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Abstract

Objective: Studies in obesity have implicated adipocytokines in the development of insulin resistance,
which in turn may lead to accelerated aging. In this study, we determined associations of chromosomal
telomere length (TL) to markers of obesity and insulin resistance in middle-aged adult male and female
Arabs with and without diabetes mellitus type 2 (DMT2).
Design and methods: One hundred and ninety-three non-diabetic and DMT2 subjects without
complications (97 males and 96 females) participated in this cross-sectional study. Clinical data, as
well as fasting blood samples, were collected. Serum glucose and lipid profile were determined using
routine laboratory methods. Serum insulin, leptin, adiponectin, resistin, tumor necrosis factor-a, and
PAI-1 were quantified using customized multiplex assay kits. High sensitive C-reactive protein (hsCRP)
and angiotensin II (ANG II) were measured using ELISAs. Circulating leukocyte TL was examined by
quantitative real-time PCR.
Results: Circulating chromosomal leukocyte TL had significant inverse associations with body mass
index (BMI), systolic blood pressure, fasting insulin, homeostasis model assessment of insulin
resistance (HOMA-IR), low-density lipoprotein (LDL)- and total cholesterol, ANG II and hsCRP levels.
Adiponectin, BMI, systolic blood pressure, and LDL cholesterol predicted 47% of the variance in TL
(P!0.0001). HOMA-IR was the most significant predictor for TL in males, explaining 35% of the
variance (PZ0.01). In females, adiponectin accounted for 28% of the variance in TL (PZ0.01).
Conclusion: Obesity and insulin resistance are associated with chromosomal TL among adult Arabs.
Evidence of causal relations needs further investigation. The positive association of adiponectin to TL
has clinical implications as to the possible protective effects of this hormone from accelerated aging.
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Introduction

The prevalence of obesity has increased in many human
populations regardless of age, gender, ethnicity, and
socioeconomic status (1). Developing nations, such as
Saudi Arabia, are not immune to this global plague,
with an alarming prevalence of 35 and 37% in obese
and overweight adult citizens respectively (2). Further-
more, the indigenous Saudi population seems to have a
special genetic predisposition to develop diabetes
mellitus type 2 (DMT2) (3).

Recent studies in obesity highlight the importance of
several adipose-derived hormones, also known as
adipocytokines, in the development of insulin resistance
(4, 5). Adipocytokines have physiological effects on a
multitude of metabolic pathways and are altered in the
ndocrinology

le distributed under the terms of the Europea

n, and reproduction in any medium, provided th
presence of increased fat mass, particularly abdominal
obesity, e.g. elevation of certain adipocytokines, such as
leptin, and decrease of others, such as adiponectin (6).

Cardiometabolic complications of obesity pro-
gressively increase with age, with obese individuals
presenting accelerated chronic non-communicable
disease morbidity and mortality (7). In recent years, it
has become possible to correlate an individual’s age
with the length of the telomeres in his/her mature
circulating leukocytes. Telomeres are tandem repeats of
the DNA sequence TTAGGG extending over 6–15 kb
at the end of eukaryotic chromosomes, necessary for
both successful DNA replication and maintenance of
chromosomal integrity (8). Telomere length (TL)
declines with age in mature endothelial cells also, and
is thought to contribute to endothelial dysfunction and
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atherogenesis (9). Recently, chromosomal TL was
associated negatively with an increase in the risk for
the development of several chronic pathologies, such as
coronary artery disease (CAD) (10), obesity (11), and
insulin resistance (12). In obese men, shortened
leukocyte TL was a powerful marker of increased
carotid artery intimal medial thickness (13).

To date, no studies have been carried out in high-risk
ethnic groups, such as the Saudi Arabians. This
population has distinct diet and activity patterns and a
homogeneous genetic background. This cross-sectional
study assessed circulating leukocyte TL and determined
whether its variations influence biomarkers of obesity
and insulin resistance, including a host of adipocyto-
kines and inflammatory markers, in a cohort of middle-
aged non-diabetic and type 2 diabetic Saudi Arabs.
Patients and methods

Clinical subjects

This cross-sectional study was carried out at the
Diabetes and Endocrinology Research Laboratory of
the King Saud University, Riyadh, KSA. A total of 193
ambulatory and asymptomatic participants (97 males
and 96 females, aged 18–66 years, with varying body
mass index (BMI) (lean–obese)) were recruited. Only
patients who were on medications for diabetes and
hypertension without complications (e.g. diabetic
complications, CAD, and liver or kidney failure) were
included to avoid selection bias. Patients were asked to
complete general questionnaires, which included
detailed medical history, diet, and physical activity.
Written informed consent was also obtained, prior to
inclusion in the study. Ethical approval was obtained
from the ethics committee of the College of Medicine
Research Center in King Khalid University Hospital,
Riyadh, KSA.

Anthropometric measurements

Anthropometric data were collected by a designated
research nurse and physician, as part of an ongoing
research program ascertaining height (to the nearest
0.5 cm), weight (to the nearest 0.1 kg), and waist and
hip circumferences (measured using a standardized
measuring tape in cm), in addition to systolic and
diastolic blood pressure measurements. BMI was
calculated as kg/m2. Obesity was defined as having a
BMI of R30 kg/m2, while overweight was defined as
a BMI of O25 but !30 kg/m2.
Biochemical measurements

Morning fasting blood samples were collected from all
subjects on an assigned date. Serum was obtained by
centrifugation and transported to the laboratory. Serum
glucose and lipid profile were determined using routine
www.eje-online.org
laboratory methods. Serum insulin, leptin, adiponectin,
resistin, tumor necrosis factor (TNF)-a, and PAI-1
(SERPINE1 as listed in the Hugo Database) were quantified
usingmultiplex assay kits that utilize fluorescentmicrobead
technology, allowing simultaneous quantification of several
target proteins within a single serum sample of 50–100 ml
(14). These included pre-mixed and fully customized panels
that utilize the Luminex xMAP Technology platform
(Luminex corporation, Austin, TX, USA). For the para-
meters measured using the multiplex assay, the intra-assay
variationwas1.4–7.9%and inter-assayvariationof!21%.
Minimumdetectable concentrations (MDC)were as follows:
insulin, 50.9 pg/ml; leptin, 85.4 pg/ml; adiponectin,
145.4 pg/ml; resistin, 6.7 pg/ml; TNF-a, 0.14 pg/ml; and
PAI-1, 1.3 pg/ml. High sensitive C-reactive protein (hsCRP)
was determined using ELISA kit Bensheim, (Immuno-
diagnostik AG, Germany) with an intra-assay variation of
5.5–6.0% and inter-assay variation of 11.6–13.8%.
Angiotensin II (ANG II) was quantified using fluor-
escent-based non-radioactive immunoassay (MDC
13 pg/ml; linear range 13–240 pg/ml; Phoenix Pharma-
ceuticals, Burlingame, CA, USA). All fasting samples fell
within the detection range except for one sample in
ANG II analysis, which was below the detection limit
(ANG IIZ10 pg/ml). HOMA-IRwas calculated as fasting
insulin (mU/ml)!fasting glucose (mmol/l)/22.5.
TL analysis

For TL determination, DNA was extracted from
leukocytes isolated from whole blood. TL was examined
by quantitative real-time PCR utilizing IQ cylinder. The
assay involved comparing the abundance of telomere
DNA to an internal reference gene of invariant copy
number for each sample and by further comparison of
normalized value between DNAs of different sources. By
including DNA samples of known TL, the procedure was
calibrated to estimate actual TL. For accurate quantifi-
cation, the efficiency of the PCR (i.e. the actual fold
increase in amplicon accumulation for each round of
amplification) was determined by constructing a
standard curve, and the samples assayed contained an
amount of target that was within the region of the
standard curve for which the efficiency could be
accurately determined.

Two reference DNA samples (MRC5 and KE27) were
used to construct standard curves of amplifications
using GAPDH (fixed copy number reference gene) and
telomere primer pairs; 1.68-fold serial dilutions were
made for each DNA covering a range of 7.4–0.93 ng/ml.
In total, 10 ml aliquots of the diluted reference
DNAs were dispensed to each of four replicate wells for
each dilution, giving final quantities in the range of
74–9.3 ml DNA per well. In total, 15 ml PCR cocktail
containing 12.5 ml Taqmanmastermix and 5 pmol each
primer were added to each well, and plates were cycled
40 times at 95 8C for 15 s and 56 8C for 60 s. Plots of log
[10] template quantity versus cycle threshold (Ct)
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showed linear relations across the entire dilution
series for both primer pairs tested against both reference
DNA samples. The slopes of the graphs were used to
calculate average efficiency of amplification values for
both primer sets.
Sample telomere assay

Test DNA samples were diluted to concentrations
within the linear standard curve ranges and amplified
under the same conditions as for the reference DNAs
for both GAPDH and telomere primer pairs, employing
four replicates for each sample. Values were normalized
for each sample against the GAPDH signal by
subtracting the GAPDH Ct value from the correspond-
ing telomere Ct value (DCt values). The efficiency of
amplification values derived from the standard curves
was used to calculate the differences in abundance of
the telomere amplicons for each amplicon, and these
were corrected by calibration against the known
lengths of the telomeres in the reference DNAs
(determined by terminal restriction fragment length
analysis reported earlier). Final values, expressed as
length of telomere in bps, were calculated relative to
the known standard lengths.
Table 1 Clinical characteristics, glycemic, lipid
subjects studied. Data is presented as n (%)
continuous variables.

Males

n 97
Clinical characteristics
Obese (n (%)) 25 (25.8)
Type 2 DM (n (%)) 25 (25.8)
Age (years) 41.9G10.3
BMI (kg/m2) 27.1G4.9
Systolic BP (mmHg) 123.9G14.
Diastolic BP (mmHg) 80.6G7.6
Waist circumference (cm) 92.6G17.1
Hip circumference (cm) 100.5G17.

Glycemic profile
Glucose (mmol/l) 6.5G3.5
Insulin (IU/ml)a 8.2 (4.9–13
HOMA-IRa 2.4 (1.5–3.

Lipid profile
Triglycerides (mmol/l)a 1.5 (1.0–2.
Total cholesterol (mmol/l) 5.2G1.2
LDL cholesterol (mmol/l) 3.4G0.9
HDL cholesterol (mmol/l) 0.84G0.2

Metabolic profile
Leptin (ng/ml)a 5.9 (2.7–12
Adiponectin (mg/ml)a 10.8 (6.3–1
Resistin (ng/ml)a 16.3 (12.6–
TNF-a (pg/ml)a 3.1 (2.3–4.
aPAI-1 (pg/ml)a 6.7 (2.1–18
ANG II (ng/ml)a 0.6 (0.4–0.
C-reactive protein (mg/ml)a 2.8 (0.8–5.
Telomere length (kb) 5.4G1.6

aDenotes continuous variables with non-Gaussian dis
range); P value is significant at !0.05.
Power calculations and data analyses

Power calculations were undertaken for TL analysis on
available current literature examining patients with
DMT2 (15). A total sample size of 40 between two
groups would give 80% power at the 5% level to detect a
1 S.D. difference between group means. Frequencies were
presented as percentage, and continuous variables that
assume normality were presented as meanGS.D., while
medians (inter-quartile range) were shown for non-
normal continuous variables. Independent Student’s
t-test was used to compare gender differences for normal
parameters and c2-test was used for frequencies. For
non-normal parameters, Mann–Whitney U test was
utilized. Metabolic parameters such as insulin, trigly-
cerides, leptin, adiponectin, resistin, TNF-a, ANG II, and
hsCRP were log transformed prior to Pearson corre-
lation and regression analysis using TL as a dependent
variable. To determine significant predictors of TL,
stepwise linear regression analysis was performed.
Independent variables entered were age, BMI, systolic
and diastolic blood pressure, waist and hip circumfer-
ences, and all the metabolic parameters measured,
while TL was used as a dependent variable. Significance
was set at P!0.05. All statistical analyses were
conducted using SPSS version 11.5 (Chicago, IL, USA).
, and metabolic profiles of male and female
for frequencies and meanGS.D. for normal

Females P value

96

44 (45.8) 0.001
29 (30.2) 0.07
39.2G11.0 0.11
29.6G6.2 0.004

2 118.2G14.1 0.01
76.9G10.0 0.01
87.6G17.6 0.06

4 100.6G18.2 0.99

7.5G4.1 0.09
.7) 6.8 (4.6–9.2) 0.03
8) 2.1 (1.2–5.3) 0.97

3) 1.1 (0.9–1.8) 0.01
4.9G1.1 0.15
3.3G1.0 0.54
0.92G0.2 0.05

.7) 25.9 (12.6–37.8) !0.001
6.2) 12.5 (8.2–18.3) 0.03
24.2) 18.6 (13.8–24.9) 0.19
7) 3.6 (2.3–5.1) 0.36
.7) 9.2 (2.3–27.2) 0.12
8) 0.5 (0.4–0.7) 0.28
1) 2.9 (1.2–8.4) 0.3

5.1G1.6 0.41

tribution and is presented as median (inter-quartile

www.eje-online.org



Table 3 Stepwise linear regression analysis using telomere length
as a dependent variable and all parameters measured as
independent variables.

Gender Predictor b S.E.M.

Adjusted

R 2
P

value

Male HOMA-IR K0.29 0.1 0.35 0.01

Female Adiponectin 0.07 0.02 0.28 0.01

All Adiponectin 0.08 0.02 0.47 !0.0001

BMI K0.15 0.04

Systolic BP 0.05 0.02

LDL cholesterol K0.52 0.25

Independent variables entered were age, BMI, systolic and diastolic blood
pressure, waist and hip circumferences, glucose, insulin, HOMA-IR, HDL-,
LDL-, and total cholesterol, triglycerides, leptin, adiponectin, resistin, TNF-a,
aPAI-1, ANG II, and CRP.
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Results

Gender differences in baseline characteristics

Men had elevated systolic and diastolic blood pressure
compared with women of similar age range (P values
0.01 and 0.01 respectively). Women, on the other hand,
had a significantly higher prevalence of obesity than
men (PZ0.001). Prevalence of DMT2 was similar in the
two genders (PZ0.07). In the glycemic profile, males
had higher serum insulin levels than females (PZ0.03),
while both glucose and HOMA-IR values were similar to
those of women. Triglyceride levels were higher in males
than in females (PZ0.01), while women had higher
high-density lipoprotein (HDL) cholesterol levels than
men at borderline significance (PZ0.05). Finally,
women had significantly higher levels of circulating
leptin and adiponectin, as opposed to males, as expected
(P values !0.001 and 0.03 respectively). Levels of
resistin, TNF-a, aPAI-1, ANG II, hsCRP, and mean TLs
were not different between the genders (Table 1).
Associations of TL

The various cross-sectional associations of TL in men
and women as well as all subjects combined are shown
in Table 2. Considering all subjects, TL had significant
inverse associations with BMI, insulin, HOMA-IR, low-
density lipoprotein (LDL) cholesterol, and hsCRP levels.
Adiponectin had a positive significant association with
TL regardless of gender (PZ0.04). Among men, TL had
significant inverse correlations with waist circumfer-
ence, insulin, LDL- and total cholesterol, and hsCRP.
Moreover, HOMA-IR had a strong inverse correlation
Table 2 Correlations of telomere length to various clinical and
metabolic parameters. Data is presented as coefficients.

Parameter Males Females All

Age (years) 0.07 K0.12 0.002
BMI (kg/m2) K0.25* K0.26* K0.27*
Systolic BP (mmHg) 0.002 K0.17 K0.11
Diastolic BP (mmHg) 0.07 K0.19 K0.12
Waist circumference (cm) K0.26* 0.05 K0.047
Hip circumference (cm) K0.14 0.03 K0.03
Glucose (mmol/l) K0.19 0.09 0.01
Insulin (IU/ml) K0.46† 0.03 K0.20*
HOMA-IR K0.61† 0.07 K0.29†

Triglycerides (mmol/l) K0.13 K0.02 K0.001
Total cholesterol (mmol/l) K0.23* K0.10 K0.15
LDL cholesterol (mmol/l) K0.33† K0.15 K0.21*
HDL cholesterol (mmol/l) 0.23 0.09 0.12
Leptin (ng/ml) K0.14 K0.20 K0.16
Adiponectin (mg/ml) 0.16 0.26* 0.20*
Resistin (ng/ml) K0.05 0.11 0.03
TNF-a (pg/ml) 0.03 K0.15 K0.09
aPAI-1 (pg/ml) 0.16 K0.16 K0.03
ANG II (ng/ml) K0.22 K0.26* K0.22
C-reactive protein (mg/ml) K0.37† K0.39† K0.31†

*P value is significant at 0.05 level; †P value is significant at 0.01 level.
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with TL in males (P!0.0001). In women, BMI, ANG II,
and hsCRP had significant inverse associations with TL.
A significant positive association of adiponectin levels
to TL was observed in women (Table 3).
Predictors of TL

In all subjects, adiponectin, BMI, systolic blood pressure,
and LDL cholesterol predicted 47% of the variance in
TL (P!0.0001). Figure 1 shows the linear relations
of TL to selected parameters, such as BMI, HOMA-IR,
and adiponectin. A significant negative correlation
of TL to hsCRP levels in all subjects (PZ0.009) was
noted, which, however, was lost after controlling for
other confounders. In males, HOMA-IR was a signi-
ficant predictor for TL, explaining 35% of variance
(PZ0.01). b value for HOMA-IR indicated that every
0.29 unit decrease corresponds to a 1 unit increase in
TL. In females, a 0.07 unit increase in adiponectin
corresponded to a 1 unit increase in TL, and this
accounted for 28% of the variance in TL (PZ0.01).
Figure 2 shows the significantly shorter TL among obese
subjects and the non-significant difference among those
with and without DMT2.
Discussion

Adiponectin was positively associated with TL, while
BMI as well as insulin resistance inversely influenced TL
in middle-aged adults, even after controlling for other
clinical and metabolic confounders. Hypoadiponec-
tinemia is a good marker of insulin resistance and an
independent risk factor for DMT2 and CAD (16). As
an adipocytokine with insulin-sensitizing and anti-
inflammatory properties, this hormone has protective
effects against metabolic abnormalities that accelerate
aging.Inobeserats,adiponectinreversedendothelialdys-
function by increasing nitric oxide production by eNOS
phosphorylation, and by decreasing nitric oxide inacti-
vation through blocking superoxide production (17).
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Figure 1 Linear regression plots between chromosomal telomere
length and indices of obesity and insulin resistance: (A) TL versus
BMI (RZK0.27;PZ0.004); (B) TL versus log HOMA-IR (RZK0.29;
PZ0.008); (C) TL versus log adiponectin (RZ0.19; PZ0.04).

8

7

6

5

4

3

2

1

0

NS

Non-DM DM

8A

B

7

6

5

4

3

2

1

0
Lean Obese

**

4.56

5.64

55.3

Figure 2 Telomere length in lean and obese subjects (A) and
non-diabetics and diabetics (B). **PZ0.001; NS, non-significant.

Aging and insulin resistance in adults 605EUROPEAN JOURNAL OF ENDOCRINOLOGY (2010) 163
Among patients with Hutchinson–Gilford Progeria
syndrome, an age-related decrease in circulating
adiponectin was coupled with a striking progressive
loss of functional subcutaneous adipose tissue and was
associated with premature atherosclerosis (18).
Furthermore, anti-proliferative effects of adiponectin
on MCF7 breast cancer cells were demonstrated in vitro
(19), while apoptotic effects were noted when treatment
adiponectin was extended (20). Furthermore, vascular
calcification seen in atherosclerotic lesions is a common
consequence of aging (21), while adiponectin antagon-
izes the stimulatory effect of TNF-a on vascular smooth
muscle calcification by restoration of the AMPK-
dependent Gas6-mediated survival pathway (22). The
significant positive association of adiponectin to TL in
this study suggests that adiponectin may be an anti-
aging agent by way of improving insulin sensitivity,
decreasing inflammation and cell oxidative function,
and reversing endothelial dysfunction.
In our study, BMI and insulin resistance were
associated with telomere loss, possibly explained as a
result of cumulative psychological, metabolic, inflam-
matory, and oxidative stress leading to accelerated
physiological aging (23, 24). Indeed, the presence of
chronic psychological stress among adults related to the
fast-paced modern lifestyle significantly contributes
to obesity- and dysmetabolic syndrome-related aging
(24–27). Chronic psychological stress may also lead to
overeating and co-elevation of cortisol and insulin,
causing accumulation of visceral fat overtime, translat-
ing into metabolic and inflammatory stress (25). The
elevated hsCRP and ANG II levels in our subjects,
indices of inflammatory and physiologic stress respect-
ively, were both inversely correlated with TL. Thus,
stress-related dysmetabolic and pro-inflammatory bio-
chemical environment appears to be conducive to
several cell aging mechanisms, ultimately leading to
TL shortening and hence, cell senescence (27).

Increased circulation of inflammatory cytokines may
also stimulate leukocyte turnover and mitochondrial
activity with elevated production of reactive oxygen
species (ROS) respectively, causing replicative senes-
cence and damaging the telomeres of our patients (18).
The inverse association of hsCRP to TL is in line with the
findings of Farzaneh-Far et al., (28) and supports
the hypothesis that systemic inflammation promotes
both atherogenesis and telomere attrition. The associ-
ation of ANG II to TL in this study, on the other hand,
further strengthens the theory that ANG II directly
contributes to cellular aging. A recent study demon-
strated that ANG II induced ROS-mediated DNA damage
www.eje-online.org
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resulting in accelerated biological aging of human
vascular smooth muscle cells also via two mechanisms:
first, through acute stress-induced telomere damage,
and second, by accelerating replicative senescence and
hence, telomere attrition (29). Chronic administration
of ANG II receptor antagonist was shown to reset the
hypothalamic–pituitary–adrenal axis, thereby improv-
ing the effect and mitigating the metabolic stress of
patients with DMT2 (30).

Our findings contradict the study of Diaz et al. (31)
who found no linear associations between measures of
obesity and TL. Several factors could have attributed
to this. First is the homogeneity of the population used
in our study, as opposed to the racially and ethnically
diverse cohort used in the Diaz study. The inclusion of
diabetic subjects in this cohort, on the other hand,
might have also influenced the differences in the result
of the two studies.

The significant negative association of total choles-
terol and LDL cholesterol to TL is also worthy to note.
Elevated cholesterol levels are atherogenic and can
produce repeated mechanical, hemodynamic, and/or
immunological injury and, as such, may cause
augmented cell turnover and increased production of
ROS in certain cells (32). From this premise, it can be
suggested that the link between cholesterol levels and
TL is secondary to increased cell damage and turnover,
which in turn amplifies cell aging by bringing cells to
their maximum replicative capacity, translating to
shortened TL. It could also tie in with the age-related
innate immune pathway activation in adipose tissue
and its link to subclinical chronic inflammation.

The seemingly paradoxical lack of association
between TL and age is most likely because the bulk of
the subjects studied were middle aged. This finding is in
accordance with other studies and disputes the
unconditional use of peripheral blood monocyte TL as
a biomarker for aging due to telomere instability (33)
and negative feedback regulation (34). Cross-sectional
TL at a single age point reflects genetic background and
cumulative lifetime burdens of environmental stress
exposures (34), but the large inter-individual variation
and unmeasured confounding factors, such as baseline
TL and differences of somatic stem cell telomerase
activity among subjects, may all account for the
‘unexplained’ lack of association. Male gender has
been proposed to be an independent predictor for
increased telomere attrition (34, 35), and the gender
difference does not supersede other findings confirming
an association between insulin resistance and telomere
attrition in both genders (12).

In short, obesity and insulin resistance are associated
with measurable changes in a multitude of potential
contributing factors, including adipocytokines and
inflammatory mediators, which may shorten TL and
accelerate biological aging. Although the precise
role of telomere shortening has yet to be elucidated,
it is now clear that adiposity and insulin resistance
www.eje-online.org
collectively lead to accelerated aging that is associated
with development and progression of chronic non-
communicable diseases. The significant association of
adiponectin to biological senescence has clinical impli-
cations as to its potential protective effects in slowing
down physiologic aging, possibly by means of improving
insulin sensitivity, and reducing systemic inflammation,
ultimately mitigating endothelial dysfunction and
development of atherosclerosis. Prospective, inter-
ventional studies are needed to test this hypothesis.
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