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Abstract

Background: Sound statistical validation is important to evaluate and compare the overall performance of (Q)SAR
models. However, classical validation does not support the user in better understanding the properties of the model or
the underlying data. Even though, a number of visualization tools for analyzing (Q)SAR information in small molecule
datasets exist, integrated visualization methods that allow the investigation of model validation results are still lacking.

Results: We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results.
The approach applies the 3D viewer CheS-Mapper, an open-source application for the exploration of small molecules
in virtual 3D space. The present work describes the new functionalities in CheS-Mapper 2.0, that facilitate the analysis
of (Q)SAR information and allows the visual validation of (Q)SAR models. The tool enables the comparison of model
predictions to the actual activity in feature space. The approach is generic: It is model-independent and can handle
physico-chemical and structural input features as well as quantitative and qualitative endpoints.

Conclusions: Visual validation with CheS-Mapper enables analyzing (Q)SAR information in the data and indicates how
this information is employed by the (Q)SAR model. It reveals, if the endpoint is modeled too specific or too generic and
highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect
how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org.

Graphical abstract: Comparing actual and predicted activity values with CheS-Mapper.

Keywords: Visualization, Validation, (Q)SAR, 3D space

Background
Visualization of (quantitative) structure-activity relation-
ship ((Q)SAR) information in chemical datasets is a very
active field of research in cheminformatics [1-8]. Many
approaches are being developed that help to understand
existing correlations between the structure of chemical
compounds, their physico-chemical properties, and bio-
logical or toxic effects. These correlations are employed
by (Q)SAR models to predict the activity of unseen com-
pounds. The predictive performance of (Q)SAR models
can then be evaluated with numerous statistical validation
techniques. There is however, to the best of the authors’
knowledge, no visualization method yet that incorporates
(Q)SAR predictions and validation results. One reason for
this might be that most (Q)SAR models are the results
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of applying statistical machine learning approaches to
chemical datasets and the resulting models are sometimes
opaque and it is commonly not an easy task to extract the
reasoning behind a prediction. Some models induced by
machine learning approaches, however, are relatively easy
to understand, like decision trees, rule learners or near-
est neighbor models. The predictions of these models are
easy to comprehend, as long as the number of features that
are employed for predictions is not too large (e.g. the size
of the decision tree is reasonably small). Therefore, sev-
eral model-dependent visualization tools exist [9-12]. In
contrast, many other models can rather be seen as black
boxes, like artificial neural networks or support vector
machines. In addition, these complex models are often
more predictive than intuitive and simpler models.

In this paper, we propose a model-independent visual
analysis of validation results employing the 3D viewer
CheS-Mapper [13]. The presented approach does not
investigate how predictions are made by each model, but
rather allows the comparison of actual and predicted
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activity values in the feature space (see Figure 1). We
call this approach visual validation. It should be regarded
as complementary to the standard statistical validation.
Visually examining (Q)SAR model validation results can
aid in understanding the model itself as well as the
modeled data, and can furthermore yield the following
benefits:

Data curation: It is important to inspect (groups of)
misclassified compounds (in case of classification), or
compounds with high prediction error (regression).
Investigating possible reasons for the erroneous
predictions might aid in detecting errors in the
training data, like mis-measured endpoint values. The
researcher might as well discover that the
misclassifications are outliers or that more training
data is required.

Model improvement: Another possible reason for bad
model performance may be improper feature choice,
e.g. the available features can not be used to
distinguish between some active and inactive
compounds. Moreover, the selected model might be
too specific (overfitting) or too general (underfitting).
Additionally, visual validation can show the effect of
different model parameters.

Mechanistic interpretation: It is also possible to
extract knowledge from groups of compounds that
are correctly classified. Compounds with similar
feature values and endpoint values might have similar
modes of action. Consequently, visual validation can
support the researcher in deriving a mechanistic

Figure 1 Comparing actual and predicted activity values with
CheS-Mapper. The CPDB hamster dataset is embedded into 3D
space, based on 14 physico-chemical (PC) descriptors that have been
computed with CheS-Mapper using Open Babel. The compounds are
predicted with a 3-Nearest Neighbor approach employing the same
PC features. The inner sphere corresponds to the actual endpoint
activity, with class values active (red) and inactive (blue). The outer,
flattened spheroid depicts the prediction.

interpretation. Mechanistic interpretation and proper
model validation are requirements of the OECD
guidelines for valid (Q)SAR models [14]. To this end,
visual validation could also help to improve the
acceptance of (Q)SAR models by regulatory
authorities as alternative testing methods.

Existing visualization tools for small molecule datasets
The most important requirement for visualization
approaches is to help detecting correlations in multivari-
ate and structure data. One possible method to analyze
correlations is to apply dimensionality reduction. Scatter
plots can visualize how and if the endpoint values are
correlated to the selected properties or features, but are
limited to two or three dimensions. Hence, dimensionality
reduction is applied to transform the multi-dimensional
feature space to two or three numeric features while try-
ing to preserve the data structure [15]. Various variants
of dimensionality reduction are applied in cheminfor-
matics [16,17] and many visualization tools for small
molecule datasets include these dimensionality reduction
techniques (ChemSpaceShuttle [18], MQN-Mapplet [2],
Screening Assistant 2 [3], ViFrame [4], HiTSEE KNIME
[5]).

Other visualization tools rely on clustering (Molecu-
lar Property eXplorer [19], Radial Clustergrams [20]).
Clustering compounds into subgroups according to their
properties can provide useful information: clusters might
resemble chemical categories having similar properties or
sharing a common activity profile.

In general, tree-based or graph-based approaches con-
vert the dataset into connected data structures (LASSO
graph [6], SALI networks [21], SARANEA [22], Scaffold
Hunter [7], Similarity–Potency Trees [23]). Hence, nodes
in the trees (or graphs) correspond to compounds and/or
groups of compounds. The proximity of the nodes reflects
the (dis-)similarity of the employed feature values. These
tools can usually highlight the activity value of com-
pounds, and are therefore suitable for (Q)SAR informa-
tion analysis as well.

(Q)SAR information in chemical datasets is usually hard
to comprehend. The (Q)SAR assumption is that com-
pounds with similar structure tend to have similar chem-
ical and biological properties [24]. Consequently, small
changes in structure often cause only small changes in
activity. In this case, the so-called activity landscape [25]
is considered to be smooth. The term activity landscape
describes the distribution of endpoint values in the feature
space. However, sometimes small changes in structure can
cause big changes in activity. This is referred to as activ-
ity cliff [26,27]. Therefore, an activity cliff can be defined
by two compounds that have very similar feature values,
but largely differing endpoint values. Activity cliffs are
often visualized with the already mentioned approaches
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for visualization. Moreover, heat-maps (matrices of col-
ored cells) are employed to highlight the corresponding
pairs of compounds (Toxmatch 2 [8,21]).

Existing visualization approaches for model validation
As mentioned above, approaches for the graphical analysis
of machine learning models are often model depen-
dent [10,12,28]. An example can be seen in an inter-
active visualization approach displaying decision trees
using bars for each tree node [9]. Each bar contains
colored instances, sorted according to the correspond-
ing feature that is employed in this node. The coloring
reflects the class distribution. Split points are indicated
by lines, and can be modified or removed by the user.
The system then rebuilds the tree according to the manual
modifications.

Mineset is a data-mining tool [11] that allows to create
various machine learning models and provides different
visualization approaches. This includes 3D scatter plots,
as well as model-dependent views for decision tree or
Naive Bayes models. However, the software is currently
not available (according to email correspondence, the dis-
tributing company is planning to release a re-engineered
beta version in 2014).

Another approach for model independent visualization
of classification results uses a 2D projection of the pre-
dicted dataset with self-organizing maps (SOMs) [29].
Empty regions in the feature space are filled by sampling
new instances. The maps are colored according to the
class probability that is provided by the model for each
prediction. The decision border (50% class probability) is
indicated with a white line. Feature contours can be drawn
over the map in order to interpret the space. Moreover,
test instances can be overlayed, with their actual class
colored, to show misclassified instances.

A model independent method is especially aimed for
multi-class problems (classification with more than two
classes) [30]. The visualization is exclusively based on the
probability estimate provided by the classifier for each
class value. The resulting plot displays a circle that is
divided into radiants, each radiant accounts for one class.
The more confident the classifier is with the prediction,
the closer this instance is drawn to the edge of the cir-
cle in the corresponding radiant. However, this approach
is limited, as it ignores the actual feature values of the
instances itself.

None of the available cheminformatics visualization
tools focuses on visualizing (Q)SAR model validation
results as such. The authors of ChemSpaceShuttle [18]
discuss how their tool can be used to embed compounds
with two different class values (drug/non-drug) into 3D
space. Different embeddings based on different sets of fea-
ture values were investigated to decide which feature set
is most suitable for separating the compounds according

to their class values. However, this work did not include
(Q)SAR modeling. Moreover, the software neither draws
compound structures nor computes compound feature
values.

The 3D viewer CheS-Mapper
In this work, we present new developments of our visu-
alization tool CheS-Mapper (Chemical Space Mapper)
[13], specifically aimed towards visual validation. CheS-
Mapper is a general, interactive, and open-source software
that can be employed to inspect chemical datasets of small
molecules. It maps the compounds into virtual 3D space
and was designed to enable scientific researchers to inves-
tigate compounds and their features. Compared to exist-
ing methods, CheS-Mapper is a unique combination of
clustering, dimensionality reduction, and 3D viewer. The
distinguishing feature of the tool is that each compound
is represented by its (3D) structure instead of substituting
it by a dot or a node. In contrast to some existing open-
source tools that are limited to a distinct operating system,
depend upon the installation of an additional database or
require a specific input format, CheS-Mapper is platform
independent, requires no installation, and accepts a wide
range of chemical formats.

The workflow of the software is divided into a data pre-
processing part and a visualization part. We refer to the
first part as Chemical Space Mapping. It can be configured
with a dedicated graphical wizard that guides through the
preprocessing steps. After loading the chemical dataset
into the application, 3D structures for compounds can
be computed if not already available. Subsequently, the
user can select the compound features that are employed
within the mapping process. Consequently, the com-
pounds are grouped together into clusters and embedded
into 3D space based on a user-defined chemical or bio-
logical similarity. A range of chemical descriptors and
structural features can be computed by CheS-Mapper and
numerous clustering and embedding algorithms are avail-
able. Finally, the compounds of each cluster can be aligned
in 3D space according to common substructures. The sec-
ond part of the application, the visualization, is based on a
molecular 3D viewer and allows to explore the dataset in
virtual 3D space. The user can rotate the dataset or zoom
in on single compounds. The coloring of compounds can
be adjusted to highlight cluster assignments, compound
features, endpoint values, and structural fragments. Fur-
thermore, the 3D aligned compounds of each cluster can
be superimposed to highlight structural (dis-)similarities.

Implementation
The CheS-Mapper software is implemented in Java. It
is provided as a Java Web Start application, which can
directly be started from a web browser. Additionally,
the program can also be downloaded as stand-alone
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version. CheS-Mapper is an open-source project hosted at
GitHub (http://github.com/mguetlein/ches-mapper). The
code architecture allows developers to easily integrate
novel algorithms, e.g. for clustering, 3D structure calcu-
lation, etc. A range of Java libraries is integrated into the
project: the 3D viewer for molecules Jmol [31], the Chem-
istry Development Kit (CDK [32]), and the data mining
workbench WEKA [33]. Extended functions are provided
in CheS-Mapper in case the free software tools Open
Babel [34] and R [35] are installed on the local com-
puter. Open Babel is a C++ library for cheminformatics
that can be used for additional 3D computing, match-
ing of SMARTS (Smiles Arbitrary Target Specification)
fragments, and structural fragment mining. The statisti-
cal computing tool R is exploited by CheS-Mapper for
clustering and embedding.

Visual validation of (Q)SAR models
The following section introduces new functionality of
CheS-Mapper 2.0 for (Q)SAR information analysis and
visual validation. Next, we describe how the tool can
be used to visually validate (Q)SAR models. In the sub-
sequent section, we present actual use cases and how
the new features of CheS-Mapper 2.0 were employed to
achieve the goals of the use cases. An overview of the
new features of CheS-Mapper 2.0, the use cases, and the
connection among them is shown in Table 1.

New features for visual validation
CheS-Mapper shows the compounds of the embedded
dataset in the center of the 3D viewer (see Figure 2). The
3D positions of compounds have been calculated by the

selected embedding algorithm. Hence, compounds that
are similar based on the selected feature values, will be
located close to each other in 3D space. When clicking
on a compound, the view automatically zooms in on the
structure (see Figure 3).

The information panel on the right-hand side of the
screen has been extended and shows the properties of
the currently selected cluster or compound, or of the
entire dataset. In particular, all features in the dataset and
the (mean) feature value of the currently selected element
are presented. When features are selected for highlight-
ing, the compounds are colored according to their feature
value (Figure 4). A novelty is that the compound list (at the
left-hand side of the viewer in Figure 4), is completed with
feature values for each compound and sorted according to
this value. This extension (referred to as (a) in Table 1)
facilitates the identification of compounds with the high-
est or lowest features values. Instead of changing the
color of the whole compound, feature values can now be
highlighted using translucent spheres that are overlayed
over each compound (see e.g. Figure 5). This preserves
the standard atom coloring of compounds. Moreover, we
added the option to highlight two features at once by
adding a second, flattened spheroid (Figure 1). This novel
functionality (see Table 1 (b)) can be used to directly
compare the values of two features.

Measuring embedding quality and embedding stress
It is not always possible to compress the feature space
without loss of information. This is especially the case if
many diverse and/or uncorrelated features are selected by
the user. CheS-Mapper 2.0 computes a global embedding

Table 1 Overview of new features and their application to a variety of use cases

New feature

(a) Sorting of compound/cluster list according to selected feature

(b) Highlighting two features simultaneously

(c) Computing embedding quality and distances

(d) Determination of common properties of compounds/clusters

(e) Compute mean SALI values to detect activity cliffs

(f ) KNIME integration

Dataset Use case (a) (b) (c) (d) (e) (f )

Caco-2 Inspect (Q)SAR information using integrated features � � �
Compare (Q)SAR models and validation methods � � � �

Cox-2 Inspect (Q)SAR information by mining structural fragments � � � �
Inspect validation results with respect to activity cliffs � � �

EPA FHM Inspect applicability domain algorithms � � �
CPDB Hamster Compare modeling with different feature sets � � � � �

(Provided in Additional file 2)

The features are described in more detail in section “New features for visual validation”. We illustrate the application of the new features in the “Results” section.

http://github.com/mguetlein/ches-mapper
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Figure 2 The CheS-Mapper viewer showing the Caco-2 permeability dataset. The compound list (on the left-hand side) can be used to select
compounds. General dataset information and mean feature values are provided on the right-hand side. The control panel is located on the bottom
left-hand side.

quality measure that describes how well the feature val-
ues are reflected by the 3D positions of the compounds
(see Table 1 (c)). A standard stress function [15] has
the disadvantage that it cannot be used to compare the
embedding of different datasets: it is commonly defined as
the sum of squares between the pairwise distances in the

high-dimensional representation (feature values) and the
low-dimensional representation (3D positions). Instead,
CheS-Mapper computes the Pearson’s product-moment
correlation coefficient between the distance pairs. The
distances based on the feature values are computed using
the (dis-)similarity measure of the selected embedding

Figure 3 Zooming in on compound pirenzepine. The compound is depicted using the wireframe setting. Compound features are listed on the
right-hand side. Feature values for fROTB, caco2, and HCPSA are relatively low and therefore colored in blue. The fROTB value of pirenzepine differs the
most from the values in the entire dataset, therefore this feature is ranked at the top.
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Figure 4 Highlighting logD feature values in the Caco-2 permeability dataset. The compound color has changed according to the feature
value. Compounds with similar logD values are located close to each other in 3D space, as this feature was used for 3D embedding. The compound
list at the left-hand side shows the logD value for each compound and the list is sorted according to the logD value. A histogram depicting the
feature value distribution in the dataset is on the bottom right-hand side.

algorithm. The 3D distance values are computed using
the Euclidean distance, resembling the human user’s per-
ception of distances between compounds in 3D space.
The embedding quality ranges from 1 (perfect correla-
tion) to 0 (no correlation) to -1 (negative correlation). A
warning is given to the user if the correlation is below 0.6,

corresponding to moderate or weak embedding quality
[36].

In some use cases, the overall embedding is good, apart
from some outlier compounds that might have largely dif-
fering feature values. Therefore, CheS-Mapper provides
the embedding stress for each compound. We define

Figure 5 The COX-2 dataset is clustered into 7 clusters. The compounds are highlighted according to their cluster assignment. Cluster 3 is
selected (as indicated by the box), and the a summary of feature values is shown on the right-hand side. Spheres are employed for highlighting
(instead of changing the color of the structure).
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embedding stress as 1− Pearson’s correlation coefficient
between the distance pairs of the corresponding com-
pound to all other compounds in the dataset. Accordingly,
compounds with a value close to 0 have low embedding
stress, whereas a value close to 1 corresponds to high
stress.

The global embedding quality is presented to the user at
the top right-hand side of the viewer (see Figure 2). The
embedding stress can be highlighted with the drop down
menu coloring compounds with low embedding stress in
blue, while compounds with high embedding stress are
colored in red.

CheS-Mapper can also compute and highlight the dis-
tance from all compounds in the dataset to a particular
compound, based on the features and distance measure
that were used for the 3D embedding. When a good 3D
embedding is feasible, this distance mirrors the proxim-
ity between compounds in 3D space. However, if the 3D
embedding is poor, or a particular compound has a high
embedding stress, this function allows to determine the
nearest neighbors for a particular compound.

Determination of common properties of compounds
When exploring a clustered dataset with CheS-Mapper,
a common task is to identify the reasoning of why com-
pounds are assigned to the same cluster. Similarly, the
user might want to determine why two particular com-
pounds are located close to each other in 3D space. In

both cases, the user is looking for common properties of
groups of compounds that separate these instances from
the remainder of the dataset.

This kind of information is dynamically provided by
CheS-Mapper 2.0 (see Table 1 (d)), even for large datasets
with numerous features: the feature list (on the right-hand
side of the viewer) is sorted depending on the currently
selected cluster or the currently selected compound/s.
In more detail, the list is sorted in descending order
according to the specificity of the feature values of the
selected elements. Hence, the most important features
that distinguish the selected compounds from the remain-
ing dataset can be found at the top of the list. Examples
are given in Figures 3 and 6. The specificity of features is
computed by comparing the feature values of the selected
elements to the feature values of the entire dataset. To
this end, statistical tests are applied and the features are
sorted in ascending order according to the p-value: low
p-values indicate that the tested distributions differ from
each other and high p-values indicate similar distribu-
tions. A χ2-test is exercised for nominal feature values
[37]. For numeric features, we employ one-way analysis
of variance (ANOVA) [37]. When comparing the numeric
feature value of a single compound to the overall fea-
ture values distribution, the ANOVA test is not applicable.
We do therefore apply the χ2-test on binned numerical
data to compute the p-value for numeric features of single
compoundsa.

Figure 6 Cluster 3 of the COX-2 dataset is selected. Only compounds of the selected cluster 3 are visible. At the top left-hand side, the cluster
and compound list can be used to select another cluster or a compound within the active cluster. The feature list of cluster 3 at the top right-hand
side is sorted according to specificity. The structural feature NC(C)N is very specific, as it matches mostly compounds within this cluster (as indicated
by the bar chart). The fragment is highlighted in each compound structure with orange color.
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Analysis of activity space and activity cliffs
CheS-Mapper can be employed for various purposes,
including the analysis of datasets without endpoint activ-
ity information. However, the typical use cases are the
analysis of (Q)SAR information and of the activity land-
scape of a small molecule dataset. Commonly, activity
landscapes depict activity values in 2 feature dimensions.
As CheS-Mapper provides an additional third dimen-
sion (3D space), the term activity space is more appro-
priate. Inspecting the activity space of a dataset with
CheS-Mapper requires that the endpoint values are stored
in the dataset, but not employed for 3D embedding.
Highlighting the endpoint feature in the CheS-Mapper
viewer presents the activity space, as shown in Figure 7.
The user can detect activity cliffs by locating compounds
that stand out in the color coding, when compared to
neighboring compounds in nearby 3D space. This indi-
cates that these compounds have differing endpoint val-
ues, yet similar feature values.

Additionally, CheS-Mapper provides a new functional-
ity to automatically reveal activity cliffs by computing the
Structure-Activity Landscape Index (SALI) (see Table 1
(e)). The SALI value is computed for pairs of compounds
and a high SALI value indicates that a pair resembles an
activity cliff [21]. We transform the SALI value matrix to
a feature (with a single value for each compound) by cal-
culating the mean SALI values for each compound. Addi-
tionally, CheS-Mapper provides the standard deviation
and maximum pairwise SALI values. Hence, compounds

forming activity cliffs can be determined and inspected.
Activity cliffs can further be studied by investigating com-
mon properties of a particular compound and its neigh-
boring compounds. For instance, the user might detect
that the features that have been selected for embedding
cause an activity cliff, as some active and inactive com-
pounds cannot be distinguished [38].

CheS-Mapper extension for KNIME
We have included CheS-Mapper into KNIME (Konstanz
Information Miner), a graphical framework for data anal-
ysis [39] (see Table 1 (f )). The framework has various
extensions for cheminformatics and machine learning,
and can therefore be employed for (Q)SAR modeling. The
CheS-Mapper node for KNIME is a pure visualization
node that envisions data which has been arbitrarily pro-
cessed within KNIME (see http://tech.knime.org/book/
ches-mapper-node-for-knime-trusted-extension). A sim-
ple example for using CheS-Mapper within KNIME is
shown in Figure 8. In this case, CheS-Mapper is applied
for analyzing prediction results of a regression model (fol-
low the link above to find a detailed description of this
workflow).

Store configuration for chemical space mapping
A novel functionality in CheS-Mapper is that the current
mapping settings, which are configured in the wizard, can
be stored to a file and shared with co-workers. This is
especially helpful when exploring the same dataset in a

Figure 7 Highlighting the endpoint of the Caco-2 permeability dataset. Selecting the endpoint feature shows the activity space (or landscape).
The endpoint was not employed for 3D embedding. The depiction setting is set to the new depiction option Dots. The compound pirenzepine is
selected (indicated with a blue box), the compound information including a 2D image of the compound is shown on the right-hand side. The
compound forms an activity cliff, as its endpoint value differs from its neighbor compounds.

http://tech.knime.org/book/ches-mapper-node-for-knime-trusted-extension
http://tech.knime.org/book/ches-mapper-node-for-knime-trusted-extension
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Figure 8 A simple KNIME workflow including the CheS-Mapper
visualization node. CheS-Mapper is employed to visually inspect the
modeled activity of linear regression, based on properties that are
stored in a SD-File.

team, as it preserves different useful configurations like
e.g. the selected features, clustering, and 3D embedding
settings. The configuration includes the random seed for
randomized approaches (like e.g., k-means clustering), to
ensure that the mapping settings always produce the same
mapping result.

Visually validating (Q)SAR models in CheS-Mapper 2.0
Visual validation describes the graphical inspection of
(Q)SAR model validation. Initially, a (Q)SAR model is
built and validated on a compound dataset. The dataset
is then visualized with CheS-Mapper, using the same
features for embedding that were used to validate the
(Q)SAR model. Additionally, the endpoint values and
the prediction results of the model are employed within
the visualization. Consequently, CheS-Mapper allows the
inspection of actual and predicted activity in the feature
space. The visual validation approach can be re-iterated
to take possible insights from the visualization steps
into account for model re-building. However, re-iteration
should be handled with care to prevent model overfitting
or chance correlation (as discussed below).

In general, the proposed method can be performed with
an arbitrary validation scheme, like e.g. test set validation
or repeated k-fold cross-validation. The predicted end-
point can be qualitative or quantitative (i.e. classification
and regression models can both be analyzed).

Mapping the feature space of the (Q)SAR model
When performing visual validation with CheS-Mapper
the dataset is mapped into 3D space based on the same
features as employed by the (Q)SAR modeling. Hence,
when exploring the embedded dataset with CheS-Mapper,
the user is provided an intuitive view on the feature
space that is employed as input for the (Q)SAR approach.
Depending on the model, it is likely that similar com-
pounds are predicted with similar activity values. For
example, when performing classification, compounds will
be assigned the same class value if they are on the same
side of the decision boundary.

Comparing actual and predicted activity
The main idea of visual validation is that the user is able to
simultaneously compare the experimental and predicted
endpoint values in the feature space. These values can be
highlighted in CheS-Mapper, by coloring the compounds
according to their actual or predicted activity value. More-
over, the application can highlight both activity values at
the same time (see Figure 1). Hence, the user is able to
identify compounds that have been misclassified by the
(Q)SAR model and investigate possible reasons. A model
might under-fit the target concept which results in an
overly smooth predicted activity space, or if classification
is applied, in large areas of compounds with same pre-
dicted class. In contrast, the (Q)SAR model might be too
complex and overfits the data. Furthermore, the model
could fail in predicting compounds that form activity
cliffs. As described above, activity cliffs can be detected
and investigated with CheS-Mapper.

Directly highlighting the prediction error (instead of
individually selecting predicted and actual endpoint val-
ues) allows the selection of groups of misclassified com-
pounds with CheS-Mapper. Therefore, the user can detect
common properties of these compounds and investigate
possible weaknesses of a model. When performing classi-
fication, the probability (or confidence) of a classifier for
each prediction is a useful extension for the visualization
of decision boundaries. These are areas in feature space
where the compound predictions change from one class
to another (e.g. from active to inactive). As some (Q)SAR
models do not provide probability estimates, repeated val-
idation can overcome this limitation, as described in the
next section.

Visually validating repetitive validation approaches
Arbitrary (Q)SAR modeling software can be employed for
visual validation. Modeling and validation results have to
be stored in the CheS-Mapper input dataset file (e.g. SD-
File or CSV-File), in addition to the model input features
and actual endpoint values. In more detail, the following
validation results should be available for each predicted
compound:

• Predicted endpoint value (class or numeric regression
value)

• The prediction error (difference between actual and
predicted endpoint value, optionally the
squared-error for regression)

• A probability or confidence measure (if available)
• The applicability domain value (inside/outside, if

available)

As mentioned above, our presented visual validation
approach can be employed using any arbitrary valida-
tion technique. Depending on the selected validation
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approach, compounds can even be predicted multiple
times. When applying a single training test set split, test
set compounds will be predicted only once. A k-fold
cross-validation yields a prediction for every compound
in the dataset. When using a repetitive sampling scheme,
like bootstrapping or a n-times repeated k-fold cross-
validation, compounds are predicted multiple times by
(Q)SAR models trained on different subsets of the data.
As mentioned in our previous work [40], a repetitive val-
idation approach should be preferred for small datasets
to avoid overfitting (caused by e.g., “parameter fiddling”).
In particular, visual validation should not be used to
maximize the prediction accuracy on a single test set,
as this would most likely not improve the predictivity of
the (Q)SAR model. For visual validation, each repetition
(or run of the validation approach) could be inspected
separately, but it is more reliable to inspect the aggre-
gated result. Consequently, multiple predictions for each
compound should be combined as follows:

• For numeric predictions, the mean predicted value is
preferable. When performing binary classification,
the prediction can be transformed to continuous
values between 0 and 1 (this is e.g. the ratio how often
a class was predicted as active). For classification with
multiple classes, the majority class prediction or a
inconclusive value could be used.

• The prediction error can be averaged with standard
techniques, like accuracy for classification and
root-mean-squared-error for regression.

• The mean of the probability or confidence is
adequate.

• The applicability domain value should be
transformed to a continuous 0-1 value,
corresponding to the ratio of how often the
compound was inside the applicability domain.

Limitations
As already stated before, the exact reasoning behind pre-
dictions is hard to comprehend for humans in many
(Q)SAR modeling approaches. A prediction algorithm
whose predictions can be easily understood with CheS-
Mapper is a k-Nearest Neighbor algorithm, as illustrated
in Figure 1. Nevertheless, even if predictions are not
comprehensible to researchers, inspecting and comparing
actual and predicted activity values can provide valuable
information (as discussed above).

Another limitation of our approach is that it relies
on a good mapping of the data into 3D space. Often,
CheS-Mapper can achieve high embedding quality as it
employs a third dimension (compared to standard 2D
mapping approaches) and provides various embedding
algorithms with configurable distance measures. How-
ever, dimensionality reduction without loss of information

is not always feasible, especially on large and diverse
datasets and when applying non-redundant and uncor-
related descriptors (which is preferable for (Q)SAR
modeling). In these cases, CheS-Mapper yields an over-
simplified and compressed view of the feature space and
the spatial distance does not resemble the descriptor-
based similarity for all compounds. As described above,
CheS-Mapper allows detecting poorly embedded com-
pounds by computing and highlighting embedding stress.
Moreover, the descriptor-based distance to a dedicated
compound can be calculated to detect neighboring com-
pounds. An additional functionality that helps to over-
come this limitation is the computation of activity cliffs,
which is not dependent on the embedding.

Results
We employ visual validation with CheS-Mapper to ana-
lyze real world datasets that include experimentally
derived activity endpoints. Table 1 provides an overview
of the subsequent use cases. We show how researchers
can employ the new functionalities to investigate the
correlation between feature values and activity values.
Furthermore, we explore (Q)SAR model prediction and
validation results with CheS-Mapper, and inspect differ-
ent applicability domain approaches that exclude different
compounds from a dataset. Please note that all datasets
and configuration settings are provided in Additional
file 1. Moreover, an additional use case is described in
Additional file 2 on visually validating (Q)SAR modeling
of the same endpoint with different sets of descriptors.

Compare (Q)SAR models for Caco-2 permeation
In our earlier work [13], we applied CheS-Mapper to
visualize and verify work on the correlation of Caco-2
permeation with simple molecular properties [41]. We
have visually verified this correlation by using the four
molecular properties for 3D embedding of the dataset
that includes 100 structurally diverse compounds. We
repeat this experiment to demonstrate CheS-Mapper 2.0
functionalities, and subsequently compare two (Q)SAR
modeling approaches applied to this data.

The result of the embedding can seen in Figure 2. When
highlighting logD, we observe that compounds with simi-
lar logD values are close to each other, as this feature was
used for embedding (see Figure 4). In fact, the dataset is
almost perfectly embedded into 3D space using princi-
pal components analysis (Pearson: 0.99). This is due to
the fact that the number of dimensions has to be reduced
only by one: from 4 molecular descriptors to a 3 dimen-
sional space. Additionally, inter-correlation of feature val-
ues simplifies the dimensionality reduction (e.g. most
compounds with high feature values of high charged polar
surface area (HCPSA) have a low logD value). Even though
the endpoint was not used for embedding, compounds
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that are close to each other tend to have a similar end-
point value as exemplified in Figure 7, i.e. the activity space
(or landscape) is smooth. This supports the findings of
Hou et al. [41], the endpoint is indeed correlated to the
feature values presented in the dataset. In our previous
assessment, we were also able to visually detect the com-
pound pirenzepine (selected in Figure 7; the viewer has
zoomed in on this compound in Figure 3). Being part of
the training dataset in the original article, pirenzepine is
the compound with the highest training error. It attracted
our attention in CheS-Mapper, as it has a relatively low
endpoint value (and is therefore colored in blue), but is
spatially close to compounds with high endpoint values
(colored in red). Hence, it is part of an activity cliff as
its endpoint value differs from compounds with similar
feature values. A new function of CheS-Mapper is to auto-
matically locate activity cliffs. Therefore, compounds can
be sorted and highlighted according to their pairwise SALI
values. For this dataset, pirenzepine stands out as the com-
pound with the highest mean and second highest standard
deviation (see Figure 9).

We use two different (Q)SAR approaches to model
Caco-2 permeability. Instead of adopting the training test
split that was used in the original article [41], we apply a
leave-one-out cross-validation procedure to compare sup-
port vector regression and simple linear regression. The
visual validation workflow is implemented with the CheS-
Mapper extension for KNIME [39] and is described in

Additional file 3. The visual validation with CheS-Mapper
shows, as expected, that pirenzepine has the highest pre-
diction error in simple linear regression and the second
highest prediction error in support vector regression.
According to statistical validation with KNIME, the R2

value of support vector regression is 0.54, simple linear
regression attains a value of 0.51.

We investigate the reason for the predictivity difference
with CheS-Mapper. We highlight the prediction error
difference for each compound to determine which com-
pounds are predicted more accurate by which approach
(see Figure 10). The distribution of the prediction error
difference is depicted as histogram in the figure: it indi-
cates that the overall less accurate result of simple linear
regression is mainly due to the prediction of two com-
pounds. Using CheS-Mapper, we can easily determine
common properties of these two compounds (pnu200603
and olsalazine): the two compounds have the lowest logD
feature values in the dataset. Consulting the original publi-
cation confirms the assumption that the logD value causes
the high prediction error in linear regression. logD is
treated differently from the other three input features,
as the function to predict the endpoint value includes a
cutoff for high and low logD valuesb. This cannot be mod-
eled by simple linear regression, and causes the inferior
predictivity compared to support vector regression.

Finally, this use case demonstrates shortcomings of
external test-set validation compared to cross-validation.

Figure 9 Highlighting activity cliffs within the Caco-2 permeability dataset. The mean SALI values are computed and highlighted. The
compound pirenzepine is selected. It is the compound with the highest mean SALI value, as indicated in the histogram (at the bottom right-hand
side) and in the compound list on the left-hand side (pirenzepine is at the bottom of the sorted compound list). Alternatively, the feature with the
maximum SALI value or the standard deviation can be selected: pirenzepine has the highest maximum SALI value in the dataset (4.01) and the
second highest standard deviation (0.8).
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Figure 10 Inspecting the prediction error difference of two (Q)SAR approaches. The prediction error difference (errorsimple-linear−
errorsupport-vector ) of two regression approaches for the Caco-2 dataset is selected. Simple linear regression performed especially bad for the two
selected compounds (olsalazine and pnu200603). Both compounds have a very low logD value (logD is the top feature in the feature list on the
right-hand side).

We have previously shown [40] that not using the com-
plete data for building the final (Q)SAR model, which
is used to predict unseen compounds, will yield a less
predictive model. This is especially the case if all com-
pounds of an entire region of the data set are removed

from the model building set and split away into the test
set. There is no information given on how the test set
split was performed in the original article, however, the
test set includes 5 neighboring compounds (see Figure 11).
Accordingly, each of the 5 compounds is predicted with

Figure 11 Visualizing the selected test set compounds of the Caco-2 dataset. The screen-shot shows the distribution of training and test
compounds in the feature space. The 5 selected test compounds share in particular high values for radius of gyration (rgyr) and logD. As a result,
both features are at the top of the feature list on the right-hand side.
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a higher error by a support vector model build on the
training data (mean error 0.86) compared to the leave-
one-out approach (mean error 0.58). This indicates that
the final model of external test-set validation has a lower
predictivity for similar unseen compounds and/or has a
smaller applicability domain.

Structural clustering of COX-2 Data
We apply CheS-Mapper to structurally cluster and embed
a dataset using MACCS keys [42], and investigate if
these structural fragments are suitable to model the
inhibitory potential of the dataset compounds. The
dataset contains 467 COX-2 inhibitors [43,44], that have
been tested for the selective inhibition of the human
enzyme Cyclooxygenase-2 (COX-2). The experimentally
derived activity of each compound is stored in the dataset
as IC50 value (half maximal inhibitory concentration). The
inhibitors are structurally very similar, as they have to
fit the active site of the COX-2 enzyme. We apply visual
validation using MACCS keys, as a recent attempt to
model the dataset with these features failed [45]. As pro-
posed in previous work [43,44], we transform the numeric
endpoint to a binary nominal endpoint. Equal-frequency
discretization yields 234 active compounds with IC50 ≤
0.12μMol. A random forest classifier based on the struc-
tural fragments achieves 0.75 accuracy, validated with a
10-times repeated 10-fold cross-validation. To compute
the structural fragments, CheS-Mapper matches the 166
SMARTS fragments of the MACCS list with the dataset
compounds. This generates 97 nominal features with a
minimum frequency of 10.

For visual validation, we employ the features as input
for hierarchical clustering using the dynamic tree cut
method that is included in CheS-Mapper to automat-
ically compute the number of clusters [46]. Sammon’s
non-linear mapping is used for 3D-embedding [47]. We
employ the Tanimoto similarity measure for the clus-
tering and embedding techniques. Finally, we enable 3D
alignment according to the maximum common subgraph
(MCS). The mapping result is shown in Figure 5 and
divides the dataset into 7 clusters of different sizes (rang-
ing from 39 to 110 compounds). Moreover, CheS-Mapper
gives a warning to the user that 467 compounds have
been mapped to only 333 distinct positions in 3D space
due to identical feature values of numerous compounds.
Hence, several of the structurally similar compounds can-
not be distinguished with the 97 fragments matched by
the SMARTS list (as discussed in detail below). Even
though the dimensionality reduction cannot be achieved
without loss of information, the distance in the 3D-
space resembles the Tanimoto distance well for most
compound pairs (Pearson: 0.89). Highlighting the target
endpoint (see Figure 12) shows that clustering and embed-
ding apparently separate active and inactive compounds.

Compounds with low IC50 values are mostly on the right-
hand side (drawn in red), and compounds with high values
(green) mostly on the left-hand side. Similarly, the end-
point values of the clusters do largely differ from each
other: as an example, 34 of 39 compounds in cluster 7 are
categorized as active. Accordingly, cluster 7 has a much
lower mean IC50 value compared to other clusters (see
cluster list on the left-hand side of Figure 12).

When investigating the clustering result, the user is usu-
ally interested in the most specific features that define a
cluster. As the features are sorted according to specificity,
CheS-Mapper makes this information easily accessible. As
an example, the most specific structural feature for cluster
3, that comprises 98 predominantly inactive compounds,
is the SMARTS fragment NC(C)N. It matches each com-
pound of this cluster. In contrast, most of compounds in
the dataset (328 of 467) do not contain this fragment. This
can be seen in (the chart of ) Figure 6, where the view has
zoomed in on cluster 3, and the corresponding feature was
selected.

Furthermore, we applied 3D alignment using the
maximum common subgraph. As this dataset consists
of structurally very similar compounds, large com-
mon fragments have been found. Cluster 3 shares the
fragment O=S(=O)(c1ccc(cc1)n2ccnc2(cc))C, that is high-
lighted orange in Figure 13. The superimposition sim-
plifies the structural comparison of clusters within the
dataset.

When computing activity cliffs for this dataset, CheS-
Mapper reveals that 95 compounds share equal feature
values with another compound in the dataset that has
the opposite nominal endpoint value. Consequently, many
of these compounds are misclassified by the (Q)SAR
approach. For instance, these compounds account for the
majority of compounds that are misclassified in every
single repetition of the cross-validation (34 of 51 com-
pounds). We conclude that the fragments based on the
MACCS keys do provide valuable (Q)SAR information,
but cannot distinguish numerous active and inactive com-
pounds. This probably caused the bad modeling perfor-
mance in the work cited above [45]. Including additional
fragments could aid to improve the (Q)SAR model.

Applicability domains for fish toxicity prediction
As final visual validation use case, we examine different
applicability domain (AD) approaches. The use of ADs is
a necessity due to the vast size of chemical space and to
assure that a (Q)SAR model only interpolates but does
not extrapolate. There exist various AD methods [48] that
exclude different compounds from prediction. AD mod-
els can be regarded as prediction algorithms, statistical
models that predict whether a compound is inside, or out-
side of the model domain. Similar to statistical (Q)SAR
models, single predictions may be hard to reproduce.
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Figure 12 Highlighting IC50 values within the COX-2 dataset. The endpoint value of the COX-2 dataset is selected, showing the activity space
(or landscape). A new function of CheS-Mapper has been used to modify the highlighting colors, using red for active compounds with low feature
values and applying a log-transformation. Compounds with high feature values are located predominantly on the right-hand side. The selected
cluster 7 includes many active compounds.

As example we select a fish toxicity dataset (Fathead
Minnow Acute Toxicity) [49], published by the US Envi-
ronmental Protection Agency (EPA). The endpoint is
highly correlated to physico-chemical (PC) descriptors.
We have used five physico-chemical descriptors as a basis
for the AD computation: molecular weight, number of
bonds, octanol/water partition coefficient (logP), topo-
logical polar surface area (TPSA), and molar refractivity.

Figures 14, 15 and 16 show three different AD methods
applied to this dataset. The compound embedding is the
same for all methods, and was performed with Sammon’s
mapping using default settings. The embedding quality
is excellent (Pearson: 1). CheS-Mapper reveals that the
PC feature values are correlated in this dataset, especially
the values of molecular weight, number of bonds and
molar refractivity (compounds on the left-hand side of the

Figure 13 Superimposition of compounds that are aligned in 3D space. Cluster 3 of the COX-2 dataset has been aligned in 3D according to the
maximum common subgraph (MCS). In this screen-shot, the compounds are superimposed to compare the compound structures. The MCS feature
is selected and therefore highlighted in orange. The depiction setting for compounds is Balls & Sticks.
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Figure 14 Applicability domain (AD) computed with a centroid distance-based method. A centroid distance-based method using Euclidean
distance is applied to the Fathead Minnow Acute Toxicity, based on five physico-chemical descriptors. Compounds that are inside the AD are
highlighted in red, compounds that are outside the AD are colored blue.

figures have low values, compounds on the right-hand side
have high feature values).

Without going into detail regarding the functionality of
the AD methods, we describe some characteristics and
(dis-)advantages of the AD approaches that can be inves-
tigated using CheS-Mapper. The distance-based approach
using the Euclidean distance to the centroid is shown in
Figure 14: if compounds differ too much from the cen-
troid compound (a virtual compound with mean feature
values), they are excluded from the AD. As for most AD
methods, the user has to set the threshold manually (we
have selected 3 times the mean distance to the centroid).
One disadvantage of this approach is that outliers with
extreme values for a single feature are often not excluded

when features are correlated. This is circumvented by
the leverage approach [50]. This is a centroid distance
based approach as well, but neglects inter-correlation of
feature values (by computing the distance using the diag-
onal elements of the hat matrix). As a result, the marked
compound at the top center of the embedding (2,4,6-
Triiodophenol) is excluded from the AD with the leverage
approach (see Figure 15), but not with the Euclidean
distance centroid approach. It is the second heaviest com-
pound in the dataset and therefore an outlier, but it has
moderate number of bonds and moderate molar refrac-
tivity. Both centroid distance based approaches have the
disadvantage that in diverse datasets not only individ-
ual separate outliers are removed, but also groups of

Figure 15 Applicability domain (AD) computed with Leverage method. The Leverage method is applied to the Fathead Minnow Acute
Toxicity, based on five physico-chemical descriptors. Compounds that are inside the AD are highlighted in red, compounds that are outside the AD
are colored blue. The excluded compounds 2,4,6-Triiodophenol is marked.
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Figure 16 Applicability domain (AD) computed with a k-Nearest-Neighbor distance-based method. The k-Nearest-Neighbor distance-based
method using Euclidean distance is applied to the Fathead Minnow Acute Toxicity, based on five physico-chemical descriptors. Compounds that
are inside the AD are highlighted in red, compounds that are outside the AD are colored blue.

outlying, similar compounds (see bottom right-hand area
in the figures). The k-nearest neighbor distance based AD
approach (Figure 16) overcomes this disadvantage: com-
pounds are only excluded from the AD if the distance to k
nearest neighbors is too high (we set k to 3, and the mean
distance has to be ≤ 3 times the mean k-NN distance).

Which of the three approaches is more suitable for this
dataset depends on the applied (Q)SAR model. There-
fore, CheS-Mapper helps to understand AD methods and
allows inspecting compounds that are excluded from the
dataset.

Discussions and conclusions
In this work, we presented how visual validation can
be performed with CheS-Mapper 2.0, an improved and
updated version of our 3D viewer for small molecule
datasets. In particular, CheS-Mapper now allows to
analyze activity cliffs, to detect common properties of sub-
groups of compounds within the dataset, and to calculate
the 3D embedding quality.

In our work, visual validation is understood as the
graphical analysis of (Q)SAR model validation results.
Therefore, the predicted dataset is embedded into 3D
space, based on the same features that have been
employed for (Q)SAR modeling. The highlighting func-
tionality of CheS-Mapper allows to compare the pre-
dictions to the actual activity values within the feature
space. The user can in particular inspect how the model
predicted compounds that form activity cliffs. Visual val-
idation can aid the (Q)SAR model developer to select
appropriate features, to detect possible inconsistencies
within the data, and to investigate strengths and weak-
nesses of the employed (Q)SAR approach. Re-iterating

(Q)SAR modeling, statistical validation and visualization
can improve the model predictivity and supports the
researcher in mechanistically interpreting model pre-
dictions, which is an important requirement for the
acceptance of (Q)SAR models as alternative testing
method.

In the future, we consider adding model building func-
tionalities to CheS-Mapper, in order to build and visually
validate (Q)SAR models directly within the software.
Future work might also include applicability domain cal-
culation, jittering of multiple compounds that are mapped
to the same 3D position, and the implementation of an
additional java-based dimensionality reduction technique.

Availability and requirements
Project name: CheS-Mapper
Project home page: http://ches-mapper.org
Operating system(s): Cross-platform
Programming language: Java with Java Web Start
support (can be started from a web browser)
Other requirements (optional): For extended functions
OpenBabel [34] and R [35] (both free).
License: GNU GPL v3
Any restrictions to use by non-academics: No additional.
For proper use, guidance and maintenance, contact
ches-mapper@informatik.uni-freiburg.de

Endnotes
aThe Apache Commons Mathematics Library is

employed for statistical testing (http://commons.apache.
org/math). To test the specificity of numeric features of
single compounds, equal-width binning is applied with

http://ches-mapper.org
http://commons.apache.org/math
http://commons.apache.org/math
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initially 20 bins. Hence, the numeric data is divided into
categories using 20 intervals of equal width. If intervals
without any compounds exist, the number of intervals is
decreased by one and the binning method is reapplied.
To produce a compact data representation, this process is
iteratively repeated until no empty bins exist.

bThe formula from [41] to predict the endpoint is
logPeff = −4.358 + 0.317 × min(max(−1.8, logD), 2.0) −
0.00558 × HCPSA − 0.179 × rgyr + 1.074 × frotb.

Additional files

Additional file 1: Datasets and CheS-Mapper configuration. A zip-file
containing the data used in this article for the use-cases and screen-shots.

Additional file 2: Investigate input features for carcinogenicity
models. A description of the KNIME workflow that is used to visually
compare a leave-one-out cross-validation of the Caco-2 data.

Additional file 3: A KNIME Workflow for visually validating LOO-CV.
A description of the KNIME workflow that is used to visually compare a
leave-one-out cross-validation of the Caco-2 data.
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