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(TME) has been shown to impact the prognosis of tumors in patients including

cutaneous melanoma (CM); however, not all components of TME are

important. Given the aforementioned situation, the functional immune cell

contents correlated with CM patient prognosis are needed to optimize present

predictive models and reflect the overall situation of TME. We developed a

novel risk score named core tumor-infiltrating immune cell score (cTICscore),

which showed certain advantages over existing biomarkers or TME-related

signatures in predicting the prognosis of CM patients. Furthermore, we

explored a new gene signature named cTILscore−related module gene score

(cTMGs), based on four identified TME-associated genes (GCH1, GZMA,

PSMB8, and PLAAT4) showing a close correlation with the cTICscore, which

was generated by weighted gene co-expression network analysis and least

absolute shrinkage and selection operator analysis to facilitate clinical

application. Patients with low cTMGs had significantly better overall survival

(OS, P = 0.002,< 0.001, = 0.002, and = 0.03, respectively) in the training and

validating CM datasets. In addition, the area under the curve values used to

predict the immune response in four CM cohorts were 0.723, 0.723, 0.754, and

0.792, respectively, and that in one gastric cohort was 0.764. Therefore, the

four-gene signature, based on cTICscore, might improve prognostic

information, serving as a predictive tool for CM patients receiving

immunotherapy.cutaneous melanoma, tumor microenvironment, prognosis,

immunotherapy, cTICscore
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Introduction

Cutaneous melanoma (CM) is one of the most aggressive skin

cancers, with 324,635 new cases and 57,043 deaths reported in

2020 worldwide (1). CM has long been considered an

immunogenic cancer because of its highly mutagenized genome,

making it one of the most responsive cancer types to

immunotherapies (2). However, some patients showed

unresponsiveness or acquired resistance using these

immunotherapeutic approaches (3). Studies showed that the

response rate to checkpoint blockade of PD-1 or programmed

death-ligand 1 (PD-L1) signaling was around one-third (4).

Another study showed that the effect of PD-1/PD-L1 therapy

for patients correlated with PD-L1 expression in the tumor

microenvironment (TME) (5).

Based on the difference in responsiveness, an increasing

number of studies were conducted to work out models so as to

identify better biomarkers for CM prognosis under

immunotherapy. Zihang Zeng and colleagues developed a

novel scoring system named ISTMEscore to reflect the TME

status and predict CM prognosis (6). Dongqiang Zeng developed

an open-source TMEscore serving as a promising predictive

index (7). These studies were complete and creative while they

took into account relatively insignificant genes, thus reducing

the effectiveness of their model. Bagaev et al. identified four TME

subtypes predictive of response for multiple cancers in terms of

immunotherapy (8). However, a large number of genes and their

expression levels were examined, and no significant difference in

the overall survival (OS) between immune-enriched, non-

fibrotic (IE) and immune-enriched, fibrotic (IE/F) subtypes

was observed in the study in terms of the responsiveness to

immunotherapies. TME comprises a variety of infiltrated

immune cells and stromal cells such as endothelial cells and

fibroblasts (9), in which abnormal cells finally become cancerous

and accumulate (10). Extensive studies confirmed the significant

role of the proportion of tumor-infiltrating immune cells in

patient prognosis. For instance, tumor-associated macrophages

indicated an unfavorable prognosis because of the immune

events they triggered, such as secreting cytokine interleukin-10

(IL-10) (11). The increase in the number of CD4+ T cells and

CD8+ T cells was associated with better response and survival

(12). However, some studies ignored the comprehensive

interactions among different types of immune cells while

focusing only on specific ones, such as CD8+ T cells (13).

Given the aforementioned situation, the functional immune
02
cell contents correlated with patient prognosis are needed to

optimize present predictive models and reflect the overall

situation of TME. A more robust index is needed for more

precise evaluation.

In the present study, we selected prognosis-related tumor-

infiltrating immune cells and established a new index named

core tumor-infiltrating immune cell score (cTICscore) for CM

subtype identification, which was shown to be robust for

characterizing TME and predicting CM patients’ prognosis.

Further, a model involving four crucial genes and correlated

with the cTICscore was generated for convenience in clinical

application. The new model showed some superiority in

predicting CM patients’ prognosis over existing signatures or

biomarkers and could provide guidance for the choice of clinical

tumor immunotherapies.
Material and methods

Data acquisition and processing

The downloading and processing of the data of CM patients

from the Cancer Genome Atlas (TCGA_SKCM) database was

conducted as reported in our previous study (14). Normalized

gene expression data and clinical data of datasets from the Gene

Expression Omnibus (GEO) database (GSE65904, GSE22153,

GSE54467, GSE100797, GSE35640, and GSE176307) were

acquired via the GEOquery package in R software or from the

supplementary files of the corresponding publications (15–20).

Processed RNA-seq data and clinical information for the Peking

University Cancer Hospital (PUCH) study, Gide19 study, and

Kim18 study were downloaded from the GitHub website

(https://github.com/) as reported in the Chuanliang Cui’s

study (21). The data of the IMvigor210 study were

downloaded from the reported website (http://research-pub.

gene.com/IMvigor210CoreBiologies/) in the study by Sanjeev

Mariathasan (22). The single-cell RNA-seq data of selected genes

in four GEO datasets, namely, GSE72058, GSE148190,

GSE123139, and GSE115978, were downloaded from the

TISCH website (http://tisch.comp-genomics.org/). The

expression level of selected genes in immune cells and

malignant tumor cells at the single-cell level in a melanoma

sample from the study by Wu was directly visualized in and

downloaded from the Single Cell Portal website (https://

singlecell.broadinstitute.org/single_cell) (23). All data used in
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this study were acquired from public databases; further approval

from an ethics committee was not required.
Immune profile analysis

The infiltration level of 22 immune cells in each tumor

sample was evaluated via the CIBERSORT algorithm in R

software (24). The Immunescore of each tumor sample was

estimated using the ESTIMATE algorithm in the estimate

package in R software (25). The enrichment score of 29

functional gene expression signatures (Fges) in each CM

sample was downloaded from the corresponding study (8).
Enrichment analysis

The enrichment score of specific pathways was calculated

using the GSVA package in R software (26). The used gene set

C2.cp.kegg.v7.1.symbols.gmt was downloaded from the gene set

enrichment analysis website (http://www.gsea-msigdb.org/gsea/

index.jsp). The metabolic-related and other specific biological-

related gene sets were acquired from corresponding publications

(22, 27).
Weighted gene co-expression
network analysis

Weighted gene co-expression network analysis (WGCNA)

was conducted in R software based on the instruction and R

tutorial from Peter Langfelder et al. (22). Briefly, the gene

expression data of each dataset, after removing genes and

samples with too many missing values, were used to construct

a gene co-expression network. An adjacency matrix was

subsequently constructed to calculate the correlation strength

between the nodes using the following formula:

sij =   cor xi  ,   xj
� ��� ��aij =   Sbij

The co-expression similarity Sij represents the Pearson’s

correlation coefficient between two different genes i and j. Xi

and xj are the corresponding expression values of the genes i and

j, and aij is the correlation strength between the two genes. The

scale-free R2 was set as 0.9 to select the corresponding soft-

threshold b. One-step network construction and module

detection methods were subsequently used, with a relatively

large minimum module size of 200 and mergeCutHeight setting

as 0.25 for the merging of modules. Finally, module–trait

associations were quantified to identify modules significantly

associated with the cTICscore and Immunescore. Besides, the

definition and expression of module eigengenes (MEs), the gene

significance (GS), and the module significance (MS) were similar

with what had been described in a previous study (28).
Frontiers in Immunology 03
Construction of the prognostic model

The prognostic significance of the infiltration of 22 immune

cells in CM was evaluated by univariate Cox analysis. Immune

cells showing a P value less than 0.1 in all three datasets were

further subjected to multivariate Cox analysis (29). A score

(score1) was calculated by multiplying the coefficient of each

immune cell and its infiltration level in each sample, namely,

score1 = –3.13613 × Macrophages_M1 – 0.98753 ×

T_cells_CD8 – 2.4095 ×T_cells_CD4_memory_activated +

1.69976 × NK_cells_resting, and cTICscore = (score1-Min)/

absolute (Max), as reported in our previous studies (30, 31).

The selected cTICscore-related genes were input into the Least

Absolute Shrinkage and Selection Operator (LASSO) Cox

regression model, and crucial gene signatures were generated

via the glmnet package in R. The corresponding coefficients of

the generated crucial genes were obtained through multivariate

Cox analysis. A second score (score2) was calculated as

score2 = –0.08209 × PSMB8 – 0.02401 × PLAAT4 – 0.18873 ×

GZMA – 0.19433 × GCH1, and the cTICscore-related module

gene signature (cTMGs) was also calculated using the following

formula: cTMGs = (score2 – Min)/absolute (Max).
Statistical analysis

The median value of cTICscore or cTMGs in each cohort was

used as the cutoff value in separating patients into two subgroups.

Univariate Cox regression analyses were conducted to determine

the prognostic significance of the infiltrating level of 22 immune

cells in melanoma datasets using the survminer package in R. The

same package was also used for multivariate Cox regression in

obtaining coefficients of the four core TME components or four

crucial genes. The Kaplan–Meier method with the log-rank test was

used for survival analyses. The timeROC package in R was applied

for time-dependent receiver operator characteristic (ROC) analyses

and subsequent calculation of the area under the curve (AUC). This

work also took advantage of the following packages in R for data

analyses and graph plotting: tidyverse, limma, ggplot2, rms, dplyr,

plyr, ggpubr, ggalluvial and vennDiagram. P< 0.05 indicated

statistically significant differences (*, P< 0.05; **, P< 0.01; ***, P<
0.001; ****, P< 0.0001).
Results

Core tumor−infiltrating immune cell
score (cTICscore) identified CM subtypes
with distinct prognosis

The flowchart to develop a cTICscore for CM patients is

shown in Figure 1A. Briefly, the fraction of 22 immune cells was

estimated using the CIBERSORT algorithm in three
frontiersin.org
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independent CM-related datasets, namely, TCGA-SKCM,

GSE65094, and GSE22153. Univariate Cox analysis was used

to evaluate the prognostic relevance of these immune cells, and

core TME components referred to those that showed a P value

less than 0.1 in all these three datasets (29). These components

were identified to be activated memory CD4+T cells, CD8+T

cells, resting natural killer (NK) cells, and macrophages M1

(Figure 1A, Table S1).

Next, we calculated the cTICscore of CM patients in each

cohort. CM patients stratified into two subgroups using the median

cTICscore as the cutoff value showed distinct prognosis in all the

three datasets and the external validating GSE54467 (Figure 1B).
Frontiers in Immunology 04
Previous studies suggested that NK cell–related signature, CD8+T

cell-related signature, PD-L1 expression, or TMB could be used to

predict the prognosis of CM patients (14, 32, 33). The cTICscore,

compared with these predictors, seemed to have better

predictability based on the AUC of the time-dependent ROC

curves (Figure 1C). Dongqiang Zeng et al. developed a package

calculating the TMEscore of individual cancer samples to

characterize the TME of gastric cancer (7, 34). Although the

TMEscore can also help to stratify CM patients having a distinct

prognosis (Figure S1A), the AUC value at 5 years of the TMEscore

in the GSE22153 dataset was quite low (less than 0.5, Figure 1D),

suggesting that the TMEscore was slightly inferior to the cTICscore
A

B

DC

FIGURE 1

Identification of CM subtypes with distinct prognoses based on the cTICscore. (A) Illustration for the construction of the cTICscore in CM. (B)
cTICscore-based CM subtypes exhibited distinct prognoses. (C) Time-dependent ROC curves for the cTICscore and other predictors. (D) AUC
of the time-dependent ROC curves for the cTICscore, TMEscore, the five-gene signature and the seven-gene signature.
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in predicting the OS of melanoma patients. We also included two

other immune-related signatures in this work; while the seven-gene

signature fromTian’s study (35) had a similar predictability like the

cTICscore, the five-gene signature from Hu’s study (36) also had a

low AUC value at 5 years in the GSE22153 dataset (Figure 1D).

Taken together, the developed cTICscore showed a certain

advantage over the existing method in characterizing the TME

and predicting the CM patients’ prognosis.

Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis was performed to characterize further the

features of the high- and low-cTICscore groups. We found that

the low-cTICscore group was highly enriched in immune-

related pathways such as antigen processing and presentation

and NK cell–mediated cytotoxicity; however, the high-

cTICscore group was enriched in metabolism-related pathways

such as aminoacyl tRNA biosynthesis, glycosaminoglycan

biosynthesis, and keratan sulfate, and lysine degradation

(Figure S1B).
Development of the cTMGs in
CM patients

Estimating the fraction of infiltrated immune cells in the

TME using algorithms such as CIBERSORT depended on the

availability of transcriptional data of thousands of genes and

might be prone to different unexpected biases (37, 38). We

hypothesized that a specific fingerprint, consisting of several

genes reflecting the infiltration of core TME components of

CM patients, might be more applicable for clinical purposes.

WGCNA was first applied to identify modules highly correlated

with the cTICscore (Figure 2A). The red module in GSE22153

(Figure 2B), the turquoise module in GSE65904 (Figure S2A),

and the brown module in TCGA_SKCM (Figure S2B) were

found to be most significantly negatively associated with the

cTICscore but positively associated with the Immunescore

calculated via the ESTIMATE algorithm. Besides, the red

module in GSE22153 (cor = 0.51, P = 2.9e-62, Figure 2C), the

turquoise module in GSE65904 (cor = 0.53, P = 1.9e-173, Figure

S2C), and the brown module in TCGA_SKCM (cor = 0.77, P< 1e

−200, Figure S2D) indicated a high GS in relation to the

cTICscore. A total of 386 genes were shared among the red

module of GSE22153, the turquoise module of GSE65904, and

the brown module of TCGA_SKCM (Figure 2D). In addition, 27

of the 386 genes strongly correlated in transcriptional expression

with the cTICscore in all the three datasets (Figure 2D). These 27

genes were further input into a LASSO regression model, which

generated four crucial genes, including GTP cyclohydrolase 1

(GCH1), granzyme A (GZMA), proteasome subunit beta type-8

(PSMB8), and phospholipase A and acyltransferase 4

(PLAAT4) (Figure 2D).
Frontiers in Immunology 05
Characterization of the four crucial
genes in CM TME

The prognostic analysis showed that CM patients with the

high expression of one of the four crucial genes, when stratified

by the median value of its expression, had significantly longer OS

(Figures S3A–D). GCH1 functions as the first and rate-limiting

enzyme in tetrahydrobiopterin biosynthesis (BH4). A recent

study revealed that GCH1 had a remarkably positive impact

on T-cell proliferation and immune response in autoimmunity

and cancer (39). GZMA is predominantly expressed in cytolytic

T lymphocytes and NK cells and is necessary for the execution of

lysis of target cells (40). PSMB8 is a major component of the

immunoproteasome, which is found predominantly in

monocytes and lymphocytes and known for processing class I

major histocompatibility complex (MHC-I) (41). PLAAT4, also

known as retinoic acid receptor responder 3 (RARRES3) or

retinoid-inducible gene 1 (RIG-1), is characterized as a tumor

suppressor and plays a role in the induction of type I interferon

(IFN-1) and MHC-I expression (42, 43). The expression of all

these four genes significantly correlated with the four core TME

components of CM (Figure S3E). In particular, the

transcriptional level of all the four genes had a strong positive

correlation with the infiltration of CD8+ T cells (R > 0.5, Figure

S3E). Besides, GCH1 and GZMA also strongly correlated with

the fraction of the activated memory CD4+ T cells (R > 0.5,

Figure S3E). A single-cell transcriptional analysis of four

independent datasets indicated that GCH1 had a relatively

high expression in monocytes/macrophages, B cells, CD4+ T

cells, and CD8+ T cells, but low or no expression in malignant

tumor cells (Figure 3A). GZMA was predominantly expressed in

CD8+ T cells, proliferative T cells, and NK cells (Figure 3A).

PSMB8 could be detected with a relatively high expression in

various immune cells and tumor cells (Figure 3A), and PLAAT4

showed a relatively high expression in CD4+ T cells, CD8+ T

cells, NK cells, and proliferative T cells (Figure 3A). The

expression pattern of the four crucial genes was further

supported by another study (23) (Figure 3B), which

demonstrated that all four genes were highly expressed in T

cells. In addition, PSMB8 could be detected in most cells, with a

relatively high expression in monocytes/macrophages, T cells,

endothelial cells, and plasmacytoid dendritic cells (pDCs)

(Figure 3B). GCH1 was highly expressed in monocytes/

macrophages, T cells, and B cells (Figure 3B). GZMA was

predominantly expressed in most T cells, while PLAAT4 was

predominantly expressed in T cells and endothelial cells

(Figure 3B). Taken together, all four crucial genes had

important roles in the TME and significantly correlated with

the infiltration of four core TME components. Their potential

function in CM is shown in Figure 3C.

These LASSO-selected genes were further used to compute a

risk score in the training (GSE65904) and validation cohorts
frontiersin.org
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(TCGA_SKCM, GSE22153, and GSE54467), using the following

formula: –0.08209 × PSMB8 – 0.02401 × PLAAT4 – 0.18873 ×

GZMA – 0.19433 × GCH1. The cTMGs was calculated using the

risk score of the patient subtracted by the minimum risk score of
Frontiers in Immunology 06
each cohort, which was then divided by the maximum risk score

of the cohort, as reported in our previous studies (30, 31). CM

patients in all these four datasets were divided into two groups

using their respective median cTMGs as the cutoff value. The
A B

DC

FIGURE 2

Identification of four signature genes in CM TME. (A) Merging of mRNA co-expression modules. (B) Correlation heatmap of module genes and
cTICscore or Immunescore in the GSE22153 dataset. The correlation coefficient changed from –1 to 1 as the color turned from blue to red
gradually. (C) Scatterplot of the correlation coefficient between the selected module (red module) and the cTICscore. (D) Flowchart of the
identification of four signature genes in CM TME. A total of 386 genes were shared in the selected modules from TCGA_SKCM, GSE65904, and
GSE22153, and 27 of these genes strongly correlated (absolute coefficient > 0.5) in expression with the cTICscore across all three datasets. The
27 genes were input into a LASSO regression model, which generated four crucial genes for further analysis.
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concordance of cTMGs-based stratification with the cTICscore-

based division was evaluated; it was 70.33% in GSE65904, 78.95%

in TCGA_SKCM, 76.47% in GSE22153, and 84.81% in GSE54467

(Figure 3D). The Kaplan–Meier survival analysis indicated that

CM patients having low cTMGs had significantly better prognoses
Frontiers in Immunology 07
compared with those with high cTMGs (Figure 3E). Time-

dependent ROC curves were used to calculate the AUC at

different time points of the cTICscore and cTMGs. The result

suggested that cTMGs had slightly improved predictive ability

over the cTICscore for OS across the cohorts (Figure 3F).
A

B

D

E F

C

FIGURE 3

Construction of cTMGs based on four signature genes. (A) Expression of the four crucial genes in the TME components of CM. (B) Expression of
the four crucial genes in different types of cells. (C) Schematic description of the potential functions of the four crucial genes in CM. (D)
Relationship between cTMGs-based subtypes and cTICscore subtypes in different datasets. (E) Kaplan–Meier survival analysis results of patients
in the high- and low-cTMGs groups. (F) AUC of the time-dependent ROC curves for the cTICscore and cTMGs.
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Relationship between cTMGs and clinical
features of CM patients

Previous analysis showed that CM patients having

a high cTICscore were enriched in metabolism-related

pathways (Figure 1D). Since the cTMGs closely correlated

with the cTICscore, we further explored whether cTMGs-
Frontiers in Immunology 08
based subclasses of CM patients had different metabolic

characteristics. We quantified 115 metabolic processes using a

set of genes identified by Chen Yang et al. (27). We found that

the high-cTMGs subclass was predominantly enriched in energy

metabolism–, lipid metabolism–, and glycan metabolism–related

terms such as citric acid cycle, steroid biosynthesis, and

gluconeogenesis (Figure 4A), while the low-cTMGs subclass
A

B

D E F

C

FIGURE 4

cTMGs negatively correlated with tumor immunity in CM. (A) Enrichment analysis of differential genes between high- and low-cTMGs groups.
(B) Correlation analysis between cTMGs and the biological pathways in the TCGA_SKCM dataset. (C) Sankey diagram showed the connection
degree between cTMGs, Akbani cluster, and mutation subtype in the TCGA_SKCM dataset. (D) Box plot showing a difference in the value of
cTMGs across the three Akbani clusters for CM patients in the TCGA_SKCM dataset. (E) Box plot showing the difference in the value of cTMGs
across the four mutation subtypes for CM patients in the TCGA_SKCM dataset. (F) Scatter plot shows the correlation between TMB and cTMGs.
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was prone to be enriched in amino acid metabolism–related

terms such as valine, leucine, and isoleucine biosynthesis, and

kynurenine metabolism (Figure 4A).

We also evaluated the characteristics of specific biological

activities of cTMGs-based subtypes using a set of genes

identified by Mariathasan et al. (22). The antigen presentation

machinery and CD8 effector signatures were significantly highly

expressed in the low-cTMGs subtype of CM patients (Figures

S4A–C). Consistently, the cTMGs showed a strong negative

correlation with the antigen presentation machinery and CD8+T

effector signatures (Figure 4B; Figures S4D, E). Although some

epithelial to mesenchymal transition (EMT) markers, including

EMT2, EMT3, and angiogenesis, were found to exhibit a

significantly negative correlation with the cTMGs in the

TCGA_SKCM dataset (Figure 4B), such a correlation could

not be repeated in other CM cohorts (Figures S4D, E).

Meanwhile, the enrichment score of most DNA damage

repair–related signatures showed weak or no correlation with

the cTMGs (Figure 4B; Figures S4D, E). CM patients were

divided into “immune,” “keratin,” and “MITF-low” clusters

based on the consensus hierarchical clustering analysis of the

selected 1,500 genes (44). Our study found that CM patients in

the low-cTMGs subgroup were predominantly distributed in the

“immune” cluster, whereas the remaining patients were largely

in the “keratin” and “MITF-low” clusters (Figure 4C).

Consistently, the cTMGs was the lowest in the immune

subtype (Figure 4D). CM patients were also divided into four

subtypes based on the pattern of the most prevalent significantly

mutated genes: mutant B-Raf Proto-Oncogene, Serine/Threonine

Kinase (BRAF), mutant RAS, mutant Neurofibromin 1 (NF1),

and Triple-WT (wild-type) (44). However, no difference in the

cTMGs was observed among these four subtypes (Figure 4E); the

result was consistent with the lack of correlation between

cTMGs and most DNA damage repair–related signatures

(Figure 4B). Correspondingly, TMB showed a weak correlation

with cTMGs (r = –0.13, P = 0.0055, Figure 4F).
Immune landscape of CM patients
classified by cTMGs

We further investigated the distribution of infiltrating

immune cells in the low- and high-cTMGs groups of CM

patients. We found that patients in the high-cTMGs group

demonstrated significantly higher numbers of M0 and M1

macrophages, resting memory CD4+ T cells, and resting mast

cells, whereas those in the low-cTMG group had a significantly

higher proportion of CD8+T cells, M1 macrophages, regulatory T

cells, follicular helper T cells, activated memory CD4+T cells, and

activated NK cells (Figure 5A). In addition, CM patients in the

high-cTMGs group presented an M2 phenotype, since the ratio of

M2 macrophage/(M2 macrophage + M1 macrophage) was

significantly higher in these patients (P< 2.2e-16, Figure S5A).
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A recent study proposed a holistic characterization of TME

by 29 functional gene expression signatures (Fges), which

included the stromal compartments such as angiogenesis,

immune suppression via macrophages and myeloid-derived

suppressor cells, antitumor immune activities such as antigen

processing, and infiltration of cytotoxic immune cells and Fges

related to cancer cell properties (8). Further, four conserved

subtypes were identified across 20 different cancers based on the

following signatures: “Immune-Enriched, Fibrotic” (IE/F),

“Immune-Enriched, Non-Fibrotic” (IE), “Fibrotic” (F), and

“Depleted” (D) subtypes (8). In our study, we found that low-

cTMGs CM was characterized by high levels of immune

infiltrate and elevated expression of Fges associated with

angiogenesis, matrix remodeling, and cancer associate

fibroblast (CAF) activation (Figure 5B). Besides, EMT

transition Fges was significantly upregulated in patients with

high-cTMGs, whereas no difference in the proliferation rate was

observed between the high- and low-cTMGs groups (Figure 5B).

Indeed, 91.07% of CM patients in the high-cTMGs subgroup

presented in the F and D subtypes, reflecting that the high-

cTMGs subgroup had minimal or completely lacked leukocyte/

lymphocyte infiltration (Figure S5B) (8). Correspondingly, the D

subtype of CM patients had the highest cTMGs, followed by the

F subtype. In addition, the IE/F and IE subtypes had the lowest

level of cTMGs, reflecting the feature of this subtype exhibiting

the most immune-active microenvironment among the four

subtypes (Figure S5C) (8). Similar results were observed in the

other two cohorts (Figures S5D, E).

Cancer patients were also divided into six subtypes in TCGA

cohort (45). Our results demonstrated that the C2 subtype (IFN-g
dominant) had the lowest cTMGs, while the C4 samples

(lymphocyte depleted) had the highest cTMGs (Figure 5C).

Besides, we also found a strong negative correlation between

cTMGs and Immunescore or the expression of most immune

checkpoint molecules such as CD274, LAG3, PDCD1, and T-cell

immunoreceptor with Ig and ITIM domains (TIGIT) (Figure 5D).
cTMGs was shown to be predictive for
the efficacy of immunotherapy

The aforementioned analysis revealed that patients with low-

cTMGs were enriched in both pro- and antitumor immune

infiltrates and the cTMGs had a strong negative correlation with

the expression of most targets of immune checkpoint inhibitors

(ICIs). We hypothesized that treatments targeting these immune

checkpoint molecules or pro-tumor immune infiltrates, or

activating the function of antitumor immune cells, might lead

to tumor shrinkage and improved prognosis. Four melanoma-

related cohorts were analyzed in this work (GSE100797,

GSE35640, PUCH cohort, and Gide19 cohort). Consistent

with the previous result (Figure 5B), melanoma patients in the

low-cTMGs group from GSE100797 and GSE35640 datasets also
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had high levels of pro- and antitumor immune infiltrates

(Figures 6A, B). Moreover, melanoma patients who responded

to the ICI therapy had a significantly lower cTMGs compared

with non-responders (Figures 6C, D). Patients who showed

complete response (CR) after adoptive T-cell therapy (ACT)

treatment had the lowest cTMGs, whereas those who progressed
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had the highest cTMGs (CR vs. PD, P = 0.038, Figure S6A).

Consistently, the level of tumor shrinkage significantly positively

correlated with cTMGs (P< 0.05, r = 0.41, Figure S6B). In these

four cohorts, a higher ratio of CM patients in the low-cTMGs

group responded to immunotherapies (Table 1), and the AUC

values of cTMGs in predicting response to these therapies were
A

B

DC

FIGURE 5

Immune infiltration in high- and low-cTMGs CM. (A) Distribution of infiltrating immune cells in high- and low-cTMGs groups CM. (B) Heatmap
showed the 29 Fges in CM patients in the TCGA_SKCM dataset. (C) Box plot showing a difference in the value of cTMGs across the five subtypes
for CM patients in the TCGA_SKCM dataset. (D) Heatmap shows the correlation between cTMGs and the expression levels of immune checkpoints
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. ns for no significance.
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all great than 0.7 (Figures 6E–H). After immunotherapies, CM

patients in the high-cTMGs subgroup tended to show a shorter

progression-free survival (PFS, Figure S6C) or OS (P = 0.0055,

Figure S6D) compared with those in the low-cTMGs group.

We also evaluated the value of the cTMGs in non-CM

cohorts. In the Kim18 cohort in which 55 patients with gastric

cancer were treated with pembrolizumab (46), a significantly

lower level of the cTMGs was observed in those who responded

to the therapy (P = 0.0051, Figure 7A). Consistently, the ORR in

the low-cTMGs subgroup of patients with gastric cancer was
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higher than that in the high-cTMGs subgroup (45.45% vs.

13.04%, P = 0.0165, Table 1). In this cohort, an AUC of 0.764

was achieved (Figure 7B). Two cohorts of patients with

metastatic urothelial cancer (UC) receiving ICI were also

investigated. As shown in Figures 7C, G, patients with UC

who progressed from ICI treatment had higher cTMGs

compared with those who showed CR after immune

therapy. Patients with UC classified in the inflamed

subgroup, or with a high PD-L1 expression on either tumor

cells (TC2+) or immune cells (IC2+), showed the lowest cTMGs
A B

D E

F G H

C

FIGURE 6

Performance of the cTMGs for predicting the effect of ICI therapy on CM patients. (A, B) Enrichment analysis of the 29 Fges of CM patients from
the GSE100797 (A) and GSE35640 (B) dataset. (C, D) cTMGs value of CM patients receiving anti-PD-1 monotherapy in the PUCH cohort (C) or
Gide19 cohort (D). (E–H) ROC curve showing the performance of the cTMGs for predicting the effect of immunotherapy on CM patients in the
GSE100797 (E), GSE35640 (F) dataset, PUCH cohort (G), or Gide19 cohort (H).
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(Figure 7D; Figure S6E, F). In addition, cTMGs had a strong

negative correlation with the CD8+T effector cell score (P< 2.2e-

16, r = –0.83, Figure 7E). Kaplan–Meier analyses demonstrated

that patients with UC in the low-cTMGs group could enjoy

survival benefit from immunotherapy compared with those in

the high-cTMGs group (Figures 7F, H, I).
Discussion

The TME is not only a major factor affecting CM

progression but also a promising target of tumor therapy (47).

Accumulated evidence indicated that the fraction of immune

cells in the TME could serve as a marker for the diagnosis and

prognosis of a variety of malignant tumors (48, 49). However,

some prognostic models based on the TME were developed in

the setting of a pan-cancer analysis (50, 51); they might not

be the most optimal choice for CM. In addition, not all fractions

of the TME exert a significant impact on the prognosis of

tumors. Based on the aforementioned consideration, we

identified core TME components that had a close association

with the prognosis of CM patients and proposed a new index

(cTICscore). Although the cTICscore has a strong predictive

capability for the CM patients’ prognosis, the acquisition process

for a fraction of the four core immune cells is cumbersome.

Previous studies showed that CD8+T cells played a central role

in mediating antitumor immunity. CD8+T cells can release perforin

and IFN-g to kill melanoma cells (13). Besides, CD4+T cells play an

antitumor role by secreting IFNg and IL-4, recruiting effector cells

including eosinophils and macrophages and helping CD8+T cells

(52). NK cells play a vital role in initiating antitumor response, but

resting NK cells harbor poor effector function (53). The decreased

cytotoxicity of resting NK cells may be due to the decreased

expression of granzyme B and perforin (54). M1 macrophages

can also play an antitumor role by producing pro-inflammatory

molecules and presenting tumor-specific antigens to T cells (55). As

we mentioned above, the four core TME components, which have

an impact on the prognosis of CM patients, were found out to be
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associated with certain genes related to cTICscore we have screened.

The expressive level of these genes influences the release of these

components and therefore affects the TME and tumor development.

Based on the pivotal role the four key genes have played, we

generated the cTMGs, consistent with the cTICscore, to be a more

suitable and comprehensive marker over the cTICscore for certain

advantages in prognosis prediction and clinical use. “Deregulating

Cellular Energetics” is a hallmark of cancer (56); obviously, the

rapid proliferation of malignant tumor cells requires a lot of

energy (57). The divided groups of patients by cTMGs present

distinct characteristics. While the low-cTMGs group was highly

enriched in the amino acid metabolism-related gene sets and

immune subtype reflecting a hot immune feature, the high-

cTMGs group was found to be predominantly enriched in

energy metabolism–related gene sets (27), consistent with the

fact that dysregulation of energy might contribute to the rapid

proliferation of tumor cells and the results of Kaplan–Meier

survival analysis. Part of the contribution to the rapid

proliferation may be due to the impact the upregulation of

specific metabolism-related pathways has on the TME of the

high-cTMGs group. For instance, the downregulation of the

activity of pyruvate kinase, a component of glucose metabolism,

is associated with increased aerobic glycolysis (58), facilitating

cancer cell proliferation and tumor enlargement. It also reflects the

increase in lipogenesis, fatty acid (FA) uptake, and FA oxidation

owing to the production of plasma membrane synthesis and

energy requirement of the expanded tumor cells (59).

TMB, a leading potential biomarker for identifying cancer

patients benefiting from immunotherapies, measures the number

of somatic mutations per megabase (Mb) of the interrogated

genomic sequence of a tumor (60). Theoretically, the increase

in the number of mutant proteins will create antigenic

peptides allowing for enhanced immunogenicity (61). However,

retrospective analyses of a bunch of cancer patient cohorts

suggested that high TMB, compared to low TMB, fails to indicate

an improved response rate to ICIs for certain cancer types, and

neoantigen load does not always show a significant correlation with

CD8 T-cell infiltration (61). These results suggest that TMB does

not always show a clear cause-and-effect relationship with the

infiltration of immune cells into tumors, and the components of

the TME could be affected by numerous non-TMB factors such as

hypoxia conditions. The complexity of the TME might help to

explain why cTMGs, a reflection of the level of intra-tumor immune

cells, was weakly correlated with TMB and DNA damage repair–

related signatures.

Furthermore, cTMGs showed a strong negative correlation

with the antigen presentation machinery and CD8+T effector

signatures. Tumor immunogenicity is mainly determined by

tumor antigenicity and antigen presentation efficiency (62).

Chowell et al. and Zaretsky et al. reported that antigen

presentation defects contributed to ICI response failure (63,

64). The grouping pattern of CM patients according to cTMGs

was further supported by studies of “Cancer Genome Atlas
TABLE 1 Response to immunotherapies of cTMGs-stratified groups.

Dataset cTMG-high cTMG-low p value

GSE100797 Responder 3 7 0.0722

Non-responder 10 5

GSE35640 Responder 7 15 0.0286

Non-responder 21 13

PUCH cohort Responder 3 11 0.0165

Non-responder 24 17

Gide19 cohort Responder 5 14 0.003

Non-responder 16 6

Kim18 cohort Responder 3 10 0.0165

Non-responder 20 12
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Network” and Bagaev et al. (8, 44). In addition, cTMGs strongly

negatively correlated with the expression of most ICIs. Based on

these findings, we presumed that patients with a high cTMGs

might have a poor response to immunotherapy.

To confirm our conjecture, we compared the immune

response of cTMGs-based subgroups from four independent

CM cohorts. We found that CM patients in the low-cTMGs
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group had a significantly higher response to ACT, MAGE-A3

antigen-specific cancer immunotherapy, anti-PD-1 monotherapy,

or anti-PD-1/anti-CTLA-4 combined therapy compared with

those in the high-cTMGs group.

Consequently, the abovementioned presumptions have a

great potential to be applied in clinical use. After collecting the

gene-expression information of the patient, cTMGs can be
A B
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FIGURE 7

Performance of the cTMGs for predicting the effect of ICI therapy on non-CM patients. (A) Box plot showing a difference in the value of cTMGs
across the two response subtypes for patients with gastric cancer in the Kim18 cohort. (B) ROC curve showing the performance of the cTMGs
for predicting the effect of pembrolizumab therapy on patients with gastric cancer in the Kim18 cohort. (C) Box plot showing differences in the
value of cTMGs across the four response subtypes of the IMvigor210 study. (D) Box plot showing differences in the value of the cTMGs across
the three immune phenotype subtypes of the IMvigor210 study. (E) Scatter plot showing the correlation between CD8 T effector cell score and
cTMGs in the IMvigor210 study. (F) OS of patients with UC in the IMvigor210 study stratified by cTMGs subtype classification. (G) Box plot
showing differences in the value of cTMGs across the four response subtypes for the GSE176307 dataset. (H, I) OS (H) and PFS (I) of patients
with UC in the GSE176307 dataset stratified by cTMGs subtype classification.
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calculated subsequently to reveal the general landscape of his or

her TME condition and possible outcome. Based on these

materials, a more prognosis-oriented immunotherapy can be

constructed for a more responsive and accurate treatment.

Similar conclusions in patients with gastric cancer and

metastatic urothelial carcinoma were obtained, suggesting that

cTMGs not only served as a prognostic factor for CM

immunotherapy but also had the potential to be applied in other

tumors. Although immunotherapy has changed the treatment

landscape of many tumors, how exactly “cold tumors” benefit

from ICIs remains a big challenge (65). The patients in the high-

cTMGs group had a low fraction of T-cell infiltration and

dysregulated energy-related pathways, which were consistent with

the characteristics of “cold tumors.” Boosting T-cell infiltration into

the TME is essential for ameliorating the immunotherapeutic effect

(66, 67). Theoretically, NK cell–based approaches, oncolytic viruses,

pattern recognition receptor (PRR) agonists, CD 40 agonistic

antibodies, transforming growth factor beta (TGF-b)-blocking
antibodies and TGF-b-receptor antagonists, immunocytokines,

and T-cell-recruiting bispecific antibodies might overcome the

absence of T-cell infiltration in tumors, including CM patients in

the high-cTMGs group (65, 66). Approaches influencing energy

metabolism are also potential directions. More studies are still

required to bring hope from bench to bedside.

In conclusion, we identified the core components in the

TME of CM which helped us understand their importance for

immunotherapy. The cTMGs can be used to stratify CM patients

with distinct prognosis and identify those who can benefit more

from immunotherapy.
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