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Microbiomes are integral to viticulture and winemaking – collectively termed winegrowing 
– where diverse fungi and bacteria can exert positive and negative effects on grape health 
and wine quality. Wine is a fermented natural product, and the vineyard serves as a key 
point of entry for quality-modulating microbiota, particularly in wine fermentations that are 
conducted without the addition of exogenous yeasts. Thus, the sources and persistence 
of wine-relevant microbiota in vineyards critically impact its quality. Site-specific variations 
in microbiota within and between vineyards may contribute to regional wine characteristics. 
This includes distinctions in microbiomes and microbiota at the strain level, which can 
contribute to wine flavor and aroma, supporting the role of microbes in the accepted 
notion of terroir as a biological phenomenon. Little is known about the factors driving 
microbial biodiversity within and between vineyards, or those that influence annual 
assembly of the fruit microbiome. Fruit is a seasonally ephemeral, yet annually recurrent 
product of vineyards, and as such, understanding the sources of microbiota in vineyards 
is critical to the assessment of whether or not microbial terroir persists with inter-annual 
stability, and is a key factor in regional wine character, as stable as the geographic 
distances between vineyards. This review examines the potential sources and vectors of 
microbiota within vineyards, general rules governing plant microbiome assembly, and how 
these factors combine to influence plant-microbe interactions relevant to winemaking.

Keywords: viticulture, terroir, microbial ecology, microbiome, metagenomics, microbial dispersal, biogeography

INTRODUCTION

For thousands of years, wines have been made exclusively through autochthonous fermentations 
conducted by the microbiota (see Glossary) present in and on the fruit, or resident in the 
fermentation vessel (Chambers and Pretorious, 2010; Marsit and Dequin, 2015). Saccharomyces 
cerevisiae is the dominant species responsible for primary fermentation (alcohol production), 
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but the transformation of grape must to wine is a multi-
stage, multi-species process involving a diverse array of other 
microorganisms (Bokulich et  al., 2016; Bisson et  al., 2017; 
Hall et al., 2017). Enological starter cultures were first introduced 
into winemaking during the latter half of the 20th century 
(Chambers and Pretorious, 2010), yet uninoculated 
fermentations remain popular globally due to perceived benefits 
to wine quality, including regionality (Knight et  al., 2015) 
and varietal character (Knight et  al., 2018). Non-starter 
microbiota are involved in the fermentation of both inoculated 
and uninoculated wines, and must be  introduced from one 
of two sources: either from the vineyard or from the winery 
(Bokulich et  al., 2013).

The composition of grapevine-associated microbiomes – the 
fungi, bacteria, viruses, and other microorganisms inhabiting 
grapevines and their activities (see Glossary) – partly depends 
upon the vineyard location, cultivar, and farming method 
(Figure 1). These environmental factors all influence microbial 
effects on wine quality throughout the grape-to-glass continuum. 
For example, Botrytis cinerea and other grapevine pathogens 
exert pronounced, long-lasting effects on wine quality during 
grape development (Barata et  al., 2012b; Blanco-Ulate et  al., 
2015, 2017; Martinez-Luscher et al., 2019). The potential impacts 
by specific microbiota derive from interactions among vineyard 
site, variety, and viticultural practices (Bokulich et  al., 2014, 
2016). Similarly, microorganisms exert both positive and negative 
effects on wine quality before, during, and following fermentation 
(Domizio et  al., 2014, 2017; Blanco-Ulate et  al., 2015;  
Belda et al., 2017; Hall et al., 2017; Reiter et al., 2021), spurring 

recent interest in the use of non-Saccharomyces yeasts in 
winemaking (Jolly et  al., 2003, 2014).

Grapevine microbiomes exhibit spatial distribution between 
and within vineyards that correspond to environmental 
conditions, empirically defined viticultural zones, and regional 
wine properties (Setati et al., 2012; Burns et al., 2015; Bokulich 
et  al., 2016; Knight et  al., 2020). This connection between 
microbial biogeography (see Glossary) and regional wine 
characteristics has been termed “microbial terroir” (Bokulich 
et al., 2014; see also notes in Glossary), a term that hypothesizes 
a connection between grapevine microbiology and wine terroir 
(see Glossary). The evidence plays out in the empirical 
observations by many farmers, that grape and wine spoilage 
issues are often vineyard- and block-specific. Geographic distance 
is often a primary factor correlated with these differences, 
though it is unclear if it is merely a proxy for these other 
drivers (Burns et  al., 2015; Miura et  al., 2017). For example, 
microbiota in musts appear to correlate with vineyard and 
regional level climate and weather patterns (Bokulich et  al., 
2014; Reiter et al., 2021; Steenwerth et al., 2021), human activity, 
and human transport between vineyards in the case of S. cerevisiae 
(Goddard et  al., 2010; Knight and Goddard, 2015; Gayevskiy 
et  al., 2016). Site, encompassing the specific environmental 
constraints of a single place (e.g., vineyard or block), is commonly 
the most explanatory variable in studies of microbiome assembly 
in other plants, suggesting that vineyard-specific microbiomes 
should not come as a surprise (Knief et  al., 2010; Rastogi 
et  al., 2012; Coleman-Derr et  al., 2016; Wagner et  al., 2016). 
In this review, we characterize sources of microbiota in vineyards, 

FIGURE 1 | Spatial and temporal variation in vineyard microbiomes is shaped continuously by a mosaic of biotic and abiotic factors. Climate and weather patterns 
drive cyclical phenotypical stages of grapevines and their resident microbiota, spatial heterogeneity, and abiotic mixing/exchange of microbiota year-round (see also 
Figure 2). Several potential reservoirs (e.g., soil, grapevine bark, and other nearby plants) serve as overwintering sites for grapevine fungi and bacteria. Humans, 
insects, and weather events induce microbial transmission, particularly during the growing season (spring, summer, and autumn). Plant genotype continuously 
selects microbiota from this local pool.
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specifically reservoirs, and the extent of transmission within 
and between vineyards. We assert that this serves as foundation 
for determining how suites of microbiota are related to wine 
characteristics, or even typicity, a stable regional or site specific 
wine signature.

Many questions remain unsettled regarding the microbiota 
within vineyards and their dispersal among vineyards and 
regions. Are soils or other plants the primary reservoir of 
microbiota that actually colonize (as opposed to temporarily 
inhabit) plant surfaces? Do yeasts present on the fruit surface 
in a previous vintage overwinter in fruit left behind, on the 
trunks of vines, in soils, or on neighboring vegetation? How 
is the fruit surface microbiome assembled annually, as fruit 
is a transient seasonal feature in vineyards?

To address these ideas, we  examine microbial ecology, 
reservoirs, and transmission in vineyards from the ground up 
in an attempt to understand if and how environment, humans, 
and plant hosts together drive microbial assembly and interannual 
stability of grapevine microbiomes.

MICROBIAL ECOLOGY OF VINEYARDS: 
FROM THE GROUND UP

Before addressing the potential sources of microbiota in vineyards, 
we  will establish baseline knowledge about the microbiomes 
found in the soil, on different plant organs, and the abiotic 
and biotic factors that shape microbiomes in these environments. 
Second, we  will briefly summarize the importance of these 
microbial ecosystems on wine quality, to contextualize the 
importance of microbial source-sink relationships in vineyards.

Vineyard microbiomes (both in the soil and directly associated 
with grapevines) are shaped by multiple interacting factors 
that make up a single location, including climate (i.e., precipitation 
and temperature gradients), geolocation, elevation, topography 
and slope, edaphic factors, and management practices for the 
soil and the grapevine (Barata et  al., 2012b; Bokulich et  al., 
2014; Burns et  al., 2015, 2016; Jara et  al., 2016; Portillo et  al., 
2016; Vitulo et  al., 2019; Liu et  al., 2020; Steenwerth et  al., 
2021). Microbial biodiversity in the soil, grapevine, and 
surrounding environments thus reflect effects of both 
environmental filtering and dispersal limitation (see Glossary), 
as detailed below.

Vineyard Bulk Soils
The functional activities of soil microbiota are integral to 
biogeochemical cycles, and directly impact soil fertility and 
chemistry (Kallenbach et al., 2016; Fierer, 2017). Soil microbiota 
interact with plants in the rhizosphere, the soil zone directly 
surrounding plant roots, and influence plant health, physiology, 
and phenotype (Wagner et  al., 2014; Huberty et  al., 2020). 
Distinct from work on plant-microbe interactions (Berg et  al., 
2014; Trivedi et  al., 2020) and examinations of bulk soil and 
rhizosphere microbiota (Fierer, 2017; Fitzpatrick et  al., 2018), 
we focus on relationships between grapevines and soil microbiota, 
their potential impacts on vine physiology and grape chemistry, 
and potential transmission of fungi and bacteria from soil to 
the grapevine.

Biogeographic patterns in soil microbiomes from vineyards 
and other land use types have been revealed at multiple spatial 
scales, including continental, region, site, and even within sites 
(Fierer and Jackson, 2006; Schreiner and Mihara, 2009;  

FIGURE 2 | The vineyard is an interconnected and open ecosystem that exchanges microbiota at intra-vine, intra-vineyard, local, and regional scales. Microbiota 
are naturally exchanged between the regional, local, and intra-vineyard scale by wind/weather factors, and locally by human activity, insects, and other factors. At 
the intra-vineyard and intra-vine scales, microbes are exchanged between vines and plant compartments (grapes, phyllosphere, and rhizosphere/soil) by various 
vectors, including wind, rain, insects, and human activity. These transmission pathways are subject to dispersal limitation, shaping the local pool of available 
microbiota. Environmental factors and plant genotype exert further selective pressures to shape the microbiota of different plant compartments.
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Drenovsky et al., 2010; Martiny et al., 2011; Fierer, 2014, 2017; 
Holland et  al., 2014; Talbot et  al., 2014; Wagner et  al., 2014; 
Burns et  al., 2015; Zarraonaindia et  al., 2015; Liang et  al., 
2019). Both dispersal limitation and environmental filtering 
(see Glossary) explain patterns of microbial biogeography. In 
soils, drivers include static properties, such as mineralogy, 
morphology, texture, and pH, whereas more dynamic soil 
properties include fluctuations in water content and temperature, 
and resource availability derived from quantity and quality of 
carbon and nitrogen (N) pools (Burns et  al., 2015). Like other 
land use types, bulk soil bacterial community composition in 
vineyards corresponds to shifts in soil pH and C:N ratio in 
the fine fraction across soil types (Burns et al., 2015; Zarraonaindia 
et  al., 2015). Together, these factors affect the environmental 
conditions acting on soil microbiota, and in turn, microbiota 
act as architects of their own environment through nutrient 
transformations, exudation of mucilages, and formation of soil 
aggregates. These activities by microbiota then influence the 
diffusion and movement of resources through the soil. Soil 
management practices also modulate bulk soil microbiomes, as 
practices like cover crops and cultivation alter resource availability 
and edaphic factors like soil pH (Burns et al., 2016; Chou et al., 
2018; Pingel et  al., 2019). Thus, local soil characteristics are the 
primary driver shaping the extant pool of microorganisms that 
interact with grapevines, but geographic distance can also 
be  related to differences in soil microbiomes.

The distance-decay relationship describes the similarity in 
species composition between two or more communities with 
respect to the distance between them, with increasing dissimilarity 
across increasing distance serving as a reflection of dispersal 
limitations in microbial communities across various spatial 
scales. For example, fungal soil communities in vineyards show 
site specificity at the local scale (within 2  km), and increasing 
distances between sites are correlated with increasing soil 
microbiome diversity at the large scale (>100  km; Morrison-
Whittle and Goddard, 2015; Knight et  al., 2020). Dispersal 
limitations also drive soil microbiome composition and structure, 
as historical contingencies (or previous dispersal events and 
geographic isolation) facilitate speciation of individual microbiota 
and further structuring of microbiome membership (Talbot 
et  al., 2014; Peay et  al., 2016).

Although membership of a microbial community can 
be  driven by dispersal limitation, leading to a high degree 
of spatial heterogeneity of soil microbiomes, functional 
redundancy can lead to partial decoupling of taxonomy and 
function. Functional redundancy describes the shared metabolic 
functions among taxonomically distinct, coexisting community 
members (Louca et al., 2018), and can be extended to describe 
microbiomes occupying similar niches that are taxonomically 
distinct but perform similar metabolic functions, such as 
nutrient cycling. Thus, spatial variation in species compositions 
(e.g., in vineyard soils) does not necessarily amount to spatial 
variation in core functions, such as nutrient cycling. 
Nevertheless, evolutionary relatedness and function are partially 
linked (Zhu et al., 2015), and hence the importance of microbial 
biodiversity (in terms of species and functions) cannot 
be  understated.

The Rhizosphere: A Primary  
Plant-Microbial Interface
The rhizosphere describes the zone of soils that contact plant 
roots and are influenced by root exudates, wherein plants 
and soil microbes most closely interact (Mendes et al., 2013; 
Lazcano et al., 2021). The rhizosphere microbiome of grapevines 
(as with other plants) is impacted by hierarchically structured 
relationships between geographic location, plant genotype, and 
edaphic factors including land use history (Berg and Smalla, 
2009; Wagner et  al., 2014, 2016; Kaplan et  al., 2020). As 
potentially long-lived woody perennials, grapevines have an 
extended opportunity to form lasting relationships with microbial 
communities. Variations in root morphology and exudates 
allow plants to actively recruit rhizosphere microbiota from 
among the general population of microbiota in the surrounding 
soil (Berg and Smalla, 2009; Tkacz et  al., 2015), leading to 
an orders-of-magnitude reduction in microbial diversity from 
bulk soils to the rhizosphere to the root surface. This process 
is influenced by vine age as hosts continue to exert selective 
pressure over long time periods (Holland et  al., 2014), and 
by the scion and rootstock genotypes as different cultivars 
recruit different microbiota from similar pools (D’Amico et al., 
2018; Marasco et al., 2018; Berlanas et al., 2019). Plants exude 
10–44% of their photosynthetically derived carbon to the 
rhizosphere and communicate with microbiota through 
hormonal signaling and production of volatile organic 
compounds (VOCs) (Berg and Smalla, 2009; Mendes et  al., 
2011). As sessile and even long-lived organisms, plants partly 
engineer their local soil environment through active rhizosphere 
selections (Canarini et  al., 2019).

The rhizosphere serves as a microbial extension of the hosts’ 
metabolic and genomic repertoire, analogous to the role of 
gut microbiomes to, e.g., human health (Bulgarelli et  al., 2012; 
Hacquard et  al., 2015), and hence plants actively modulate 
their rhizosphere microbiota to cultivate beneficial symbionts. 
Rhizosphere microbiota play pivotal roles in nutrient acquisition, 
growth, and development of plants (Mendes et al., 2013; Tkacz 
et  al., 2015), alteration of root architecture (Vacheron et  al., 
2013; Rolli et al., 2016), timing of phenological stages (Wagner 
et  al., 2014), acquisition of trace metals and mineral nutrients 
(Baldan et  al., 2015; Lazcano et  al., 2021), drought tolerance 
(Coleman-Derr et al., 2016; Vurukonda et al., 2016), and defense 
against biotic stressors such as pathogens (Mendes et  al., 2011; 
Lazcano et  al., 2021). Rhizosphere microbiota can induce 
systemic resistance to plant pathogens, and be  recruited in 
response to foliar pathogens, producing persistent effects in 
soil through production of root exudates and affecting successive 
generations of plants grown in the same soil (Berendsen et  al., 
2018; Yuan et  al., 2018). These findings reveal that biotic and 
abiotic stressors, land use history, and agricultural practices 
create a biotic legacy in shaping the functional structure of 
the rhizosphere microbiome.

In grapevines, rhizosphere microbiota can enhance drought 
resistance in multiple rootstock varieties (Salomon et  al., 2014; 
Rolli et  al., 2015). Alleviation of water stress in grapevines 
can occur through promotion of plant growth by Bacillus and 
Pseudomonas species, as they induce production of abscisic 
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acid (ABA) by the grapevine (Salomon et al., 2014). Importantly, 
carefully timed water stress is a commonly used farming 
technique to induce production of desirable secondary 
metabolites, specifically phenolics in red wine grapes (Roby 
et al., 2004), and water stress is related to bud fertility (Guilpart 
et  al., 2014). Could there be  a potential interaction between 
anthropogenic activity (induced water stress), rhizosphere 
microbiota recruitment, and grapevine phenotype (secondary 
metabolite production), as has been shown in other plants 
(Baslam and Goicoechea, 2012)?

Microbial interactions with grapevines at the root-soil interface 
also have the potential to shape wine qualities through changes 
in fruit chemistry. Functional changes in drought tolerance 
(Salomon et  al., 2014; Rolli et  al., 2015; Coleman-Derr et  al., 
2016; Vurukonda et  al., 2016), the uptake of nitrogen and 
other trace minerals such as phosphorus (Mendes et al., 2013; 
Baldan et al., 2015; Trouvelot, 2015), and timing of phenological 
stages (Wagner et  al., 2014) are all ways that soil microbiota 
might affect the production of wine-relevant metabolites by 
grapevines as demonstrated in other plants. These effects of 
microbial interaction with rhizosphere microbiota could underpin 
some of the phenotypic plasticity seen by single grapevines 
cultivars at different sites (Wagner et  al., 2014). Arbuscular 
mycorrhizal fungi have been shown to alter the uptake of N 
in grapevines, spurring biomass accumulation (Cheng and 
Baumgartner, 2004; Trouvelot, 2015). Nitrogen uptake alters 
the partitioning of resources between plant biomass and fruit 
development, as well as secondary metabolite production in 
grapevines (Habran et  al., 2016). Furthermore, N content in 
grapes provides nutrients to microbiota during fermentation, 
and hence is linked to yeast viability and metabolite production 
during fermentation (Bell and Henschke, 2005). Acquisition 
of mineral nutrients by the grapevine also has the potential 
to alter the fermentation kinetics of musts through changes 
in redox potential (Killeen et  al., 2018).

Aboveground Plant Compartments
Grapevines exhibit complex physiology and phenology, with 
multiple aboveground compartments (the “phyllosphere,” see 
Glossary) with distinct selective conditions for microbial growth, 
principally the leaves, bark, and fruit (the “carposphere,” see 
Glossary). These are spatially related but functionally distinct 
plant compartments, and are colonized by distinct microbial 
communities (Morrison-Whittle and Goddard, 2018).

Among all of these compartments, fruit is the only 
compartment in which the microbiota present can be  directly 
implicated in wine outcomes. Microbial activities on fruit can 
be  strongly influential to wine quality long before harvest, as 
most clearly exemplified by fungal growth that can cause 
undesirable (Barata et al., 2012b) or desirable wine characteristics 
(Bokulich et  al., 2012b; Blanco-Ulate et  al., 2015). Selection 
of microbes on the grape surface might likewise influence 
susceptibility to grapevine pathogens through microbe-microbe 
interactions between primary colonists and future pathogens 
(Agler et  al., 2016; Berg and Koskella, 2018), and theoretically 
could influence colonization patterns more generally, e.g., of 

fermentative yeasts. The microbiota present on the grape surface 
at harvest also serve as the initial fermentation consortium 
present in early wine fermentation. Other plant compartments 
are unlikely to select for strongly fermentative organisms, as 
they lack the selective conditions of fruit (namely, low pH 
and a concentrated source of sugars), but a fair amount of 
bark and leaves can become intermixed with grapes during 
harvest and should be thoroughly considered in this discussion 
as potential reservoirs and vectors for fermentative 
microorganisms, as recent reports suggest that they could be  a 
reservoir for such microbiota (Morrison-Whittle and Goddard, 
2018; Nadai et  al., 2019).

Plant Compartment Drives Microenvironment 
Colonization
Plant compartments harbor distinct microbial communities, 
as niche effects (see Glossary) exert selective pressure within 
sites (Martins et al., 2013; Zarraonaindia et al., 2015; Coleman-
Derr et  al., 2016). In grapevines, plant compartments exert 
stronger influence on community structure than geographic 
distance (Morrison-Whittle and Goddard, 2015) or site 
(Zarraonaindia et  al., 2015). However, vineyard/site is highly 
explanatory of microbiome composition when constraining the 
analysis by plant compartment in grapevines (Morrison-Whittle 
and Goddard, 2015; Zarraonaindia et  al., 2015) as well as in 
other plants (Coleman-Derr et  al., 2016; Wagner et  al., 2016).

Niche effects structure highly distinct microbiomes between 
plant compartments, while there is often overlap in membership 
within a site or individual vine (Morrison-Whittle and Goddard, 
2015, 2018; Coleman-Derr et  al., 2016; Cregger et  al., 2018). 
This does not discount the effect of biogeography on structuring 
microbiomes in vineyards, but highlights the importance of 
niche and selective forces in defining microbiome structure 
in individual plant compartments. Plant compartments select 
for microbial species that are evolved to inhabit that niche, 
but environmental filtering and dispersal effects act as a primary 
filter, shaping the local pool of microbiota that can colonize 
plant compartments.

Plant Genotype: The Third Wheel Driving 
Microbiome Selection
Emerging evidence suggests that the relative importance of 
drivers may be  hierarchically structured: in the case of 
grapevines, host genotype and niche or plant compartment 
appear to be  secondary to site-driven effects on grape 
microbiome composition, and host differences appear stronger 
within regions or sites (Bokulich et  al., 2014; Portillo et  al., 2016; 
Wagner et  al., 2016).

Host genotype exerts an effect on the microbiota present 
in the phyllosphere of various plants. This occurs through 
production of antimicrobial compounds and selection of hub 
taxa (see Glossary) that affect downstream community 
development through microbe-microbe interactions, and through 
the morphological characteristics of their vegetative and then 
sexual structures (Bodenhausen et  al., 2014; Agler et  al., 2016; 
Wagner et  al., 2016). Microorganisms in the phyllosphere are 
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found near structural features of leaves like veins and stomata, 
embedded in multi-species biofilms (Vorholt, 2012). These 
physical niches represent microsites that participate differentially 
in the release of nutrients (Vorholt, 2012), as well as in 
modulating stressors encountered at the plant surface 
microenvironment (e.g., UV and water availability). Grapevine 
cultivars are differentiated by morphological characteristics that 
alter the leaf microenvironment, including cuticle profiles, cluster 
compactness, and cluster and leaf morphologies (Gabler et  al., 
2003; Chitwood et  al., 2014; Tello and Ibáñez, 2018). The 
combination of these characteristics impact cultivar 
susceptibilities to fungal pathogens like B. cinerea (Gabler et al., 
2003; Herzog et  al., 2015; Tello and Ibáñez, 2018). Similar 
impacts can be expected for phyllosphere microbiomes at large.

Differences in microbiota with respect to grapevine cultivar 
are likely driven by the aforementioned factors, specifically 
plant morphology and physiology. The extent of these effects 
is unclear, due to covariation between cultivar selection, climate, 
and management practices. Planting grapes in single cultivar 
blocks (as is standard practice) limits parsing of the relative 
effect of site and cultivar on associated microbiota (Bokulich 
et  al., 2014). Furthermore, cultivars are typically managed 
according to their growth patterns, including canopy training 
system, which influences canopy microclimate. However, 
microbiome variation with respect to cultivar is consistent 
across geographic regions in grape musts, suggesting a host-
genotype mediated selection of specific taxa in the carposphere 
(Bokulich et  al., 2014). Determining if microbiome assembly 
corresponds to genotype, as seen in other plants, will require 
comparison between cultivar phylogeny and community assembly 
with sufficient experimental replicates and careful design. Such 
efforts may be critical to future precision management strategies, 
and farming for varietal and regional wine typicity.

Site Effects: A Combination of Environment and 
Microbial Sources
The phyllosphere microbiome results primarily from site effects, 
representing a combination of environmental filtering by abiotic 
factors, dispersal limitation, and subsequent species filtering by 
host plants. As in soils, there may be  larger differences within 
vineyards than between, and accordingly, scale and proper number 
of samples are critical to drawing ecological conclusions (Burns 
et al., 2015; Zarraonaindia et al., 2015). Microbes are differentially 
dispersed due to their life-strategies and morphological features, 
and environmental factors shape the regional pool of 
microorganisms as reservoirs or through altering dispersion. 
These include regional weather patterns that drive dispersion 
and deposition like wind and rain (Madden, 1997; Bokulich 
et  al., 2014), the interaction of these weather patterns with 
landscape scale features (Mahaffee and Stoll, 2016), proximity 
to microbial point sources like other farms or roads (Bowers 
et  al., 2011), landscape connectivity between vineyards 
(Meentemeyer et  al., 2012), vectoring by insect hosts (Stefanini 
et  al., 2012; Madden et  al., 2017; Quan and Eisen, 2018), and 
the local environment, including surrounding soil, permanent 
compartments of perennial plants, neighboring plants, and 

surrounding forests (Fort et  al., 2016). These reservoirs and 
vectors are considered in more detail later in this review.

Microbial communities colonizing grapevine compartments 
change in composition throughout the growing season in 
response to phenological and environmental changes (Martins 
et  al., 2012). Grapevine microbiomes also exhibit interannual 
variation (probably in response to weather), but remain semi-
stable between regions and across vintages (Bokulich et  al., 
2014; Cheng et al., 2020; Reiter et al., 2021). How do we account 
for these findings in understanding the microbial source-sink 
relationships between vines and the site-defined regional pool? 
Current analyses point to soil, air, insects, and plant compartments 
as potential reservoirs for microbial colonists inter-annually 
(Knief et  al., 2010).

MECHANISMS OF MICROBIAL 
DISPERSAL AND POTENTIAL SOURCES

Phyllosphere microbiomes are assembled annually in temperate 
climates, and exhibit seasonal cyclicity in microbial colonization 
(Figure  2). This cyclicity is particularly pronounced in fruit, 
as seasonally ephemeral organs that select a compositionally 
and functionally distinct microbiome, including osmophilic 
(and fermentative) yeasts. It is unclear whether these microbial 
colonists overwinter in soils, plants, or other protective 
compartments (e.g., neighboring wineries; Viel et  al., 2017; 
Chalvantzi et  al., 2020), and how they are vectored to the 
surface of the nascent vegetative or reproductive structures of 
the plant. The potential for soils, neighboring plants, wind, 
and permanent grapevine structures like the trunk for harboring 
organisms of clear importance to wine quality are examined 
in this section. Vineyards are open, interconnected ecosystems, 
highlighting the importance of system-wide stewardship for 
plant health and wine quality outcomes.

Soils as a Reservoir for Phyllosphere 
Microbiota?
Soils have repeatedly been argued to be  the primary reservoir 
for microbiota on plant surfaces aboveground, including in 
grapevines (Martins et  al., 2013; Zarraonaindia et  al., 2015; 
Wagner et  al., 2016; Figure  2). Conceptually, the idea of 
phyllosphere community members originating atleast in part 
from soils is not challenging to imagine, but is difficult to 
systematically investigate (Fort et  al., 2016; Chou et  al., 2018). 
Microorganisms that are putatively derived from the soil are 
distributed in both the endosphere and the phyllosphere of 
grapevines and other plants (Compant et al., 2008; Zarraonaindia 
et  al., 2015; Coleman-Derr et  al., 2016; Wagner et  al., 2016; 
Morrison-Whittle and Goddard, 2018), though the direction 
of transmission is difficult to establish. Alternative explanations 
for the co-occurrence of microbiota in the soil and phyllosphere 
include that microbes present on fruit or leaves are shed onto 
the soil surface and detected at the time of sampling, or that 
the microbes in both the phyllosphere and soil are deposited 
from some third source.
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The idea of shared taxa between soils and vines in winegrowing 
was established by Martins et  al. (2013) and Zarraonaindia 
et al. (2015), with regard to bacterial communities. Both authors 
found a reduction in bacterial diversity from soils, to bark, 
to fruit and leaves, and proposed tillage as a mechanism by 
which soil microbiota could be  unintentionally vectored onto 
grapes (Martins et  al., 2013; Zarraonaindia et  al., 2015). The 
same relationship has also been shown for fungi (Morrison-
Whittle and Goddard, 2015, 2018). Needless to say, the soil 
is a persistent reservoir of many of the microorganisms that 
are also found on nearby plants, but the more important 
question is whether the microorganisms with important roles 
for plant health (and in the context of this review, wine quality) 
can survive for substantial periods of time in soils. In some 
cases, soil is clearly a reservoir for plant-associated microbiota: 
Burkholderia species actively gain entry into grapevines through 
roots and make their way sequentially through the plant organs 
(Compant et al., 2008). However, actual visualization of vectoring 
and determination of sources and sinks for other microorganisms 
have yet to be  demonstrated (Fort et  al., 2016; Morrison-
Whittle and Goddard, 2018). More recent work has shown 
that soil management impacts soil microbiota but not grape 
microbiota, contradicting the idea that grape microbiota are 
responsive to soil microbial sources directly under the vine 
(Chou et  al., 2018).

Whether soil acts as a reservoir for the primary fermentation-
relevant microbiota (e.g., fermentative yeasts) is even more 
unlikely and difficult to prove. Soil and fruit surface environments 
pose vastly different selective conditions for microbiota. If fruit 
and soil microbiomes are similar at the point of sampling, 
this may just represent the fact that vineyards are dusty, tractors 
move dust, and dust is moved by the wind. To date, no study 
has tracked specific microbial strains from vineyard soils to 
grape musts or wines. The occurrence of fungal microbiota 
in vineyard soils, surrounding forests, and grape musts has 
been demonstrated, though the direction of transmission has 
not been proved (Morrison-Whittle and Goddard, 2018). Late 
in the growing season, fruit is often thinned and dropped to 
the ground, presenting a potential source for wine-relevant 
yeasts on the fruit and in soils. The question is whether these 
species can survive long-term (e.g., overwinter) in the soil 
itself. Fruit and plant detritus appear to be important reservoirs 
for fermentative yeasts (Sipiczki, 2016) and a more likely 
reservoir than soil itself. On the other hand, soil has recently 
been shown to induce sporulation in S. cerevisiae (Knight and 
Goddard, 2016), one means by which long-term survival of 
this yeast could be  accomplished during periods of nutrient 
limitation (e.g., when fruit is not present).

Similarities between phyllosphere and soil microbiota could 
be  driven by frequent mixing of vineyard microbiota by wind 
and rain, rather than transfer of soil-derived microbial colonists 
that are well-adapted for life in the phyllosphere. These natural 
forces vector soil-borne microbiota at different scales (Madden, 
1997; Bowers et  al., 2011; Bock et  al., 2012; Albright and 
Martiny, 2018), and facilitate bidirectional exchange of microbiota 
between soils and plant surfaces (Madden, 1997). The spatial 
distance between soil and the fruiting zone determined by 

grapevine training style likely alters the deposition of soil 
microbiota on fruit. However, whereas local soil microbiomes 
are structured in response to edaphic factors (Burns et  al., 
2016), and undervine management alters fungal microbiomes 
(Chou et  al., 2018), these effects are not reflected on the 
adjacent fruit surface. Thus, wind and rain are likely the 
prevalent abiotic mechanisms of microbial exchange in vineyards, 
but the questions of source, sink, and long-term survival 
remain unresolved.

Grapevine Endophytes: Hitchhikers From 
Soil to Grapes?
The endosphere refers to all internal tissues of the plant. While 
internal plant tissues are generally not as microbially complex 
as external tissues, they are not sterile (Coleman-Derr et  al., 
2016). Endophytes – microbes living within plant tissue – exist 
naturally in many grapevine organs, primarily in the roots and 
vasculature in healthy plants. Endophytes and epiphytes may 
be part of a continuum, as microbiota existing in the rhizosphere 
or phyllosphere can gain entry to the vasculature and become 
endophytes (Bulgarelli et  al., 2012; Coleman-Derr et  al., 2016).

Migration from the rhizosphere is a prominent access point 
for microbiota found in the grapevine endosphere. Compant 
et  al. (2005) demonstrated that Burkholderia sequentially 
colonized roots before moving through vasculature, where it 
was found in distal substomatal chambers, and not the outer 
surfaces of the leaves (Compant et  al., 2005). This was first 
shown in a gnotobiotic grapevine model (Compant et al., 2005), 
then in non-sterile soils (Compant et  al., 2008). Further 
investigation revealed that viable Pseudomonas spp. and Bacillus 
spp. in the xylem of flower ovules and the internal structures 
of pulp cells in berries, suggesting that these represented 
phyllosphere colonists based on their localization in the 
endosphere (Compant et  al., 2011). Thus, the grapevine 
endosphere is naturally colonized through both below- and 
above-ground routes, and there could be  distinct root and leaf 
endospheres within the same plant, as shown in other plants 
(Coleman-Derr et  al., 2016).

Microorganisms can also access the grapevine endosphere 
through above-ground organs, leading to pathogenesis. For 
instance, B. cinerea commonly exists as a fungal wind-borne 
pathogen, and upon transmission to flowers, exists as a latent 
endophytic infection in developing grapevines (Haile et al., 2017). 
Fungal pathogens can gain entry through pruning wounds, and 
exist as multi-species disease complexes such as in the case of 
Esca (Morales-Cruz et  al., 2018). Insect pests can also transmit 
microbiota into the endosphere, including Xylella fastidiosa, the 
causative agent of Pierce’s disease (Lopez-Fernandez et al., 2017).

More recently, it has been hypothesized (but unproven) that 
fermentative organisms from the soil may end up as endophytes 
in grape berries, transmitted through the xylem (Liu et  al., 
2020). Diverse microorganisms have been detected in surface-
sterilized berries, including non-Saccharomyces yeasts and  
S. cerevisiae in at least one instance, though these findings 
should be  replicated, and the point of entry is unclear  
(Hall and Wilcox, 2018). Taken together, these findings represent 
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a potentially paradigm shifting possibility for microbial seeding 
of musts, and should be  further explored as a component of 
the system-level impact of microbial diversity among sites on 
wine outcomes.

Dispersion and Deposition by Wind
Air is replete with microbiota, transported in aerosols 
(Womack et  al., 2010) and dispersed via air currents on 
regional and continental scales (Kellogg and Griffin, 2006; 
Schmale and Ross, 2015). Movements on this scale have 
relevant consequences for plant health: for example, 
Plasmopara viticola (the causative agent of grape downy 
mildew) can traverse the eastern seaboard of the United States 
in a single growing season (Schmale and Ross, 2015).

On the regional scale, microbial communities in the near-
surface atmosphere are structured with regard to land use 
(e.g., urban vs. agricultural) and season (e.g., responsive to 
plant growth; Bowers et  al., 2013). Changing meteorological 
conditions do not appear to explain this seasonal variation, 
as bacterial community structure in near-surface atmosphere 
is related to land use type, not local weather (Bowers et  al., 
2011). Moreover, wind is implicated in the seeding of phylosphere 
microbiomes, as they mirror local airborne microbiomes initially 
(Maignien et  al., 2014).

On the local scale, dispersal limitation effects are evident, 
but landscape features play a more prominent role in shaping 
microbial dispersion patterns by interacting with air currents. 
These patterns occur though both habitat connectivity at the 
inter-vineyard or landscape scale (Meentemeyer et  al., 2012), 
and are apparent at the farm-scale as gradients across orchards 
(Theofel et  al., 2020) and variable intra-vineyard distribution 
of organisms (Madden, 1997; Bock et  al., 2012; Mahaffee and 
Stoll, 2016). As an example, local dispersion of Erysiphe necator 
(the causative agent of grape powdery mildew) by wind is 
influenced by landscape connectivity and heterogeneity 
(Meentemeyer et  al., 2012). Wind dispersion may connect 
microbial ecosystems (multiple microbiomes within a larger 
geographic land-use system) at the local scale, and hence 
microbial dispersion may be  influenced by local landscape 
features and land use.

At the scale of vineyard (site), wind and rain can disperse 
fungal pathogens (and other microbes) on the order of meters 
between individual plants and soils (Madden, 1997; Bock et al., 
2012; Mahaffee and Stoll, 2016; Haile et  al., 2017). Row 
orientation, spacing, and canopy height affect the dispersion 
of the fungal pathogen E. necator (Bailey and Stoll, 2013), by 
altering air circulation patterns among vines. Heterogeneity in 
trellised canopies decreases the ability of particles to escape, 
and particulates move down rows biased by wind direction 
resulting in instances of powdery mildew infections extending 
down vineyard rows (Bailey and Stoll, 2013; Bailey et al., 2014; 
Mahaffee and Stoll, 2016). Training style of grapevines and 
row spacing thus likely alter the microbiota present due to 
their effects on airflow and proximity to the ground.

Taken together, these findings suggest wind is a relevant 
vector for seeding and distribution of vineyard phyllosphere 

communities. The specific location, layout, and landscape-scale 
features of a vineyard may result in seasonally stable microbiomes, 
and interannually stable dispersion patterns both within and 
between vineyards by subtly influencing the exchange rate of 
microbiota between soils, plants, and the surrounding airspace.

Land Use and Vegetation as Reservoirs for 
Vineyard Microbiota
Surrounding land can be another reservoir for microbial colonists 
of vineyards, vectored either by wind or insects. Fungal species 
(Hyma and Fay, 2013; Dashko et  al., 2016; Fort et  al., 2016; 
Castaneda and Barbosa, 2017) and strains (Knight and Goddard, 
2015) are shared among surrounding forests, vineyards, and 
grape musts (Morrison-Whittle and Goddard, 2018). Similarly, 
wild Vitis species in unmanaged habitats surrounding vineyards 
could serve as reservoirs for beneficial and pathogenic microbiota 
that might be  vectored across habitats like vineyards and the 
surrounding environment by insects (Baumgartner and Warren, 2005;  
Kernaghan et  al., 2017).

Plant genotype-mediated recruitment of microbial symbionts 
may influence the resultant local pool of microorganisms, 
reflecting the genetic mixture of grapevines, cover crops, weeds, 
and other local vegetation. Neighboring plants serve as potential 
reservoirs for microbiota that are already adapted to the pressures 
of life in the phyllosphere, including UV radiation, while 
vineyard weeds harbor endophytic microbiota with distinctions 
by plant genotype (Bulgarelli et  al., 2013; Samad et  al., 2017). 
Wind and other site-dependent vectors may regulate the degree 
of mixing of phyllosphere microbiota within the “neighborhood” 
in a site-specific fashion. Anecdotally, some winegrowers speak 
of local vegetation being a feature of their terroir, and molecules 
from neighboring plants are known to be  detectable in wines 
(Poitou et  al., 2017). If neighboring flora donate their flavors 
to the grapes, could they also donate their microbiota to the 
vineyard community, altering grape and wine qualities by 
contributing to the local mosaic of microbiota?

Insects as Vectors
Evidence from studies of insect-driven yeast dispersal are helping 
shape new frameworks to explain microbial community ecology, 
and suggest that their activity is integral to shaping seasonal 
microbiome assembly in plants (Chappell and Fukami, 2018; 
Madden et  al., 2018; Toju et  al., 2018). Two recent hypotheses 
describe the relationship between seasonally ephemeral plant 
sugar sources (e.g., fruit and flowers) and the vectoring of 
yeasts by insects. Both could support interannual dynamics of 
yeast populations in vineyards and microbial terroir, and 
influence on the annual assembly of grapevine phyllosphere 
and carposphere microbiomes.

The “fruit forest-reservoir” hypothesis attempts to explain 
the interannual presence of S. cerevisiae on the ephemeral 
fruit in vineyards via vectoring by insects between soils and 
fruit (Knight and Goddard, 2016). In this proposed model,  
S. cerevisiae (and by extension many other yeasts) is posited 
to exist in substantial numbers on damaged fruit deposited 
in the vineyard (Knight and Goddard, 2016). Soil contact 
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induces sporulation in S. cerevisiae, facilitating overwinter 
survival as spores prior to insect vectoring to fruit in the 
Spring (Knight and Goddard, 2016). The key to this hypothesis 
is the overwintering of yeasts in soils, but insects are an 
important component of the annual transmission cycle.

The “dispersal-encounter hypothesis” broadly describes the 
ecological relationship between yeasts and insects, and the yeast 
communities in flower nectar (Madden et  al., 2018). This 
hypothesis posits that both parties (microbial and insect) gain 
fitness from this relationship: insects disperse yeasts to ephemeral, 
seasonal, and spatially separate sugar sources, and insects – 
such as wasps, bees, and flies – use specific volatile metabolites 
produced by fermentative yeasts as signals to find sugar sources 
(Buser et  al., 2014). Both wind and insects (interacting with 
visual cues from flowers) initially transport yeasts to the fruit 
surface, and a variety of fermentative yeasts produce volatile 
metabolites that attract insects (Quan and Eisen, 2018; Jones 
et  al., 2021). Yeasts benefit from this relationship with insect 
vectors by arriving to new seasonal sugar sources before 
competitors, and once there can engineer the environment 
through the production of ethanol (Goddard, 2008; Madden 
et  al., 2018). This is relevant to winegrowing: drosophilids and 
wasps in the vineyard during ripening are known to harbor 
yeasts that differ by vineyard location, reflecting their interactions 
with the local environment (Lam and Howell, 2015; 
Sipiczki, 2016).

Aside from aiding in their distribution in space, insects 
also disperse yeasts through time (Madden et  al., 2018) and 
support the interannual persistence of yeast strains within a 
vineyard. Queens of the social wasps Vespa crabro and Polistes 
spp. can harbor S. cerevisiae cells while overwintering and 
transmit cells vertically to their offspring (Stefanini et al., 2012). 
These wasps both consume and propagate S. cerevisiae in the 
vineyard, actively feeding on grapes and break the skin to 
access sugars.

Morphological and molecular features in both insects and 
yeasts reflect their evolutionary mutualism and support their 
continued ecological connections. For example, extra layers of 
chitosan on Saccharomycetales yeasts and clumped spores from 
Metschnikowia gruessi allow them to stick more easily to fine 
hairs of insects (Madden et  al., 2018). Transit through the 
guts of insects also facilitates hybridization of yeast spores, 
leading to outbreeding of yeasts (Madden et  al., 2018). Thus, 
the mutualism between wasps and yeasts may play a role in 
development of new genotypes (Knight and Goddard, 2016).

These findings reveal that insects serve as vectors for wine-
relevant fungal taxa in the vineyard and winery environment. 
Further, microbial transmission by insects is not restricted to 
S. cerevisiae, and the contingent microbiome of insects reflects 
their source environment. In principle, any insect feeding on 
a grapevine’s vegetative or fruit tissues could shape the associated 
microbial communities. Insects also visit Vitis vinifera flowers 
(Hogendoorn et  al., 2016), thus serving as a potential source 
of seed microbiota that could inoculate plant organs emerging 
at different phenological stages of plant development. Together, 
the evidence supports a complex interconnection between 
fructivorous insects, yeast, grapevine health, and wine quality.

Microbial Exchange Between Plant 
Compartments
Exchange of microorganisms between plant compartments offers 
another hypothetical reservoir for interannual assembly of 
grapevine microbiomes. Grapevine bark could be  a reservoir 
for microbiota that re-colonize other grapevine compartments 
during the growing season. Viable Uncinula necator cleistothecia 
over-winter in grapevine bark fissures and on senesced leaves 
(Grove, 2004). Initial powdery mildew infections in the following 
season were found on the abaxial sides of leaves, nearest to 
exfoliating bark of heads and cordons of vines, suggesting that 
these were the sources of primary inoculum for the vineyards 
(Grove, 2004). Similar findings have been made in the model 
woody perennial Populus populus, suggesting bark as a site 
for overwintering of the resident microbial reservoir that might 
migrate to the vegetative tissues by wind, rain, or insect vectoring 
(Cregger et  al., 2018). Substantial taxonomic overlap has been 
documented between vineyard soil, bark, fruit, native forests, 
grape juice, and wine fermentations, further highlighting the 
potential role of bark as a microbial reservoir in vineyards 
(Morrison-Whittle and Goddard, 2018).

Leaves can be  another reservoir for microbiota during the 
growing season. Leaves emerge first in the seasonal grapevine 
cycle, and at the time of veraison, the intact berry surface 
microbiome resembles the grape leaf microbiome, dominated 
by Basidiomycetous yeasts and Aureobasidium pullans (Barata 
et  al., 2012b). This could suggest that leaves are a reservoir 
for microbiota found on the fruit surface, or that leaves and 
unripe fruit are colonized by the same wind-borne 
microorganisms early in the growing season before fruit ripening 
and niche effects (see Glossary) cause them to diverge.

THE VINEYARD MICROENVIRONMENT 
IN FLUX: TEMPORAL AND 
ANTHROPOGENIC EFFECTS

The prior sections examined general drivers of microbiome 
assembly in vineyards below- and aboveground. Site is a primary 
driver of this process (as a combination of different environmental 
effects), selecting the locally available pool of microbiota as 
well as the routes of transmission from source to sink. Plant 
factors (genotype and compartment) then influence the assembly 
of microbiomes at different plant sites. However, none of this 
occurs in a vacuum and the surrounding environmental 
conditions are constantly in flux; thus, seasonal factors, such 
as environmental, plant ripening, and anthropogenic (viticultural 
management) effects further complicate the processes of assembly.

Phyllosphere Seasonality
The vineyard is a system undergoing cyclical change, with a 
predictable seasonal trajectory for plant phenological development 
and the associated microbiome. Grapevines are dormant in the 
winter, and shoots with vegetative structures emerge in the spring, 
preceding flowers and subsequent fruit. The structure and function 
of leaves and fruit in particular change through the season. 
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Season is a major driver of microbiome structure because the 
morphological changes in host plants exert pressures on microbiota, 
in conjunction with community succession dynamics and microbe-
microbe interactions. These effects have been noted in the bacterial 
communities of annuals (Maignien et  al., 2014; Copeland et  al., 
2015), and in perennials including grapevines (Martins et  al., 
2012; Wagner et  al., 2016; Grady et  al., 2019). Specifically, 
seasonality and plant compartment distinction have been noted 
in microbiomes on fruit and leaves in grapevines (Leveau and 
Tech, 2011; Martins et  al., 2012, 2013; Morrison-Whittle and 
Goddard, 2015; Zarraonaindia et  al., 2015).

A typical succession of microbiota occurs through ripening 
on the fruit surface (Barata et  al., 2012a,b; Bisson et  al., 2017). 
α-Diversity decreases and β-diversity (the comparative diversity 
between samples in an environment) increases as the growing 
season progresses, suggesting that microbiomes are gradually 
restructured through host-microbe interactions, such as with 
sugar exudates on grape surfaces stimulating the proliferation 
of yeasts. Similar changes occur on grapevine leaf surfaces 
during the growing season (Pinto et  al., 2014), though it is 
unclear how much this is driven by phenology vs. 
management effects.

The arc of these changes shows interannual regularity, but 
site-specific effects remain detectable. Often, microbial 
communities in the phyllosphere are similar at the onset of 
the growing season before diverging. These effects are further 
impacted by farming practices (Martins et  al., 2012, 2014). 
Further, microbe-microbe interactions also play a role in 
phyllosphere microbiome assembly. Environmental and host 
genotype factors interact to enrich specific “hub” microbes 
that modulate further community membership through microbe-
microbe interactions (Agler et  al., 2016). Early colonizers can 
modulate the environment by altering the physical environment 
of the plant surface or by promoting secondary metabolites 
that other microbiota can utilize, thereby shaping the developing 
community structure (Bodenhausen et  al., 2014; Chappell and 
Fukami, 2018; Toju et al., 2018). Taken together, these findings 
suggest interannual seasonal trajectory of phyllosphere 
communities in plants generally, including grapevines. The 
predictable features of this are a decrease in α-diversity, and 
an increase in β-diversity between hosts.

Grape Berry Microbiota: Effects of 
Ripening
The grape berry surface contains exudates, including sugars, 
mineral nutrients, and organic acids, the composition of which 
change across ripening. Exudates and cuticle waxes change in 
composition and thickness as cracks in the berry surface begin 
to occur at ripeness. These changes alter the susceptibility of 
the berry to pathogens and likely play a role in the aforementioned 
seasonal changes in microbiomes. Both fungal and bacterial 
communities increase in population size as ripening progresses 
and the communities on fruit change in composition, and 
these effects are modulated by farming practices.

Yeasts are in the minority on the grape surface, present 
between 10 and 103 cfu/g on immature grapes and 104–106 cfu/g 

on ripe fruit (Fleet, 2003), with damage inducing a log fold 
change in abundance (Barata et  al., 2012a; Pinto et  al., 2014; 
Bisson et  al., 2017). Early on, Basidiomycetous taxa, including 
Aureobasidium, Cryptococcus, and Rhodotorula dominate, and 
the carposphere resembles the phyllosphere of leaves (Barata 
et  al., 2012b) before giving way to Ascomycetous yeasts, like 
Hanseniaspora, Metschnikowia, and Picha through maturation. 
This trend is evident all over the world, reflecting standard 
ecological succession at a certain taxonomic level (Bisson et al., 
2017). These yeasts are in the minority compared with filamentous 
fungi, like Aspergillus, Alternaria, and Fusarium, and diverse 
bacteria (Bisson et  al., 2017). Cultivable fungal diversity and 
richness increase throughout ripening and appear to be impacted 
by agricultural practices (Martins et  al., 2014).

Diverse bacteria populate the ripening berry surface, including 
ubiquitous soil-borne Bacillus species and taxa typically found 
in the phyllosphere (Barata et  al., 2012b). Contrary to Bisson 
et  al. (2017), Barata et  al. (2012a,b) report that bacteria exist 
in lesser numbers and that lactic acid bacteria are typically 
found at ~102  CFU/g while acetic acid bacteria range from 
10 to 106 CFU/g in damaged fruit. Bacteria also exhibit typical 
ecological succession through ripening at high taxonomic 
resolution, characterized by a gradual decrease in abundance 
of Gram-negative organisms like Pseudomonas spp. while Gram-
positive bacteria like Micrococcus increase in abundance during 
ripening (Martins et  al., 2012).

If berries are damaged, the proliferation of Ascomycetes, 
like Pichia, Zygosaccharomyces, and Torulaspora, and bacteria 
like Gluconobacter and Acetobacter occurs (Nisiotou et al., 2007; 
Barata et  al., 2012b). Damaged fruit not only results in an 
increase in overall abundance, but also an increase in the 
diversity of taxa and community remodeling (Barata et  al., 
2012b). The changes associated with ripening, particularly the 
change in the availability of substrates likely alters the microbial 
composition of the fruit surface.

A Brief Word on Management Practices
Human intervention also impacts microbial transmission 
and assembly within vineyards, impacting the many sources 
and vectors discussed earlier in this review, and thus deserves 
brief mention although a complete inspection is out of scope 
of this review. Human impacts can be intentional and direct, 
such as through application of fungicides. Anthropogenic 
activity could also exert indirect effects on microbial 
transmission through insecticide use, canopy management, 
winery workers entering vineyards and acting as vectors, 
and other practices that impact microbial vectors and 
microclimate. While various studies have described differences 
between vineyards under different management practices 
(Bevivino et al., 2014; Morrison-Whittle et al., 2017; Castaneda 
et  al., 2018; Giraldo-Perez et  al., 2021), existing data on 
management effects are limited by lack of control for block 
effects and site variation in most studies. Future studies 
should control for block and site effects when examining 
management practices. Similarly, studies of fruit or must 
microbiome site or cultivar effects should control for ripening 
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and management effects due to their demonstrated effect 
on composition of the associated microbial communities.

CONCLUSION

The microbial ecosystems within vineyards exert critical 
influences on grapevine health and wine quality, and hence 
understanding both the sources of microbiota within vineyards 
and effectors on community assembly is important for 
addressing various challenges to winegrowing. Vineyard 
location, microenvironment, cultivar, management, and 
seasonality all clearly play some role, but it is challenging 
to parse their relative contributions, as seen from existing 
studies of commercial vineyards. The unique confluence of 
local and regional environment, soil properties, grapevine 
cultivar, surrounding plants and animals, and human 
interventions shape the microbial diversity found within 
vineyards, and are potentially features that contribute to the 
uniqueness of wines from different sites.

The precise sources and vectors of microbiota within vineyards 
are not fully established, but soil, local plants and animals, 
weather, and human practices are clearly involved in shaping 
annual patterns of microbial assembly within individual vineyards. 
Site-specific edaphic properties exert selective pressures to guide 
microbiome assembly in soils, which may serve as an important 
reservoir for transmission of microbiota to above-ground plant 
organs, as well as drive microbial interactions with vines within 
the rhizosphere. Landscape-scale features including neighboring 
plant life (including grapevines themselves) likely shape the 

potential microbial pool available locally for deposition on 
vineyard surfaces. Landscape connectivity may similarly 
contribute to sources of microbiota found in vineyards, and 
regional and local weather patterns are clearly involved in 
microbial dispersion, whether the initial source is soil or other 
plants. These factors together contribute to inter-annually stable 
seeding events to initiate microbiome re-assembly on grapevines 
seasonally, which then changes through the growing season, 
influenced by cultivar effects and cyclical effects of phenology, 
weather, and viticultural management practices. Sources and 
stability of microbiota can be argued to be inter-annually regular 
features of specific vineyards, playing a role in the unique 
challenges of each site. Further work is required to understand 
which of these proposed sources of microbiota in vineyards 
are reliable features of the vineyard ecosystem and have the 
potential to inform winegrowing decisions on a region and 
site-specific basis.
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GLOSSARY

α-Diversity The measurement of diversity within a single sample, e.g., the number or distribution of species or other taxonomic units.

β-Diversity The measurement of diversity (dis)similarity between two samples, e.g., heterogeneity in community composition or structure.
Biogeography Refers both to the spatial distribution of biodiversity and to its study.
Carposphere The microbial habitats present in and on fruit.
Dispersal limitation The hypothesis that species dispersal is limited by spatial distance. In other words, the likelihood of a taxon occurring at a certain site 

changes with distance.
Environmental filtering Filtering of taxa by the abiotic or microbial constraints of a specific environment.
Hub taxa Taxa that are selected for by plant genotype or abiotic factors, which then have a disproportionate impact on community structure through 

microbe-microbe interactions.
Niche effects The collection of environmental factors that exert selective pressures on (microbial) communities within a specific ecosystem, driving 

community assembly at that site.
Microbial terroir The connection between regional variation in microbial profiles and food characteristics. The first complete definition of this compound 

term in the scientific literature was provided in 2014 (Bokulich et al., 2014). The term was used as early as 2012 with regard to wine 
(Bokulich et al., 2012b) and beer fermentations (Bokulich et al., 2012a), and preceded by earlier discussions of microbial biodiversity and 
terroir (Gayevskiy and Goddard, 2012). The idea that microbial activity contributes to terroir is much older, however, rooted in the empirical 
observations of winegrowers, e.g., that inoculation suppresses terroir characteristics.

Microbiome A complex term that encompasses the multi-species microbial communities present in an ecosystem (microbiota), their chemical 
constituents and products, their functional activities, and their interactions with each other and their environment (Berg et al., 2020)

Microbiota Refers to a multi-species microbial community, all microorganisms present in an ecosystem or sample.
Phyllosphere The microbial habitats present in and on plant leaves (Ruinen, 1956), but more generally used to refer to all above-ground plant organs as 

a habitat for microbiota.
Terroir Regional variations in food or crop phenotypes (e.g., grape and wine properties). Biological correlates for this phenomenon in winegrapes 

include geographic and intra-vineyard differences in phenolic compounds (Brillante et al., 2017; Urvieta et al., 2021), micronutrients 
(Tanabe et al., 2020), sensory-active compounds (Scarlett et al., 2014), and grapevine gene expression profiles (Anesi et al., 2015). The 
full connectivity between place and resultant wine remains to be elucidated, to match the cultural understanding of the phenomenon.
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