSE75037, GSE101929, and GSE19188 were
obtained from the GEO online public database. GSE18842 contained 45 normal lung samples and
46 LUAD samples; GSE75037 contained 83 normal lung samples and 83 LUAD samples; GSE101929
contained 34 normal lung samples and 32 LUAD samples; and GSE19188 contained 65 normal lung
samples and 91 LUAD samples.

4.2. Data Processing and Identification of DEGs

The normalization and log2 conversion for each GEO matrix data were performed by the limma
package in R software (version 3.5.3). The limma package was applied to screen the DEGs in GSE18842,
GSE75037, GSE19188, and GSE101929 profiles. The adjusted p-value < 0.05 and |log2FC| ≥ 1 were set as
the screening criteria for DEGs.

4.3. PPI Network Construction and Clustering Module Analysis

The information regarding interactions of proteins was retrieved from the Search Tool for the
Retrieval of Interacting Genes database (STRING) (https://string-db.org/), and a combined score
of ≥0.4 was used as the cut-off criterion. Next, a protein-protein interaction (PPI) network was
constructed using Cytoscape software (version 3.6.0) (https://cytoscape.org/). To glean specific biological
information, molecularcomplex detection (MCODE), a Cytoscape plug-in, was used to cluster modules
from the PPI network with the following parameters: degree cutoff = 2, Node Score cutoff = 0.2,
and K-Core = 2. The enrichment analysis for the clustering modules was investigated with FunRich
software (version 3.1.3).

4.4. Establishment and Validation of a Prognostic Signature

Patients in the Cancer Genome Atlas (TCGA) dataset were randomly divided into either a training
group (228 LUAD cases) or a testing group (230 LUAD cases). After univariate Cox regression analysis,
the DEGs that were significantly associated with OS were subjected to the least absolute shrinkage
and selection operator (LASSO) regression analysis. The analysis was performed with the R “glmnet”
package to screen out candidate prognostic genes in the training group. Subsequently, the candidate
prognostic genes were included in the multivariate Cox regression analysis to establish the risk score
formula, which could separate the high- and low-risk subgroups according to median risk score in
patients with LUAD. Kaplan–Meier survival analysis and ROC curve were performed to determine
the predictive value of the risk model. Univariate and multivariate Cox regression analyses were
performed on the clinical data and risk score to evaluate whether the risk model was an independent
prognosis factor from clinical parameters; the clinical relevance of the gene expression signature was
also validated.

4.5. Validation of Corresponding Genes in Risk Score Signature

The Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn)
was adopted to illustrate the mRNA expression levels of signature genes in LUAD and normal lung
tissues. The immunohistochemical results of corresponding genes from the Human Protein Atlas (HPA)
(https://www.proteinatlas.org) were obtained to elucidate the protein expression levels of these genes.
Furthermore, a meta-analysis was performed on the Oncomine database (https://www.oncomine.org)
to identify the expression patterns of certain genes.

https://string-db.org/
https://cytoscape.org/
http://gepia.cancer-pku.cn
https://www.proteinatlas.org
https://www.oncomine.org
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4.6. Cell Culture

HBE, A549, and PC-9 cells were grown in high glucose Dulbecco’s Modified Eagle’s media
(DMEM; Hyclone, Logan, UT, USA) containing 10 % (v/v) fetal bovine serum (FBS; Gibco, Grand Island,
NY, USA), and 1 % penicillin/streptomycin (MRC, Jintan, China) at 37 ◦C and 5% CO2. All cell lines
were obtained from the Shanghai Cell Bank of Chinese Academy of Medical Sciences (Shanghai, China).

4.7. Quantitative Real-Time Polymerase Chain Reaction

Total RNA was extracted by using Total RNA Extraction Kit (Solarbo, Beijing, China), and reverse
transcription was performed using the first-strand cDNA synthesis kit (Invitrogen, Carlsbad, CA, USA)
following the manufacturers’ instructions. Real-time PCR was performed using Premix Ex Taq SYBR
Green PCR (TaKaRa, Dalian, China) on an ABI PRISM 7300 (Applied Biosystems, Foster City, CA, USA)
following the manufacturer’s guidelines. The primer sequences used are given in Supplementary
Table S3.

4.8. Western Blot Analysis

After extraction of cell lysate, protein concentrations were quantified by the Bradford method
(Beyotime, Shanghai, China) and proteins were separated on5–12% SDS-PAGE gels, which were
then transferred to PVDF membranes (ThermoFisher, Waltham, MA, USA). The membranes were
blocked with 5 % non-fat milk, incubated with primary antibody at 4 ◦C overnight, treated with
horseradish peroxidase-conjugated secondary antibody (Bioss, Beijing, China) at room temperature for
1 h, and visualized on a Tanon 5200 (Tanon, Shanghai, China). Primary antibodies were purchased
from Abcam (Cambridge, UK), and the following antibodies were used: TTK, HMMR, ASPM, CDCA8,
KIF2C, CCNB2, MKI67, CCNA2, and β-actin. More information about primary antibodies was
provided in Supplementary Table S4.

4.9. Statistical Analysis

All statistical analysis in this work was conducted using R software (version 3.6.0) and GraphPad
Prism 7.0. The correlations between risk scores and expression levels of prognostic signature genes were
analyzed via Pearson’s correlation test. Kaplan–Meier analysis was performed to estimate survival,
and a log–rank test was used to compare between-group survival distributions. The predictive accuracy
of our risk model was assessed by ROC analysis with the R “SurvivalROC” package. The univariate and
multivariate Cox proportional hazards regression models were used to calculate regression coefficients
and hazard ratios and to establish the risk score model. Two-tailed p < 0.05 was considered to be
statistically significant.

5. Conclusions

We established a risk score signature for survival prediction in LUAD patients where patients
with high-risk scores exhibited a poor survival rate. To some extent, our model may improve the
prognostic accuracy in clinical application. Further studies are needed to improve the precision and
reliability of the signature before our model can be implemented in clinical settings.
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